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Abstract: The Gtr1 protein was a member of the RagA subfamily of the Ras-like small GTPase
superfamily and involved in phosphate acquisition, ribosome biogenesis and epigenetic control
of gene expression in yeast. However, Gtr1 regulation sexual or asexual development in filamen-
tous fungi is barely accepted. In the study, SeGtr1, identified from Stemphylium eturmiunum, could
manipulate mycelial growth, nuclear distribution of mycelium and the morphology of conidia in
Segtr1 silenced strains compared with its overexpression transformants, while the sexual activity of
Segtr1 silenced strains were unchanged. SeASF1, a H3/H4 chaperone, participated in nucleosome
assembly/disassembly, DNA replication and transcriptional regulation. Our experiments showed
that deletion Seasf1 mutants produced the hyphal fusion and abnormal conidia. Notably, we char-
acterized that Segtr1 was down-regulated in Se∆asf1 mutants and Seasf1 was also down-regulated
in SiSegtr1 strains. We further confirmed that SeGtr1 interacted with SeASF1 or SeH4 in vivo and
vitro, respectively. Thus, SeGtr1 can cooperate with SeASF1 to modulate asexual development in
Stemphylium eturmiunum.

Keywords: GTP binding protein Gtr1; interaction; ASF1; asexual development; Stemphylium eturmiunum

1. Introduction

The fungal hyphae are in a vegetative growth state under normal conditions. The
hyphae will form various propagules and then enter the reproduction stage under a
certain period. The propagation of filamentous ascomycetes mainly includes asexual
reproduction (formation of asexual spores) and sexual reproduction. The main method
of asexual reproduction of filamentous fungi is to produce multicellular structures called
conidiophores, each bearing asexual spores called conidia [1]. Asexual spores are generated
when the surroundings are favorable for growth and development. However, when
nutrient availability become scarce, the sexual reproduction occurs and fruit bodies are
produced to resist adverse environment [2,3]. Although it is more complicated, it has been
found that the evidence of sexual reproduction is confirmed in some eukaryotic groups [4].

Previous studies have shown that fungi are a group historically considered to present a
high proportion of asexual species [5]. Stemphylium, a genus of ascomycetes in Pleosporales
(Dothideomycetes), is known to reproduce asexually [6]. Stemphylium is closely related
to Alternaria and Ulocladium [7,8]. The conidia of Stemphylium forming on proliferating
conidiophores in which produced apically swollen conidiogenous cells, which is principal
distinguished it from two closely related genera [6,9]. In addition, the evolution, differ-
entiation and asexual development of filamentous fungi are regulated by several genes,
such as velvet family [10,11] and phytochromes [12]. However, another example of the
GTP binding proteins with a role in biological development is the Gtr1. The Gtr1 protein is
a member of the RagA subfamily of the Ras-like small GTPase superfamily [13]. Moreover,
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the Gtr1, a multifunctional GTP-binding protein, is involved in phosphate acquisition [14],
ribosome biogenesis [13] and epigenetic control of gene expression [15] in Saccharomyces
cerevisiae. Notably, Gtr1 may be involved in stamen development via active GA supply in
Arabidopsis [16]. However, Gtr1 regulation sexual or asexual development in filamentous
fungi is barely accepted.

In recent years, several genes with potential functions in chromatin modification were
found to be involved in asexual and sexual development [17–19]. One such factor is the
histone chaperone ASF1 that was first identified in Saccharomyces cerevisiae [20]. ASF1, a
H3-H4 chaperone, is highly conserved from yeast to mammals and involved in nucleosome
assembly/disassembly [21–23], DNA replication, repair and transcriptional regulation [24].
Interestingly, in our experiments, deletion Seasf1 mutants produced the hyphal fusion
and abnormal conidia. To further investigate asexual development in S. eturmiunum, we
hypothesized that SeGtr1 could be involved in SeASF1 regulation asexual development.
Here, to address the hypothesis, we analyzed RNA transcript levels of the Se∆asf1 mutant
and wild type strain at various stages, and found that SeGtr1 interacted with SeASF1 and
SeH4 in S. eturmiunum. We confirmed that SeGtr1 could cooperate SeASF1 involved in
central regulatory pathway to modulate asexual development.

2. Results
2.1. SeASF1 Regulates Asexual Development in S. eturmiunum

To understand the biological functions of the SeASF1 during asexual development
of S. eturmiunum, we obtained two Se∆asf1 mutants and two complemented transfor-
mants. To determine the role of Seasf1 in hyphal and colonial growth, these four mutants
and WT strains were inoculated on CM medium and then photographed after 9 days.
Colony growth rates of the two Se∆asf1 mutants were distinguishable from the WT while
two complemented transformants returned to normal growth (Figure 1A). Additionally,
two Se∆asf1 mutants produced the hyphal fusion and abnormal conidia compared to the
complemented transformants and WT strains (Figure 1B,D). These results suggest that
SeASF1 is involved in asexual development of S. eturmiunum.
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Figure 1. Seasf1 regulates asexual developmental characterization in S. eturmiunum. (A) Growth
of two Se∆asf1 mutants, two Se∆asf1::Seasf1 transformants, and WT strains on CM medium. The
cultures were photographed after 9 days of incubation. (B) Characterizations of hyphal fusion in two
Se∆asf1 mutants, two Se∆asf1::Seasf1 transformants, and WT strains. The images were photographed
after growing on PDA medium for 8 days. The fusions in the hyphae were marked with red arrows.
(C,D) Conidia morphology of four mutants and WT strains were cultured on CM medium for 4 weeks.
Bar = 20 µm, 500 µm.
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2.2. SeGtr1 Plays a Role in Asexual Development

Gtr1 (SeGtr1) was cloned from S. eturmiunum. SeGtr1 contains 335 amino acids with a
calculated molecular mass of 37 kDa. To verify the roles of Segtr1 during the growth and de-
velopment of S. eturmiunum, we obtained two Segtr1-silenced transformants (SiSegtr1-T63
and SiSegtr1-T65) and two overexpression transformants (OESegtr1-T3 and OESegtr1-T8)
by A. tumefaciens mediated method (Figure 2D). Control was a negative control strain. As
a result, two silenced transformants appeared the slow growth rate of colonies related to
overexpression transformants or control strains (Figure 2A,C). In addition, the nuclei were
anomalously distributed in mycelia of SiSegtr1 strains (Figure 2B). To further observe the
roles of Segtr1 during the asexual and sexual development of S. eturmiunum, all transfor-
mants and WT strains were in the dark condition at 25 ◦C for 5 weeks on CM medium by
inserting double slides. For two silenced strains, the conidiophores turned into bead-like
and the conidia grew subglobose, which were significantly different from overexpression
transformants and WT strains (Figure 3A). Furthermore, the expression levels of genes
involved in the central regulatory pathway, including the brl, aba, and wet, were signifi-
cantly down-regulated in the two Se∆asf1 mutants and two Segtr1-silenced transformants
(Suppplementary Figure S1). However, two silenced strains still produced perithecia that
were unanimous with overexpression transformants and WT strains (Figure 3B). These
results indicate that SeGtr1 can affect the expression of related genes (brl, aba and wet) in
the central regulatory pathway and modulate asexual development.

2.3. The Expression Patterns of Seasf1, SeH4, and Segtr1 in Knockout Mutants, Silenced Lines or
Overexpression Strains

Due to SeGtr1 can also control the asexual development in S. eturmiunum, we verify
whether can occur the relation among SeASF1, SeH4 and SeGtr1. Two SeH4-silenced strains
were SiSeH4-T8 and SiSeH4-T20. The transcript levels of Segtr1 and SeH4 were detected
in two Se∆asf1 mutants and two complemented transformants. The expressions of Segtr1
and Seasf1 were measured in two SiSeH4 lines, and those of Seasf1 and SeH4 examined in
two SiSegtr1 lines and two OESegtr1 strains. As a result, Segtr1 and SeH4 showed down-
regulation and up-regulation in two Se∆asf1 mutants, while Segtr1 was up-regulation in
Se∆asf1::Seasf1 strains, respectively (Figure 4A). At the same time, Seasf1 displayed up-
regulation in two SiSeH4 lines, but Segtr1 did not change (Figure 4B). Furthermore, Seasf1
and SeH4 showed down-regulation and up-regulation in two SiSegtr1 lines, respectively.
However, Seasf1 showed up-regulation in two OESegtr1 strains (Figure 4C). Summary,
SeGtr1 could interact with SeASF1 or SeH4.

2.4. SeASF1 Interaction with SeH4, and SeGtr1 Interaction with SeASF1 and SeH4

To test whether can occur the interaction between SeASF1 and SeGtr1, SeH4 and SeGtr1.
Y2H revealed that SeASF1 interacted with SeH4, and SeGtr1 interacted with SeASF1 and
SeH4 (Figure 5A). On the basis of GST pull-down, SeASF1 was specifically interacted
with SeH4 (Figure 5B), while SeGtr1 could interact with SeASF1 and SeH4, respectively
(Figure 5C). To further assure those results of the Y2H and pull-down experiments, SeASF1-
GFP and SeH4-Flag, SeGtr1-Flag and SeASF1-GFP, and SeGtr1-Flag and SeH4-GFP were
expressed in F. graminearum protoplasts, respectively, and then the immune complexes
were estimated using Co-IP assays (Figure 5D,E). Thus, SeASF1 interacted with SeH4, and
SeGtr1 interacted with SeASF1 and SeH4. Altogether, SeGtr1 could cooperate with SeASF1
and SeH4 to modulate asexual development of S. eturmiunum.
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Colonial growth of two Segtr1 silenced transformants (SiSegtr1-T63 and SiSegtr1-T66) and two 
Segtr1 overexpression transformants (OESegtr1-T3 and OESegtr1-T8) was observed on PDA me-
dium. WT was S. eturmiunum strain and Control was a negative control strain. The cultures were 
photographed after 1 day, 3 days, 5 days, 7 days and 9 days. (B) The mycelium of these four 
transformants were grown on PDA medium for 6 days and examined by DIC and fluorescence 
microscopy. The nuclei of the mycelia were discovered under the fluorescence microscopy after 
staining by DAPI. Bar = 20 μm. (C) Colony diameters were measured in each independent biolog-

Figure 2. The colonial phenotypes and nuclear distribution of Segtr1 silenced transformants.
(A) Colonial growth of two Segtr1 silenced transformants (SiSegtr1-T63 and SiSegtr1-T66) and two
Segtr1 overexpression transformants (OESegtr1-T3 and OESegtr1-T8) was observed on PDA medium.
WT was S. eturmiunum strain and Control was a negative control strain. The cultures were pho-
tographed after 1 day, 3 days, 5 days, 7 days and 9 days. (B) The mycelium of these four transformants
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were grown on PDA medium for 6 days and examined by DIC and fluorescence microscopy. The
nuclei of the mycelia were discovered under the fluorescence microscopy after staining by DAPI.
Bar = 20 µm. (C) Colony diameters were measured in each independent biological experiment at
1–9 days of growth on PDA medium. Rates of colonial growth were calculated for each treatment.
(D) qRT-PCR was used to measure the expression levels of Segtr1 in silenced transformants, overex-
pression transformants, Control and WT. The degree of WT was assigned to value 1.0. Actin gene of
S. eturmiunum was used as endogenous control. The bars indicated statistically significant differences
(ANOVA; ** p < 0.01). Each experiment was repeated at least three times.
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Figure 3. SeGtr1 plays a role in asexual development, but the sexual activity was unchanged. (A) For
the microscopic investigation of conidiophores and conidia development, two silenced transformants
(SiSegtr1-T63 and SiSegtr1-T66), two overexpression transformants (OESegtr1-T3 and OESegtr1-T8),
Control and WT strains were grown on CM medium for 35 days, respectively. Control was a negative
control strain. Red arrowheads indicated abnormal conidiophores. (B) To further observe the role
of Segtr1 during the sexual development of S. eturmiunum, all transformants and WT strains were
cultured on PDA medium for inducing perithecia production. At 35 days, all transformant strains
produced abundant perithecia. Bar = 20 µm and 500 µm.
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complemented transformants were measured by qRT-PCR. (B) The expression levels of Segtr1 and
Seasf1 in two SiSeH4 lines were measured by qRT-PCR. (C) The expression levels of Seasf1 and SeH4
in two SiSegtr1 lines and two OESegtr1 lines were measured by qRT-PCR. The degree of WT was
assigned to value 1.0. Two Seasf1 deleted mutants were Se∆asf1-0 and Se∆asf1-5, two complemented
transformants were Se∆asf1::Seasf1-1 and Se∆asf1::Seasf1-2. Two SeH4-silenced lines were SiSeH4-T8
and SiSeH4-T20. Two Segtr1-silenced lines were SiSegtr1-T63 and SiSegtr1-T66, two OESegtr1 lines
were OESegtr1-T3 and OESegtr1-T8. The Actin in S. eturmiunum was used as endogenous control. The
bars indicated statistically significant differences (ANOVA; ** p < 0.01).
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Figure 5. SeASF1 interaction with SeH4, and SeGtr1 interaction with SeASF1 or SeH4. (A) SeASF1
interacted with SeH4, and SeGtr1 interaction with SeASF1 or SeH4 using Y2H. SeASF1 or SeH4 was
cloned into plasmid pGBKT7 (BD). SeH4 or SeGtr1 was cloned into plasmid pGADT7 (AD). Yeast
transformants were first grown on SD/-Trp/-Leu, and selected on SD/-Trp/-Leu/-His/-Ade/X-α-gal.
A positive interaction results in the activation of the lacZ reporter, which turned the blue in the presence
of X-α-galactosidase. The images were photographed at 3 days after incubation. (B) SeASF1 was cloned
into plasmid pGEX-6P-1. SeH4 was cloned into plasmid pET28a. SeASF1-GST was expressed in E. coli
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and incubated with SeH4-His, purified (pull-down) by glutathione sepharose beads. Recombinant
GST was control. SeH4-His was pulled down by SeASF1-GST. (C) SeGtr1 was cloned into plasmid
pGEX-6P-1. Flag-SeASF1 or SeH4 was cloned into plasmid pET28a. SeH4-His and Flag-SeASF1-
His were both retained by SeGtr1-GST. (D) SeASF1 was cloned into plasmid pDL2, SeH4 was
cloned into plasmid pFL7. Total proteins were extracted from F. graminearum protoplasts expressing
SeASF1-GFP and SeH4-Flag. Recombinant GFP or Flag was control. The immune complexes were
immunoprecipitated with α-Flag antibody (α-Flag IP). Coprecipitation of SeH4-Flag was detected by
immunoblotting. (E) SeH4 was cloned into plasmid pDL2. SeGtr1 was cloned into plasmid pFL7.
Total proteins were extracted from F. graminearum protoplasts expressing SeASF1-GFP, SeH4-GFP,
and SeGtr1-Flag. Coprecipitation of SeGtr1-Flag was detected by immunoblotting. Membranes were
stained with Ponceau S to confirm equal loading. Protein sizes are indicated in kDa. Each experiment
was repeated at least three times.

3. Discussion

Stemphylium was a dematiaceous hyphomycete that was established with S. botryosum
as type species [25]. Until now, there were more than 150 Stemphylium species had been
described [26–29]. S. eturmiunum, a typical species of Stemphylium genus, was an important
homothallic filamentous fungus, and it could produce both conidia and perithecia. In
a previous study, ASF1 could manipulate the sexual reproduction in Sordaria macrospora
effectively [30]. However, in this study, deletion of Seasf1 carried out asexual development
characters, such as hyphal fusion and abnormal conidia. A possible explanation for the
SeASF1 in asexual development was functional redundancy because some genes were
down-regulated or up-regulated expression when Seasf1 was deleted. Therefore, we hypoth-
esized that other proteins might be involved in SeASF1 regulation asexual development.

In summary, through the comparative analysis of transcriptome data (Supplemen-
tary Table S1), we characterized that the expression of Segtr1 (No. TR23646-c0_g1) and
Seasf1 (No. KX033515) was down-regulated in Se∆asf1 and SiSegtr1 strains, respectively.
Meanwhile, we found that SeASF1 or SeGtr1 participated in the central regulatory pathway
and regulated the expression of related genes, such as brl, aba and wet. In addition, we
verified that SeGtr1 could effectively stimulate asexual activity of S. eturmiunum in Segtr1
silenced strains compared with its overexpression strains. A model of the process is shown
in Figure 6. SeASF1 coupled to SeH4 is translocated into the nucleus. In previous studies,
ASF1 was reported to regulate DNA replication and damage repair in nucleosome. In this
study, we found that SeGtr1 interacted with SeASF1 or SeH4 in vivo and vitro, and SeGtr1
cooperated with SeASF1, which is involved in the central regulatory pathway, to regulate
asexual development in S. eturmiunum.
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nuclei through the nuclear pore. The dimer of ASF1-H4 regulates DNA replication and damage repair
in previous studies. Herein, ASF1-H4 combines with GTR1 to constitute a trimeric complex which in
turn is involved in the central regulatory pathway to modulate asexual reproduction.

4. Materials and Methods
4.1. Strains and Culture Conditions

Stemphylium eturmiunum strain (EGS 29-099) (WT) and all transformants strains
were cultured in the dark condition at 25 ◦C on complete medium (CM), or potato dex-
trose agar (PDA) medium for mycelial growth assays. Escherichia coli DH5α or Agrobac-
terium tumefaciens AGL-1 was incubated in LB (Luria-Bertani) medium at 37 ◦C or 28 ◦C,
respectively [31].

4.2. Plasmid Construction

Deletion strains for Seasf1 was generated by homologous recombination. The Seasf1
flanking regions, 1500 bp upstream and 1500 bp downstream, were amplified using primer
pairs (Table 1). The resulting PCR products were ligated to the Hygromycin cassette and
then transformed into WT. Transformants were screened by PCR with primers (Table 1). In
addition, Seasf1 was cloned into eGPF-pHDT vector for complementation analysis (Table 2).
The recombinant plasmid eGFP-pHDT-Seasf1 was transformed into the Se∆asf1 mutants by
A. tumefaciens mediated transformation (ATMT) method [32]. Transformants were screened
by PCR and western blot.

Table 1. Primers used in this study.

Primer Sequence(5′-3′) Application

Seasf1-F ATGTCTGTCGTTTCGCTTC
Amplify Seasf1 sequence

Seasf1-R CTAGTGAACCATGACATCTGC

Seasf1-5f CCGCTCGAGCAATCCAGGGGCGATAAAG
Amplify Seasf1 upstream sequence

Seasf1-5r GGAAGATCTGCTTGGCGGGGTAGATAGAG

Seasf1-3f CGCGGATCCGCCGCCGTCTGTTAGTCTT
Amplify Seasf1 downstream sequence

Seasf1-3r CTAGTCTAGACAGAGGAGATGCTTGCTTGTC

Seasf1-f TCTGTCGTTTCGCTTCTCG For identification of Seasf1
deletion strainsSeasf1-r TGAACCATGACATCTGCGC

Seasf1-3D CCTCGTCGTCTTCCTGATCACT

For identification
of Hph in deletion transformants

Hph-3D GAGATTCTTCGCCCTCCGAG

Hph-5D AATTTCGATGATGCAGCTTGGG

Seasf1-5D CAAGACTGCTTCCTTCTCATCGT

Hph-F CGACAGCGTCTCCGACCTGA For identification of Hph
For identification ofHph-R CGCCCAAGCTGCATCATCGAA

Seasf1-PHDT-F CCGCTCGAGATGTCTGTCGTTTCGCTTCTCG Seasf1complementation
expressionSeasf1-PHDT-R GCTCTAGACTAGTGAACCATGACATCTGCGC

PHDT-F GATCACATGGTCCTGCTG Vector construction of
sequencing primerPHDT-R CACCAACGATCTTATATCCAG

Segtr1-pCIT-F(BamHI/ClaI) CGCGGATCCATCGATGTAGTGCACCTGTTGA
ATGAGAGC Primer for

Segtr1 silence
Segtr1-pCIT-R(PstI/EcoRV) AACTGCAG GATATCGCCCAGCC TACGTAC

ATCCTT

Seasf1-QRT-F ACAACGAGTACACAGATGAGG QRT-PCR for
Seasf1Seasf1-QRT-R TCGTCAGAGTCCCATTTGATAG

SeH4-QRT-F AGCCATGATCTACGAGGAAAC QRT-PCR for
SeH4SeH4-QRT-R CGAGAGAAGTGACAGTCTTACG
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Table 1. Cont.

Primer Sequence(5′-3′) Application

Segtr1-QRT-F AAGCTAGCGAGGGTTTCAAG QRT-PCR for
Segtr1Segtr1-QRT-R GGCGTTTGGTATCAGGTAGTAG

Seactin-F GTCGATTGGAGAAGGAGCTAAA QRT-PCR for
SeactinSeactin-R GTTCTCCTTGTCGGCCATAAT

Seasf1-BD-F(NdeI) GGAATTCCATATGATGTCTGTCGTTTCGCTTCTCG
Seasf1 recombined into pGBKT7

Seasf1-BD-R(BamHI) CGCGGATCCCTAGTGAACCATGACATCTGCG

SeH4-BD-F(SmaI) TCCCCCGGGATGACTGGTCGCGGTAAAGGT
SeH4 recombined into pGBKT7

SeH4-BD-R(BamHI) CGCGGATCCCTAACCACCGAAACCGTAAAGGG

SeH4-AD-F(SmaI) TCCCCCGGGATGACTGGTCGCGGTAAAGGT SeH4 recombined into
pGADT7SeH4-AD-R(BamHI) CGGGATCCCTAACCACCGAAACCGTAAAGGG

SeH3-AD-F(SmaI) TCCCCCGGGATGCCGCCAAAATCCCCTACCAG SeH3 recombined into
pGADT7SeH3-AD-R(BamHI) CGCGGATCCTCAGACAGGCGCCCCCCAAG

Segtr1-AD-F(SmaI) TCCCCCGGGATGAATTCAGTCAAGCGTCAGA Segtr1 recombined into
pGADT7Segtr1-AD-R(BamHI) CGCGGATCCCTACATTCCAGAGCCATGC

Seasf1-pET28a-Flag-F(NdeI) GGAATTCCATATGGATTACAAGGACGACG
ATGACAAGATGTCTGTCGTTTCGCTTCTC

Seasf1 recombined
into
pET28aSeasf1-pET28a-Flag-R(HindIII) CCCAAGCTTCTAGTGAACCATGACATCTGC

Seasf1-pGEX-F(BamHI) CGCGGATCCATGTCTGTCGTTTCGCTTCTCG Seasf1 recombined
into
pGEXSeasf1-pGEX-R(NotI) ATAAGAATGCGGCCGCCTAGTGAACCATG

ACATCTGCG

Segtr1-pGEX-F(NdeI) GGAATTCCATATGATGAATTCAGTCAAGCG
TCAGA Segtr1 recombined

into
pGEXSegtr1-pGEX-R(NotI) ATAAGAATGCGGCCGCCTACATTCCAGAG

CCATGC

Seasf1-pDL2-GFP-F CAGATCTTGGCTTTCGTAGGAACCCAATCTTCA
ATGTCTGTCGTTTCGCTTCTCG Seasf1 recombined

into
pDL2Seasf1-pDL2-GFP-R CACCACCCCGGTGAACAGCTCCTCGCCCTTGCT

CACGTGAACCATGACATCTGCGC

SeH4-pDL2-GFP-F CAGATCTTGGCTTTCGTAGGAACCCAATCTTCA
ATGACTGGTCGCGGTAAAGGT SeH4 recombined

into
pDL2SeH4-pDL2-GFP-R CACCACCCCGGTGAACAGCTCCTCGCCCTTGCT

CACACCACCGAAACCGTAAAGGG

SeH4-pFL7-Flag-F CAGATCTTGGCTTTCGTAGGAACCCAATCTTCA
ATGACTGGTCGCGGTAAAGGT SeH4 recombined

into
pFL7SeH4-pFL7-Flag-R CTTTATAATCACCGTCATGGTCTTTGTAGT

CACCACCGAAACCGTAAAGGG

Segtr1-pFL7-Flag-F CAGATCTTGGCTTTCGTAGGAACCCAATCTTCA
ATGAATTCAGTCAAGCGTCAGA Segtr1 recombined

into
pFL7Segtr1-pFL7-Flag-R CTTTATAATCACCGTCATGGTCTTTGTAGT

CATTCCAGAGCCATGC

Segtr1-PHDT-F(SnaBI) CCTACGTA ATGAATTCAGTCAAGCGTCAGA Primer for
Segtr1 overexpressionSegtr1-PHDT-R(XbaI) GCTCTAGACATTCCAGAGCCATGC

RNA interference [33] was used for Segtr1 silencing. The 525 bp cDNA fragments of
Segtr1 was amplified from S. eturmiunum with primers (Table 1) and inserted into vector
pCIT that flanked to the intron to form silencing construct, respectively [33] (Table 2). The
constructed plasmid pCH-Segtr1 was transformed into S. eturmiunum strain by A. tumefaciens
mediated transformation (ATMT) method [32].
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Table 2. Plasmids used in this study.

Name Origin of Target Genes Construction Path Purpose

Seasf1-pXEH S. eturmiunum Seasf1 recombined into pXEH Knockout asf1

Seasf1-pHDT S. eturmiunum Seasf1 recombined into pHDT asf1complementation expression

Segtr1-pCIT S. eturmiunum Segtr1 recombined into pCIT Segtr1 silence

Seasf1-pGBKT7 S. eturmiunum Seasf1 recombined into
pGBKT7 Yeast two-hybrid assays

SeH4-pGBKT7 S. eturmiunum SeH4 recombined into
pGBKT7 Yeast two-hybrid assays

Segtr1-pGADT7 S. eturmiunum Segtr1 recombined into
pGADT7 Yeast two-hybrid assays

SeH4-pGADT7 S. eturmiunum SeH4 recombined into
pGADT7 Yeast two-hybrid assays

SeH3-pGADT7 S. eturmiunum SeH3 recombined into
pGADT7 Yeast two-hybrid assays

Seasf1-pET28a S. eturmiunum Seasf1 recombined into
pET28a Pull-down assays

Segtr1-pGEX-6P-1 S. eturmiunum Segtr1 recombined into
pGEX-6P-1 Pull-down assays

Seasf1-pDL2 S. eturmiunum Seasf1 recombined into pDL2 CO-IP assays

SeH4-pDL2 S. eturmiunum SeH4 recombined into pDL2 CO-IP assays

Segtr1-pFL7 S. eturmiunum Segtr1 recombined into pFL7 CO-IP assays

SeH4-pFL7 S. eturmiunum SeH4 recombined into pFL7 CO-IP assays

Segtr1-pHDT S. eturmiunum Segtr1 recombined into pHDT Segtr1 over expression

For overexpression analysis, Segtr1 was cloned from S. eturmiunum with primers
(Table 1), and then cloned into eGPF-pHDT vector. Subsequently, recombinant plasmid
eGFP-pHDT-Segtr1 was transformed into the SiSegtr1 lines by ATMT method. Overexpres-
sion transformants were screened by qRT-PCR and western blot.

For co-immunoprecipitation (Co-IP) analysis, SeASF1, SeH4, and SeGtr1 were am-
plified from S. eturmiunum with primers (Table 1), and cloned into the pDL2 or pFL7 in
yeast (XK125) by recombination approach [34] (Table 2). Recombinant plasmids were
then co-transformed into the protoplasts of Fusarium graminearum wild-type strain (PH-1).
Transformants were also screened by western blot.

4.3. RNA Extraction and qRT-PCR

Total RNA was extracted from mycelia of S. eturmiunum growing in PDB (Potato
Dextrose Broth) cultures using the Fungal RNA Kit (OMEGA Biotechnology, USA). cDNA
was generated using the HiScript II QRT SuperMix for qPCR (Vazyme, Nanjing, China).
The qRT-PCR was carried out using the 2× ChamQ SYBR Color qPCR Master Mix (Vazyme,
China) and performed on an ABI QuantStudioTM 6 Quantitative Real-Time PCR System
(Applied Biosystems). The specific primers of qRT-PCR listed in the Table 1. Changes in
the relative expression level of each gene were calculated by the 2−∆∆CT method [35]. Gene
expression levels were normalized using the housekeeping gene actin. This experiment
was repeated at least three times.

4.4. Yeast Two-Hybrid

To test whether SeASF1 and SeH4 interact with SeGtr1, Y2H assay was performed
according to the Yeast Protocols Handbook (Clontech) using the Y2H Gold yeast reporter
strain (Clontech). The Seasf1 or SeH4 was amplified and cloned into pGBKT7 (BD). The
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Segtr1 or SeH4 was amplified and cloned into pGADT7 (AD) (Table 2). The primers used
are listed in Table 1. Pairwise interaction was tested using AD and BD to transform the
yeast strain Y2H gold. The yeast transformants were grown on SD/-Trp/-Leu mediums
(TaKaRa Bio) for 3–5 days and then cultured on selection mediums (SD/-Trp/-Leu/-His/-
Ade/X-α-gal) to detect the protein-protein interaction. Each experiment was repeated at
least three times.

4.5. GST Pull-Down

The Seasf1 was cloned into the pET28a vector after adding a 1×FLAG tag to the 5′-
terminal of Seasf1 to make the Flag-SeASF1-His fusion protein. The Segtr1 was cloned
into the pGEX-6P-1 vector to make the GST-SeGtr1 fusion protein (Table 2). Flag-SeASF1-
His, GST-SeGtr1, pET28a or pGEX-6P-1 was expressed in BL21 strain of E. coli, and were
then affinity purified with a Ni-affinity column (GE) or GST-affinity column (glutathione
sepharoseTM 4B beads GE Healthcare, Little Chalfont, Buckinghamshire, UK). For glu-
tathione S-transferase (GST) pull-down in vitro, GST-SeGtr1 and Flag-SeASF1-28a were
expressed in E. coli strain BL21 (DE3). Total proteins of GST-SeGtr1 and Flag-SeASF1-
His were then incubated with 4000 µL of glutathione sepharoseTM 4B beads at 4 ◦C for
2 h. The supernatant was removed, and the beads was washed by GST-lysis buffer three
times. Finally, the beads were eluted by GST-elution buffer. Pull-down of GST-SeGtr1 with
Flag-SeASF1-His was detected using an anti-Flag (Invitrogen, Waltham, MA, USA). Each
experiment was repeated at least three times.

4.6. Co-IP

Fusarium graminearum protoplasts were transfected with the indicated combination
plasmids and empty construct. Proteins of F. graminearum were extracted in an extraction
buffer (50 mM HEPES, 130 mM NaCl, 10% glycerin, pH 7.4) with 25 mM Glycerol phosphate,
1 mM Sodium orthovanada and protease inhibitor (100 mM PMSF). For FLAG IP, protein
extracts were incubated with 30 µL of Anti-Flag® M2 Affinity Gel beads (Sigma-Aldrich, St.
Louis, MO, USA) at 4 ◦C for 4 h. The beads were washed five times with by Co-IP washing
buffer (50 mM HEPES, 130 mM NaCl, 10% glycerin, pH 7.4). The bound proteins retained
on the beads were separated by 12% SDS–PAGE gels and detected using immunoblotting
with anti-FLAG (Sigma-Aldrich) or anti-GFP antibody (Invitrogen). Each experiment was
repeated at least three times.

4.7. Western Blot

Proteins were separated by 12% sodium dodecyl sulfate polyacrylamide gel electrophore-
sis (SDS-PAGE), and transferred to Immobilon®-P PVDF membrane for 1.5 h at 230 mA. The
PVDF membranes were blocked with TBST (0.02 M Tris-base, 0.14 M NaCl, 0.1% Tween-20,
pH 7.4) with 5% non-fat milk for 1 h at room temperature. Co-immunoprecipitated proteins
were analyzed by incubating the membranes with 1:5000 diluted GFP or FLAG antibodies
(Sigma-Aldrich) at room temperature for 1–1.5 h. The membranes were washed three times
with TBST and then were incubated for 1 h with Goat anti-Mouse-HRP secondary antibody
(Thermo Fisher Scientific, Waltham, MA, USA, no. 31430) at 1:7500 dilution. The specific
proteins were visualized by the ECL Chemiluminescence Detection Kit (Vazyme) and imaged
using a Tanon-5200 System. Each experiment was repeated at least three times.

4.8. Microscopy

To observe the morphology of conidia and conidiophores, all the transformants and
WT strains were grown in the dark condition at 25 ◦C for 4 weeks on PDA medium by
inserting double slides. Microscopic examination of nuclear distribution in mycelia, the
transformants and WT strains were stained using 4,6-diamidino-2-phenylindole (DAPI).
To image the sexual structures including perithecia and asci, all these test strains were
cultured on CM medium at 25 ◦C for 6 weeks in dark condition. Perithecia were sectioned
by using a double-edged blade in a dissecting microscope (Olympus, SZX10). The asci,
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conidia and conidiophores were all captured with 20× or 40× objectives of Olympus
microscope (Olympus BX53, Tokyo, Japan) using differential interference contrast (DIC)
and fluorescence illumination. Microscopic characters of asexual structures were further
determined by measurements of 50 mature conidia and 50 conidiophores. The experiment
was repeated at least three times.

4.9. Statistical Analysis

All determinations were carried out in triplicate and the results are expressed as
mean ± standard deviation (SD). The data were subjected to one-way analysis of variance
(ANOVA). Statistically significant differences were determined by two-tailed Student’s
t test: * p < 0.05, ** p < 0.01.
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