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Abstract

Diffusion of inner membrane proteins is a prerequisite for correct functionality of mitochondria. The complicated structure
of tubular, vesicular or flat cristae and their small connections to the inner boundary membrane impose constraints on the
mobility of proteins making their diffusion a very complicated process. Therefore we investigate the molecular transport
along the main mitochondrial axis using highly accurate computational methods. Diffusion is modeled on a curvilinear
surface reproducing the shape of mitochondrial inner membrane (IM). Monte Carlo simulations are carried out for
topologies resembling both tubular and lamellar cristae, for a range of physiologically viable crista sizes and densities.
Geometrical confinement induces up to several-fold reduction in apparent mobility. IM surface curvature per se generates
transient anomalous diffusion (TAD), while finite and stable values of projected diffusion coefficients are recovered in a
quasi-normal regime for short- and long-time limits. In both these cases, a simple area-scaling law is found sufficient to
explain limiting diffusion coefficients for permeable cristae junctions, while asymmetric reduction of the junction
permeability leads to strong but predictable variations in molecular motion rate. A geometry-based model is given as an
illustration for the time-dependence of diffusivity when IM has tubular topology. Implications for experimental observations
of diffusion along mitochondria using methods of optical microscopy are drawn out: a non-homogenous power law is
proposed as a suitable approach to TAD. The data demonstrate that if not taken into account appropriately, geometrical
effects lead to significant misinterpretation of molecular mobility measurements in cellular curvilinear membranes.
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Introduction

Diffusivity in biological membranes is an active area of research

in cell biology and biophysics. Substantial progress achieved

recently in microscopic techniques allowed for increased accuracy

of protein mobility measurements in plasma membranes, which

have led to paradigm changes in comprehension of its organiza-

tion and function [1–4]. However, similar advancements on

membranes belonging to intracellular organelles, like mitochon-

dria and endoplasmic reticulum are still lacking. Their nontrivial

topology invalidates many assumptions acceptable for data

analysis in the case of the plasma membrane, often approximated

as a flat infinite surface. Here, computer simulations may simplify

the choice of the proper experimental strategies and correct

interpretation of results.

Biologists recognize high mobility of the mitochondria regard-

less of their structural complexity. Their dynamics is considered to

be essential for functional integrity of the organelles and thus for

the cell viability. Fusion and fission are important events in the life

of a mitochondrion and at least one function of these processes is

sharing all the components within a chondriome [5]. This

principle has been assumed to delay malfunction during aging

[6,7]. Spreading of proteins within a chondriome has been found

to occur in the range of a few hours [8]. Diffusion of the

components is a fundamental process accompanying whole-

organelle dynamics on a much shorter temporal scale.

It is known since the 1950s, that mitochondria are cylindrically

shaped organelles, their silhouette being formed by closely

apposing outer and inner membranes, with numerous invagina-

tions, termed cristae within the latter [9,10]. The cristae forming

mitochondrial inner membrane (IM) is contiguous with the

peripheral inner membrane, referred to as inner boundary

membrane (IBM). Cristae have distinctly different shapes: some

organisms and cell types are known to have exclusively tubular

cristae formed as curved cylinders of uniform diameter [11], others

may exhibit flat or even prismatic cristae. However, in the

majority of cells in multicellular organisms, cristae appear as flat

membranous infoldings protruding into the mitochondrial body.

We will refer to such cristae as lamellar ones. In the 1990s,

electron microscopic tomography allowed for more accurate

determination of their shape and connectivity to the IBM [12–

14]. When reconstructed in 3 dimensions (Fig. 1A and figures in

[13]), several structural features common to different tissues and

species appeared (for a good review see [15]). It was found, that

rather than forming folds lamellar cristae should be represented as

flattened cisterns of uniform width attached to the IBM with

several narrow tubular connections up to hundreds of nanometers

long. Attachment places, the junctions, have a diameter (<28 nm)

similar to crista width (<27 nm). Often, especially in smaller

cristae, the flattened part is missing, so that the whole crista

consists of the tubular compartment alone. When the flattened

segment is present, one crista usually is anchored via several
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tubular connections. In tissues with large cristae masses, these are

densely packed into stacks of parallel cristae, large lamellae mostly

oriented perpendicular to the longer mitochondrial axis. In the

extreme case of brown adipose tissue tubular compartments are

totally missing, but the lamellar parts are still connected to the

IBM via short junctions 28 nm in diameter.

In cellular membranes, a nontrivial dependence of diffusivity D

on time t was predicted theoretically and confirmed experimen-

tally [2,16–19]. Such a diffusion pattern is called anomalous,

because it exceeds the transport model represented by Fick’s

second law. Often, diffusivity is approximated as a power function.

Consider, for example,

D~Cta{1, ð1Þ

where a is called the anomalous diffusion exponent and C is a

constant. When a = 1, D = C is equal to the classical diffusion

coefficient, while subdiffusive processes encountered in biological

systems are characterized by a,1. Eq. 1 is valid for pure

anomalous diffusion, in the limit tR‘ only, nevertheless it was

successfully applied to molecular motion in biological membranes

[18].

Cellular diffusion is often discussed in connection to effects

related to the presence of molecular interactions, like binding or

influence of obstacles [20–23]. Yet, the complicated geometry of

the IM may create an additional impact on diffusivity. Intuitively,

it is clear that membrane infoldings reduce the diffusion coefficient

projected on the mitochondrial axis. In the present study we apply

a random walk model to protein diffusion within the mitochon-

drial IM with the goal to answer the following questions: How big

is the extent of this reduction for a typical mitochondrion? Does it

depend on the observation time scale? How can the diffusivity

within the IM be quantified? Which parameters of crista geometry

have the biggest impact on particle displacement?

Considering the lateral resolution limit .150 nm of a standard

confocal laser microscope, the projection of diffusion on the long

mitochondrial axis is the parameter of interest: radial diffusion

would be outside this resolution limit. In the case of mitochondria,

this parameter is both apparent and real. Experimental methods

for the determination of macromolecular diffusivity, as fluores-

cence recovery after photobleaching (FRAP) or single particle

tracking (SPT) determine diffusion on the basis of apparent

mobility within the focal depth, about 600 nm thick, which is in

the range of the thickness of a single mitochondrion. Accurate

analysis and interpretation of such measurements should make

possible the correct reconstruction of distortions introduced during

data acquisition. Because the long mitochondrial axis is the natural

route of molecular motion e.g. for material exchange after fusion,

this projected mobility has a direct physiological meaning.

Methods

The random walk
Diffusion in the IM is simulated as a classical random walk of

non-interacting point tracers on a triangular lattice. Tracers are

placed at random on lattice nodes and move every time step in

random direction, according to the node’s connectivity.

For mitochondria, the movement of particles along the

mitochondrial long axis is physiologically relevant. Thus, for IM-

based movements the effect of cristae is the determining parameter

and their influence on particle diffusivity will be investigated. For

every time step t*, we calculate longitudinal positions of all tracers

and mean squared displacement (MSD) projection on that axis

Sx�2T relative to the particle’s initial position. The effective

(projected) diffusivity is defined as

Deff :
Sx�2T
2dt�

, ð2Þ

where d is a space dimensionality. For a flat membrane in 2

dimensions d = 2, but if the projected diffusion along the

mitochondrial axis only is considered, movements in a 1D space

adequately represent protein behavior in the IM and thus d = 1.

Since we are exclusively concerned about the impact of cristae, the

use of normalized effective diffusivity K;Deff/D0, is more

convenient. Here, D0 is a diffusivity projected on the same axis

in a cylindrical surface containing no cristae (a base plane). For the

triangular lattice shown in Fig. 2, D0 = (2/3Dlat, 1/3Dlat) along and

around the cylinder respectively, where Dlat is a diffusion

coefficient on the lattice. The value of K is discussed in the

following sections. For brevity, we will refer to it as apparent

diffusivity, remembering that in fact it is a ratio of two diffusion

coefficients and is a dimensionless quantity.

Data are reported versus dimensionless time steps t* rather than

versus experimental time t measured in seconds. A value of each

time step t can be used for conversion t = tt* in a way similar to

conversion of dimensionless space steps r* into experimental units

of length r = lr*, where l is a lattice constant. Then,

l2~4Dlatt: ð3Þ

The advantage of this approach is its universality: for example,

upon fixation of l, Dlat can still be scaled with t, so that the results

do not depend on the actual value of Dlat.

One should remember that a lattice-based model of liquid

system diffusion is an approximation. Its most important limitation

is an artificial discretization of space and time. If spatial structures

are modeled on the lattice, they introduce an additional scale and

should be treated with care when their size is comparable to the

lattice constant. For that reason, we apply variable lattice

resolution depending on the time scale of interest (short-term

diffusion requires higher resolution, according to Eq. 3).

Subsequently, all the data are rescaled back to the largest t
(corresponding to a lattice bond length lmax<0.79 nm) for the

purpose of analysis and visualization.

For every set of parameters, typically, 40 to 50 different

membrane configurations were generated. For MSD calculations,

105 tracers uniformly distributed among nodes were used per

configuration. For the calculation of the escape time distribution,

106 tracers per random walk were initially placed on cristae

junction nodes only. The motion of tracers that have fallen into

cristae was simulated till their first return to the junction, and the

time spent on crista nodes was counted. The pseudo-random

Figure 1. The structure of mitochondrial membraneous compartments. (A) Membrane surface rendering of mitochondrial tomogram.
Cristae (yellow), inner boundary membrane (light blue) and outer membrane (dark blue) are shown from different perspectives. Image courtesy of
Terrence G. Frey (San Diego St. Univ.). (B) Computational model of the inner mitochondrial membrane applied in this study. Blue: inner boundary
membrane; red and green: two examplary cristae. In both (A) and (B) lamellar compartments (central cristae parts) are connected to the inner
boundary membrane through a number of tubular compartments of variable lengths but of uniform diameter.
doi:10.1371/journal.pone.0004604.g001
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number generator used is a combination of two separate

congruential generators as employed in the RANDOM_NUM-

BER subroutine of Intel Corp. (Santa Clara, CA) Fortran compiler

v.10. Data were fitted with the Levenberg-Marquardt method as

implemented in MINPACK set [24].

The inner membrane model
In order to be able to model the great diversity of IM shapes and

sizes, a modular construction was assembled consisting of

interconnected small flat lattice segments (Figs. 1B, 2). The IBM

was represented by a lattice with periodic boundary conditions

(PBC) in both dimensions. Application of PBC in the radial

dimension is a simple consequence of the cylindrical shape of

mitochondria. Since mitochondria are known to form dynamic

filamentous networks in vivo, with their length exceeding the

mitochondrial radius by orders of magnitude, the PBC in the

longitudinal dimension is also a necessity. In most cases, the lattice

extent in this dimension is chosen so that one replica contains 100

to 600 cristae, sufficient for eliminating finite-size effects.

The IBM lattice contains hexagonal areas inaccessible to tracers

(shown as darker patches in Fig. 1B), which are surrounded by a

single hexagonal layer of nodes representing IBM-crista junctions

with radius a (violet in Fig. 2). When a tracer reaches the junction, it

has the chance of dropping into the tubular crista compartment

represented as a hexagonal cylinder of variable length L,

connected to the IBM lattice at the junction nodes. If tubular

cristae are modeled, the cylinder wall is connected to a flat lattice

piece at the end opposite to junction. It represents tube’s butt-end

and its geometry is equal to the forbidden lattice patch of the IBM.

Instead of the butt-end, the tube can be connected to a hexagonal

lamellar compartment. It is represented as shallow hexagonal

cylinder whose axis coincides with the longer mitochondrial axis

and whose width is equal to the tube diameter as is depicted in

Fig. 2. The lamella radius Rlam is variable, the lamella itself is

assumed to remain centered on the mitochondrial axis. This

means that the radius of the mitochondrion is Rm = L+Rlam, which

allows us to easily connect up to 6 tubular compartments to form a

lamellar crista, exploiting the hexagonal symmetry. In the case of

less than 6 tubes per crista, the sides of lamella connected to the

IBM are chosen at random for each crista. Additionally, in order

to avoid periodicity, each crista as a whole is rotated randomly

around the long mitochondrial axis. By varying geometric

dimensions of the IM lattice components, plenty of different

cristae configurations can be created (Fig. 3). For simulations of

variable junction permeability, lattice bonds connecting cristae

tubular compartments to the IBM-tube junction where switched

off with prescribed probability.

Figure 2. Lattice architecture of lamellar cristae. Tracers are positioned at nodes of the triangular lattice. Red: Inner boundary membrane, violet:
Crista junction, blue: Tubular crista subcompartment, turquoise: Crista main body.
doi:10.1371/journal.pone.0004604.g002

Mitochondrial Diffusion

PLoS ONE | www.plosone.org 4 February 2009 | Volume 4 | Issue 2 | e4604



The main emphasis in the discussion below is put on

membranes exhibiting tubular cristae. Despite their relative

simplicity, they allow pinpointing the majority of dynamic

patterns present also in mitochondria with lamellar cristae, whilst

the analysis of apparent diffusivity is much easier. Since in the

model the tubular cristae are assumed to be straight cylinders,

their geometry is described by two parameters: radius a and length

L. The radius of the tubular compartment in real cristae has been

determined to be close to 13–14 nm irrespective the species or

tissue types under investigation [15]. Therefore, the value

16lmax<13 nm is used as the unit of a. In order to reveal the

functional dependence of diffusion on the crista radius, we

consider values of a equal to F, J, K and 1 units. The tube

lengths L are measured as a part of mitochondrial radius Rm taken

to be 200 nm. We examine L = 0.2, 0.4, 0.8, 1.6 and 2.1

mitochondrial radii. The last value is useful for comparison of

tubular and lamellar topology, because tubular cristae of such

length have the same surface area as lamellar ones with Rlam = Rm/

2, for a = 1 and junction number 3. For lamellar cristae, we use

lateral dimensions Rlam = (2/8, 3/8, …, 7/8) Rm. Although

lamellae of real cristae have usually sizes exceeding half of the

mitochondrial radius, the wider range of Rlam used in this study

would allow us to better compare lamellar cristae to tubular ones,

which have smaller surface areas. Number of cristae junctions for

the lamellar cristae is between 1 and 6. Naturally, tubular cristae

have only one junction: for that reason we increase their density

appropriately when comparing them to lamellar geometry.

Cristae density s is highly variable among different cell types,

but has no influence on membrane topology, which is defined

exclusively by cristae shape. As we will see later, s is merely a

scaling factor for the reduction in the diffusion coefficient, which

prompted us to intentionally exaggerate the density over its

typical physiological values, taking a close to maximal possible

packing value of 42 cristae per micrometer of mitochondrial

length as a standard s for the lamellar topology. (With the

hexagonal cylinders on a triangular lattice, Fig. 2, the maximal

packing of non-contacting cylinders of radius a = 16 lattice steps

corresponds to the distance between their centers 2(a+1)cos(p/

6)lmax = 0.023 mm, i.e. smax<43 cr./mm.) For tubular topology,

42#s#252 is considered, as several tubular cristae can be

expected to share the same mitochondrial segment. This way, a

lamellar topology with 3 junctions per crista can be compared to a

tubular topology having s = 126 cr/mm. Such approach is

suitable, because it makes the presentation of the topology effects

clearer while the diffusivities calculated using the above values of

s can be easily rescaled to the desired densities found in particular

tissues of interest.

Results

Monte Carlo diffusivities
Normalized projected diffusivities in the mitochondrial inner

membrane are shown in Fig. 4 and Fig. 5: Apart from the overall

reduction of K, the presence of cristae transiently induces

anomalous diffusion (the nonzero slope of the curve, cf. Eq. 1).

Diffusion tends to be normal in both short-time and long-time

limits (referred to as Kshort and Klong respectively). Extent of

anomalous diffusivity demonstrates the dependence on both the

dimensions of cristae and their density: enlargement of the

junction radius (Fig. 4B) causes a particularly strong shift of the

anomalous diffusion period towards larger t. Fig. 4A should be

compared to Fig. 5A, since in both cases we change the main

geometric parameter: L for the tubular cristae and Rlam for the

lamellar ones. Increase in those factors is equivalent to higher

relative cristae surface area. If the total membrane area of tubular

and lamellar topology is made equal by the appropriate setting of

the length L of tubular cristae, identical Klong are achieved, but Kshort

is much higher for the tubular cristae (Fig. 5B, circles).

On the basis of observations by electron microscopic tomogra-

phy that the number of cristae junctions is roughly proportional to

lamellar size, it was proposed that lamellar cristae are the result of

the merger of several tubular ones [13,15]. A series of diffusivities

shown on the Fig. 5B reflects this suggestion and illustrates the

diffusivity changes upon smooth transition from quasi-tubular

geometry (tubular cristae with a small lamellar bulge in its free

end) in the upper curve to extremely lamellar ones similar to those

observed in neuronal and brown adipose tissues [13]. In the latter

configuration, the diffusion is reduced most strongly.

How can the above dependencies be generalized? In the

discussion of the following two sections, a uniform area density of

tracers was assumed, as in the MC calculations presented above.

For that reason we can simplify notation by omitting weighting

factors associated with relative tracer concentrations.

Area scaling law for limiting values
It was shown analytically [25] that in a 1D space the apparent

diffusivities are described exactly by an area scaling law. An

analytical proof for a 2D space is not known, while the numerical

data available in the literature are inconclusive, reporting

conformance with both the area scaling and a differing effective

medium approximation [26,27]. This has prompted us to

investigate the area scaling as a possible approach for the limiting

IM diffusivities discussed above.

In the model of tubular cristae, IM area A per crista (measured

in lattice nodes, Fig. 2) can be represented as a sum of areas

Figure 3. Examplary cristae configurations. (A) tubular; (B)–(D) lamellar.
doi:10.1371/journal.pone.0004604.g003
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corresponding to the IBM Aibm (with positions of cristae on the

membrane being random, Aibm can be taken as the total IBM area

divided per number of cristae), crista junction (i.e. nodes

connecting tubular compartment to the IBM) Acj, tube wall

At = 6aL and butt-end Ac : A = Aibm+Acj+At+Ac . The related base

plane area is Ab = Aibm+Acj+Ac. In the long-time limit, the ratio

Kas
long~

Ab

A
~

Ab

Abz6aL
ð4Þ

is an area scaling law for mitochondria with tubular cristae,

presenting dependence on cristae radius a, length L and density of

cristae s (through Ab).

Contrary to the long-time scale where tubular walls act as a

delaying potential field and individual cristae are not distinguish-

able, on the short-time scale (Kshort), on average half of tracers in

the tube wall contributes to the observable mobility (tracers

positioned on surfaces parallel to the long mitochondrial axis are

seen as moving without restriction then, while tracers positioned

on the perpendicular surfaces are seen as immobile). Hence, an

area-scaling law for the short-term limiting diffusivity is:

Kas
short~

AbzAt=2

A
~

Abz3aL

Abz6aL
: ð5Þ

From Eq. 4 and Eq. 5 one gets for tubular cristae

Kshort

�
Klong!L. Applying similar arguments, one can calculate

the values of Kas
long and Kas

short for lamellar topology as well.

For both types of cristae, theoretical values Kas
long and Kas

short are

given in Fig. 6 (lines) demonstrating excellent agreement with

limiting diffusivities Klong and Kshort of the simulated random walks

(circles and squares) presented in the previous section. Since the

expressions for long-term projected diffusivities do not depend on

particular surface topology, when the lamellar and tubular

membranes have equal areas, Klong overlap (Fig. 5B).

Qualitatively, the area scaling has a simple explanation: the

larger the membrane area normal to the direction of projection is,

the more particles find themselves forced to move in the normal

direction for some time, reducing projected MSD, and hence, Kas.

Because the area of surface projection to a mitochondrial axis

normal is always more than 0 for the curved membrane, Kas
v1 at

any point on time axis.

Dependence on time
One can use the above observations for construction of a simple

model for the time-dependent diffusivity K(t) in mitochondria with

tubular cristae. The problem is comprehended best if we consider

cristae with the same side surface area At but different radii a (tube

length L is decreased with increasing a to keep At constant). Then,

(Fig. 7) Klong, Kshort and the subdiffusion exponent remain constant,

while anomalous diffusion is shifted towards longer times with

increasing a. The whole membrane can be considered as

composed of cylindrical tube walls and domains parallel to the

base plane. Because for both limiting values K(0) = Kshort and

K(‘) = Klong the impact of domains is determined solely by their

relative areas (Eqs. 4, 5), we can assume that this is true for any t

and approximate K(t) from a superposition of domain areas

weighted with their relative projected diffusivities:

K tð ÞA~Kt tð ÞAtzKb tð ÞAb, ð6Þ

where Kt tð Þ~Dt
eff tð Þ

.
D0 is the diffusivity on the cristae side

surface and Kb is the diffusivity on the base plane, Kb(t) = 1.

The diffusion equation for a standalone infinitely long cylinder

of radius a can be solved exactly. Projected diffusivity in the

direction perpendicular to its axis is:

D
cyl
eff tð Þ~ a2

2t
1{exp {

Dcylt

a2

� �� �
, ð7Þ

where Dcyl is a local diffusion coefficient on the cylinder surface

[28]. For tR0 the apparent diffusion is normal (D
cyl
eff ~Dcyl

�
2),

because no structure is sampled on a small time scale. In the long-

time limit (t??) D
cyl
eff !t{1, due to a finite size of the cylinder

surface projection.

Upon substitution D
cyl
eff from Eq. 7 for Dt

eff , in Eq. 6:

K tð Þ~ At

3a2

2Dlatt
1{exp {

Dlatt

3a2

� �� �
zAb

� �
A{1: ð8Þ

Diffusion coefficients are Dcyl~D0~Dlat=3 in the lattice

representation. The initial period resembling normal diffusion is

determined by the characteristic time T~3a2
�

Dlat. Eq. 8 has Eqs.

4 and 5 as limits for t?? and t?0 respectively, but additionally,

for t&T, one obtains the non-homogenous power-law:

K tð Þ&c1t{azc2, ð9Þ

where a = 1, c1~ Kas
short{Kas

long

� �
T and c2~Kas

long are constants.

Eq. 8 can be compared to the Monte Carlo results obtained in

membranes with cristae having finite lengths as is shown in Fig. 8

for exemplary configurations. Generally, for L/a&1 Eq. 8 offers a

good approximation to the simulation data everywhere except the

transition region t,T (the discrepancy is probably due to the

hexagonal cross-section of cristae in the MC lattice model).

However, because Eqs. 7 and 8 assume infinitely long tubes, for

cristae with L/a,1 the exponent a in Eq. 9 differs from 1

decreasing the applicability of Eq. 8 (the deviation is in the range

of several percent). In real membranes with tilted or curved cristae,

the effective radius should be taken bigger than the tube’s radius,

resulting in a longer range of the short-time diffusivity regime.

Even though Eq. 8 was introduced as a model for the tubular

geometry only, the MC results (Fig. 5) indicate that the functional

shape of Eq. 9 (with different values of parameters) can be valid for

both tubular and lamellar cristae geometry.

The dynamics revealed by the MC simulations and Eq. 9 is

different from the pure anomalous diffusion, for which D?0 when

t??. The diffusion coefficient in the inner membrane is a

function of time asymptotically decreasing to a constant .0 and

can be characterized as a transient anomalous diffusion (TAD).

The origin of such behavior can be understood by considering the

Figure 4. Diffusion in the inner membrane having tubular cristae. Relative diffusivities projected on the long mitochondrial axis for different
tubular cristae configurations. Red: fully permeable junctions (p = (1,1)), green: fully impermeable junctions (p = (0,0)). (A) For indicated cristae lengths
L (in units of mitochondrial radius Rm = 200 nm). Cristae junction radius a = 14 nm and density s = 126 cristae per mm of mitochondrial length. (B) For
indicated cristae junction radii, (in units of a = 14 nm), L = 0.8Rm, s = 126, p = (1,1). (C) For indicated cristae densities, a = 14 nm, L = 0.8Rm, p = (1,1).
doi:10.1371/journal.pone.0004604.g004
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Figure 5. Diffusion in the inner membrane having lamellar cristae. (A) Relative diffusivities projected on the long mitochondrial axis for
mitochondria having lamellar cristae with varying geometry as indicated by the radius of the lamellae expressed as a fraction of mitochondrial radius
(Rm = 200 nm) and 3 junctions per crista. Cristae junction radius a = 14 nm, density s = 42 cristae per mm of mitochondrial length, fully permeable
junctions. (B) Blue dots: same as (A), but for the number of junctions increasing with lamella radii from 1 to 6. This condition reflects the proposition
[13] that lamellar cristae may have formed via fusion of a number of tubular ones For comparison, the projected diffusivities of two tubular
geometries are shown as red circles. For tubular cristae, length L = (2.10Rm, 2.18Rm) and density s = 126 were chosen to give the same cristae surface
area and number of junctions as in the case of corresponding lamellar cristae.
doi:10.1371/journal.pone.0004604.g005
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Figure 6. Limiting values of projected diffusivities: comparison of the MC results to the area scaling theory. Long-term (open markers)
and short-term (filled markers) limiting values for tubular (circles) and lamellar (squares) cristae topologies obtained from fits to the Monte Carlo
simulations (Figs. 4, 5) for different cristae sizes (i.e. cristae length in the case of tubular topology, lamellae diameter in the case of lamellar one), fully
permeable junctions and a = 14 nm. Other paramemters are as in Fig. 4A and Fig. 5A. Statistical errors (40 configurations) are in the range from
60.001 to 60.004. The same variables computed according to the area scaling model (Eqs. 4, 5) are shown as lines.
doi:10.1371/journal.pone.0004604.g006

Figure 7. Relative projected diffusivities for tubular cristae of the same membrane area. Ratios of junction radius a to crista length L are
as indicated. Cristae density s = 126 cristae per mm of mitochondrial length, fully permeable junctions.
doi:10.1371/journal.pone.0004604.g007
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distribution of delays induced by cristae for particles diffusing

along the IM, which is the same as distribution of times needed for

an escape from a single crista shown in Fig. 9. Pure anomalous

diffusion would be possible if this distribution had an infinite mean

value StT, i.e. decayed slower than ,t22 for t?? [29]. Indeed,

the distribution of escape times from cristae decays as ,t23/2

initially, before the particle that has dropped into a crista starts

feeling the butt-end, yet for large t limited size of the crista

membrane introduces an exponential cutoff leading to finite StT
proportional to L (insert in Fig. 9). Such a pattern of delays

generates anomalous diffusion transiently for finite t, which is

bigger than zero: D*1=StT*1=L (cf. Eqs. 2, 4), but no full

immobilization occurs for t??. This dynamics is similar to that

of a well-known 1D comb structure, for which TAD has been

demonstrated also by analytical methods [29–33].

Dependence on junction permeability
Although the inner mitochondrial membrane is known for

decades to be an irregular but contiguous surface [9], the impact of

tubular junctions connecting cristae and the IBM on protein

mobility between the two domains and along the organelle

remains poorly understood. It was speculated, that narrow

junctions may serve as a barrier, both in restricting diffusion and

in separating membrane compartments with different protein

compositions [12,13,34]. Recent studies of protein distributions

among cristae and IBM showed significant differences in

concentrations of different protein species over the IM subcom-

partments [35,36].

With MC simulations the role of cristae junctions in molecular

diffusivity can be investigated by changing their permeability p:

When permeability (taken the same in both directions to and from

crista, i.e. symmetrically) is varied over the whole range between

p;(pin, pout) = (0, 0) (not permeable) and p = (1, 1) (fully

permeable), identical apparent mobility is obtained in the short-

term limit and clearly noticeable although quite restricted effect is

recorded for Klong (Fig. 4A). Evidently, decrease of junction

permeability leads to a limited breakup of the area scaling law

for Klong, Eq. 4, but not for Kshort, Eq. 5.

The utilized procedure makes possible monitoring of tracer

densities in each of the IM subcompartments during the same runs

which were used for the acquisition of data on diffusivity

dynamics. Because the tracers are represented by points designed

not to interact with each other, one can expect that the non-planar

membrane geometry alone would not cause differential distribu-

tion of such particles between cristae and the IBM, which is

confirmed by the simulations. On the other hand, when the

junction permeabilities were set to different values in the directions

to and from cristae (representing one-way bottlenecks), the system

has adjusted itself from the initially uniform distribution to an

equilibrium at which the particles had to spend more time in the

compartment with higher inwards junction permeability, raising

the concentration there. This result confirms the proposition

[13,15,34] that the cristae junctions may function as selective

transporters or channels in redistributing protein species between

the IM subcompartments and that such selectivity alone is

sufficient for creating the protein gradients. Notably, in order to

fulfill this task, the protein complexes constituting junctions must

have embodied relatively sophisticated dynamic machineries able

to selectively vary their directional permeability depending on the

interaction with specific protein cargos. The computational

Figure 8. Time dependence of the projected diffusivities. Comparison of MC results for tubular cristae geometry (dots) to the theoretical
model, Eq. 8, (red lines) for two examplary membrane configurations. Cristae density s = 126 cristae per micrometer, fully permeable junctions.
Definition of the transition time for alternative models of transient anomalous diffusion is illustrated with black lines.
doi:10.1371/journal.pone.0004604.g008
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verification of this possibility would require the knowledge of

details of such interactions and exceeds the scope of the current

study.

However, the above result raises the question concerning

variation (at equilibrium) in apparent diffusion due to the

asymmetry of junction permeability. As an illustration for the

behavior of K, let us consider two extreme values of p, pumping

the particles into either the IBM or cristae compartments. In the

former case, pR(0, 1) hardly allowing the particles to enter cristae,

which gives K<Kb = 1 for both short and long time regimes, similar

to the situation discussed in [21], because Aibm<Ab and junction

density in mitochondria is much below the percolation threshold.

In the latter scenario (pR(1, 0), which almost certainly locks the

particles inside cristae), the long-term diffusion is infinitesimally

small, because the duration of anomalous diffusion regime K!t{1

(cf. Eq. 7) is very large. Hence, the asymmetric permeability of

cristae junctions is able to strongly modulate Klong, inducing

substantial deviations of diffusivity relative to the symmetric p. In

this scenario, if values of p are different for specific protein

components of the IM, this should induce not only their sorting

into the membrane compartments, but also a considerable spread

in observable diffusion rates.

Discussion

Pure anomalous subdiffusion is a mathematical concept

describing dynamics in disordered systems [37]. Presence of any

disorder results in a series of hindrances or long-range correlations

that a particle is subjected to during its motion. Because biological

organisms contain numerous disorder-inducing systems, anoma-

lous diffusion is well suited for the description of molecular motion

within them. However, as their understanding advances it

becomes clear, that for every disordering mechanism the

subdiffusion should be expected in a narrow range of temporal

and/or spatial scales determined by the particular factor involved,

rather than being universal. As a consequence, the anomalous

dynamics is transient, i.e. restricted to certain temporal and spatial

ranges, while outside of this range classical Brownian dynamics is

valid. An example is the transient anomalous diffusion (TAD) in

the plasma membrane [2,3], resulting from the compartmentation

by rows of cytoskeleton-attached transmembrane proteins, hin-

dering the motion of free particles. The semi-permeable

compartment walls introduce disorder in a restricted temporal

range of scales determined by their spatial structure. In a different

situation, transient binding to standalone proteins with a limited

choice of affinities is able to induce this kind of slowdown [38,39].

In the current study, we show that a similar pattern of dynamics is

also valid for molecular motion in the mitochondrial inner

membrane (IM), where cristae delay particles on their way along

the mitochondria. Here too, the extent of anomalous phase is

limited and is governed by the spatial dimensions of the hindering

structures, i.e. cristae. However, the case discussed here is distinct,

because the anomality results from the membrane spatial

curvature alone, without a necessity for any interaction with

third-party objects. Such a general cause of anomalous dynamics

prompts us to predict the TAD also for other types of curved

cellular membranes, such as endoplasmic reticulum (ER) or the

plasma membrane of cells possessing numerous microvilli.

Figure 9. Probability distribution of escape times from tubular cristae. Cristae have radius a = 14 nm and lengths as indicated in the legend
(in units of mitochondrial radius Rm = 200 nm). Power law t23/2 (magenta) is shown for comparison. Insert: Average time spent inside a crista versus
cristae length (circles), linear fit (line).
doi:10.1371/journal.pone.0004604.g009
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Implications for observability of diffusion in the non-
planar membranes

Dependence of diffusivity on time has important implications

for the correct design and interpretation of experimental

procedures. Anomalous diffusion means that the outcome of

diffusion measurements essentially depends on the time scale

probed. Consider for example a particle moving with a ‘‘bare’’

diffusion coefficient (i.e. diffusion coefficient in a plane surface)

Dlat = 1 mm2/s in a mitochondrial inner membrane having

Rm = 200 nm and containing on average 21 lamellar cristae/mm,

Rlam = 100 nm and 3 junctions of radius 14 nm per crista. Then,

one MC step is (Eq. 3) t<(0.79?1023)2/(4?1026)<0.156 ms and

diffusivity measurements investigating time scales less than

,15 ms (or higher for tilted cristae) should demonstrate sensitivity

to the probed time extent, giving K between Klong<0.41 and

Kshort<0.56 for the same sample.

TAD is characterized in terms of transition time tc quantifying the

crossover between anomalous and normal diffusion regimes

[21,22,38]. Transition time is defined as a point, at which two

straight lines fitted to regions corresponding to anomalous and to

normal regimes intersect on a double logarithmic plot, as is shown

schematically in Fig. 8. Anomalous diffusion is postulated to be valid

for t%tc, crossing over to normal diffusion when t&tc. Such

approximation naturally corresponds to the restricted scale range

of subdiffusive behavior. Yet, it may lead to inaccurate data analysis

if the time window of the experimental method used for the diffusion

measurement is not narrow enough. This is the case with such

extensively applied methods as FRAP and fluorescence correlation

spectroscopy (FCS). In a typical FCS measurement session,

dynamics corresponding to several orders of magnitude in time is

recorded in the same curve [Wei03]. If the anomalous diffusion is

short-ranged, so that both normal and anomalous regimes are

recorded, the conventional data analysis assuming either normal or

anomalous diffusion will fail. Our results for diffusion in the IM show

that transient anomalous diffusion should be parameterized with a

non-homogenous power-law (Eq. 9), rather than with anomalous or

normal regimes (which correspond to the two terms of Eq. 9) treated

separately. In the latter case, the estimated ‘normal diffusion’

coefficient or subdiffusion exponent could be strongly biased.

The above conclusion was made possible because our

simulation scheme was designed without any connection to

particular experimental techniques used for studies of molecular

mobility. Several earlier studies simulate the impact of geometry

on the outcome of diffusion measurements. Sbalzarini et al. [40,41]

modeled molecular mobility in the ER as examined with FRAP,

and compared the outcome with non-confined diffusion. They

found a several-fold reduction of the diffusion coefficient in

comparison to a flat space and communicated theoretical

arguments in favor of anomalous diffusivity in such geometries,

but did not present direct evidence based on the FRAP curves.

Weiss and coworkers [19] studied diffusion in ER membranes,

both experimentally and in silico. They found that the diffusivity in

real membranes is anomalous and carried out MC simulations of

FCS, specifically investigating the influence of membrane shape on

the experimental outcome. However, the results of data analysis

on their simulated FSC curves were ambiguous. Fractal analysis of

the curves suggested purely normal diffusivity; simultaneously, in

correlation analysis the anomalous diffusion model gave a better fit

than the normal one, indicating dependence of the subdiffusion

exponent on surface shape. Our MC results and the discussion in

the previous paragraph provide an explanation for the ambiguity:

Because the spatial curvature induces transient anomalous

diffusion, neither pure anomalous nor normal diffusion models

are suitable for the analysis of data obtained in a wide range of

temporal scales. Thus, we propose a non-homogenous power law

as a suitable candidate for correct description of TAD by

experimental data analysis. Contrary to FCS or FRAP, single

particle tracking (SPT) does not require a specific diffusion model

for data analysis because it explicitly measures the particle

displacement as a function of time. As a consequence, with

utilization of a sufficiently wide set of sampling time frames SPT

was able to successfully resolve TAD on several occasions [1,2,42].

Mitochondrial membrane compartments contain the highest

protein concentration among biological membranes [43]. The

slowdown in diffusion due to membrane curvature considered here

is very likely to be enhanced by other known sources of decrease in

D, among which crowding, corralling and aggregate formation are

plausible candidates [22,23,39,44,45]. Moreover, mounting data

points to a possible interplay between these factors: for instance,

oligomerization of F1F0 ATP synthase particles is believed to be

capable of inducing a strong bending of the IM [46]. Because

conventional methods for the measurement of diffusion coefficient

determine the cumulative effect due to all of the factors involved,

the experimental approaches available at this time do not allow

discriminatory estimation of the impact, each of these aspects has

on diffusion in the IM [47–50], which greatly hinders under-

standing of their biological roles. The current study offers a simple

and reliable way for decoupling the effect of membrane geometry

from the accompanying sources of delay profiling the empirically

determined diffusion coefficient. In order to achieve this, the

measurements of molecular mobility should be supplemented with

the assessment of membrane spatial structure with electron

tomography. Then, application of the scaling law provides

accurate correction factors related to the membrane curvature.

As pointed out in the previous section, for cristae-rich mitochon-

dria their magnitude is substantial.

Quantitative verification of structural properties of the IM
There is growing experimental evidence that the complicated

shape of the IM results from structuring by protein super-

complexes embedded in the membrane rather than being random

or spontaneous [15,34]. This organization may be expected to

include a regulative mechanism adjusting molecular diffusion

along the organelle through a geometrical restructuring of the

membrane. Computational modeling provides the quantitative

assessment for effectiveness of such a mechanism due to the

possibility of explicit modulation in the values of particular

membrane parameters. In the case of uniformly distributed

particles, the moderate dependence of Klong on cristae dimensions

and density (Eq. 4, Fig. 6) implies that a radical IM reconstruction,

like the one occurring during osmotic stress or apoptosis, would be

required in order to achieve a noticeable change in the speed of

diffusion. Which factors could be considered as plausible

candidates for the role of more efficient diffusion modulators?

Intuitively, the permeability of cristae junctions can be expected to

serve as the crucial parameter: the junctions are the only places

where direct exchange of membrane content between cristae and

IBM could take place. However, our result indicates that rather

than the absolute value of permeability itself, the difference in

conductivity to and from the cristae (called here asymmetry) is the

important aspect, because of its potential to generate protein

gradients [34]. The asymmetric junction permeability was utilized

here as the most straightforward way to simulate the observed

differential distribution of protein complexes among IM sub-

compartments [35,36]. The actual role of cristae junctions in this

redistribution is the matter of experimental verification, as is the

possible involvement of alternative factors like protein oligomeriza-

tion or inhomogeneous presence of lipid rafts. Independently of its
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direct cause, the concentration gradient has a strong impact on the

apparent diffusion of proteins along mitochondria. Unlike the case

of uniformly distributed particles, preferential localization of protein

molecules to cristae radically augments the impact of membrane

topology on diffusion speed of such particles: because of a small

absolute diffusivity of cristae-locked molecules, even gentle

membrane restructuring would be sufficient to induce profound

changes in Klong. Hence, the localization to cristae can be viewed as a

powerful amplifying factor with respect to geometrical changes.

The above dependence can also be exploited in experimental

studies of the IM organization and function. With the long-term

diffusivity being highly responsive to preferential location of

particles in either cristae or IBM, one of the straightforward

possibilities is an interpretation of apparent (measured) diffusion

coefficient as an indicator of the partitioning: for example, a probe

concentrated in the IBM would tend to diffuse quicker than that

having equal density in both cristae and the IBM. Alternatively, an

independent estimation of the probe distribution among mem-

brane subcompartments should be helpful in the interpretation

and analysis of diffusion data. In any case, structural properties of

the IM and other curved biological membranes cannot be ignored

in consideration of diffusivity on their surfaces.

Conclusions and perspectives
Inner membrane motility is an important factor in the ‘‘rescue

hypothesis’’ [7,51] assuming protein exchange within the whole

chondriome of a cell to stabilize functionality. Spreading of

mitochondrial proteins within the chondriome has been shown

experimentally for vertebrate cells in culture beyond doubt [8].

This raises the question for the parameters determining these

exchange processes. Using a Monte Carlo model of mitochondrial

inner membrane we have calculated geometrically-induced

reduction in apparent diffusivities in the direction of the

mitochondrial axis for a set of physiologically feasible configura-

tions. Confinement resulting from the presence of cristae in the

inner membrane of mitochondria imposes profound changes on

the molecular mobility along the organelle. In cristae-rich cell

lines, a several-fold reduction factor was predicted. Curvilinear

membrane geometry induces transient anomalous diffusion. Finite

values exist for the reduction of the diffusion coefficient in both the

short- and the long-time limits. For symmetrically permeable

cristae junctions, these values can be well approximated from

projected membrane surface areas. If neglected, geometrical

effects could lead to incorrect interpretation of experimental

results. Hence, empirical measurements of diffusion in highly

curved biological membranes should include geometrical infor-

mation as a critical component of data analysis.

Mitochondria in most protists have tubular inner membranes.

The evolutionary advantage of lamellar crista development could

be the reduction of protein mobility within a mitochondrion, the

formation of more stable complexes and thus more proteins per

unit mitochondrial length. Further experimental research is

needed to validate the consequences derived from these theoretical

considerations.
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