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Supplementary Table28

Property Simulation Prostate dataset Breast dataset

number of the clones in the evolutionary tree 5 4 7
number of mutations in the genotype 30 282 608
average clone per spot 1, 2.5, 4.5 - -
average number of mutations per clone 5.1 (16.9%), 13.6 110 (39%) 272.1 (44.7%)

(45.3%),15 (50%)
average number of reads present in each spot 18, 50, 80, 110 79.5 17.6
average noise introduced to the number of cells 0,1,10 - -

Supplementary Table 1: The setups used for simulation and the real values for prostate and
breast cancer datasets.
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Supplementary Figure 1: Probability of detecting alternated reads in various simu-
lation configurations. To calculate the probability of observing alternated reads, we consider
four different total read counts 110 (panel a), 80 (b), 50 (c), and 18 (d) per spot (assumed as
the mean total counts in our simulation configurations in Figure 2). For each configuration, we
divide the total number of reads per spot by the mean number of cells in each spot (assumed
to be 25, 25, 25, 25, respectively, in the simulation configurations), obtaining the total numbers
of reads per cell: around 5, 4, 3, 1, respectively. The probability of observing at least K reads
(successes; x-axis) out of 5, 4, 3, reads or 1 read is determined by 1 minus the cumulative distri-
bution function (cdf) for the binomial distribution of alternated read counts, denoted as 1-cdf(K)
(y-axis).
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Supplementary Figure 2: Performance of Tumoroscope on simulated data with a
high number of reads. a-c Mean Average Error (MAE; y-axis) as a function of spot coverage
(x-axis) in different simulation setups (colors) for Tumoroscope, for different noise levels in the
cell count provided at input: no noise (a), medium noise (b) and high noise (c). d-f The
same as in (a-c), but for Tumoroscope-fixed. g Correlation (y-axis) between the average spot
coverage and the average error in all the setups is negative for both model versions (x-axis),
regardless of the noise in the number of cells provided at the input (colors). h-l Comparison of
the accuracy (y-axis) of the model between cardelino (gray) and two versions of the model given
true and highly noisy values for the number of cells (colors), depending on the spot coverage
(x-axis), in different simulation setups: basic (h), increased (i) and decreased (j) number of
mutations, increased (k) and decreased (l) number of clones. Here, high, medium, low, and very
low are corresponding to the average number of reads present in each spot of 2246, 1488, 734,
and 297 respectively. Overall, compared to Fig. 2, having a higher number of reads increased
the performance (strongly decreased MAE) for the estimation of the fraction of the clones in
spots. f In the case when Tumoroscope-fixed is given a fixed number of cells that is highly noisy,
increasing the number of clones in spots entangles the deconvolution problem. Consequently, for
Tumoroscope-fixed, the highly noisy input confounds the model the most when the read counts
are high and the model cannot assign the right clones to the spots, resulting in the largest MAE.
In each panel, diamonds indicate outliers. The boxplots in panels (a-f) and (h-l) are based on 10
data points each, corresponding to n=10 generated datasets for each setup. In panel (g), each
boxplot represents 20 data points, corresponding to Pearson correlations, calculated across the
10 datasets for the n=20 different setups.
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Supplementary Figure 3: Assessing Tumoroscope performance with partial mutation
observations for different simulation setups (colors). In each panel, diamonds indicate
outliers. The boxplots are based on 10 data points each, corresponding to n=10 generated
datasets for each setup.

Supplementary Figure 4: Analysis of the Canopy tree inference for the breast
cancer dataset. a Bayesian Information Criterion (BIC; y-axis) of the Canopy model for
different numbers of clones in the tree (x-axis). We selected the tree with seven clones, for
which the BIC was the largest (indicated with the dotted vertical line). b Log-Likelihood of two
MCMC chains of Canopy (y-axis) across MCMC iterations (x-axis), showing the convergence
of the MCMC procedure. c Acceptance rate (y-axis) across iterations (x-axis). The acceptance
rate converges to around the desired value of around 0.2.
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Supplementary Figure 5: Comparison of alternated and total read counts between
WES and ST in breast (a-b) and prostate (c-d) cancer data. Each point is representing
a mutation. For breast cancer, we show data for n=46 mutations, and for prostate cancer, n=18
mutations. X-axis: the average read counts per spot for each mutation. Y-axis: the average read
counts per sample in WES for the same mutations.

Supplementary Figure 6: Comparision of the input (retrieved from H&E slides) and
the inferred cell count of the spots in both breast and prostate cancer datasets. Each
point represents a single spot, with n=11,461 points for the breast cancer dataset and n=294
points for the prostate cancer dataset. The dark green line corresponds to the regression line,
and the dashed line is the x=y line, indicating points for which the input and estimated counts
would be the same.
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Supplementary Figure 7: Maps of alternated read counts over the mutations specific
to each clone. a The alternate read counts corresponding to mutations found in clone 2 but not
in clone 6, and conversely, mutations present in clone 6 but absent in clone 2. b The alternate
read counts corresponding to mutations found in clone 3 but not in clone 5, and conversely,
mutations present in clone 5 but absent in clone 3. d The alternate read counts corresponding
to mutations found in clone 4 but not in clone 7, and conversely, mutations present in clone 7
but absent in clone 4. Rows: sections of the breast cancer tissue with two nearby samples per
section, SB1, SB2, and SB3.
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Supplementary Figure 8: Alternated and total read counts per cell over all the
selected mutations in breast (a-b) and prostate (c-d) cancer data. While it is expected
that spot coverage varies due to technical artifacts and the activity of different cancer clones, our
findings demonstrate the presence of mutated reads across all tissues, affirming their cancerous
nature. Rows in a,b: sections of the breast cancer tissue with two nearby samples per section,
SB1, SB2, and SB3. Rows in c, d: sections of the prostate cancer tissue, SP1, SP2, and SP3.
The value of each spot is calculated by dividing the number of reads observed within that spot
by the number of cells it contains. The values shown in c, d are after the removal of outliers
exceeding 10 (2 outliers for c and 6 for d).
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Supplementary Figure 9: Inferred per variant per cell expression values agree with
the observed coverage in the data. Φi values for the mutation i which belongs to the subset
of the mutations with 10% of the highest (High Coverage) and the lowest (Low Coverage) total
read count, where Φi =

∑
k Φi,k (the sum of inferred mutation coverage levels for variant i over

all clones), for breast cancer (left) and prostate cancer (right) data. In each panel, diamonds
correspond to outliers. Each point represents a single mutation, with n=60 points for the breast
cancer dataset and n=28 points for the prostate cancer dataset for each of the boxplots.
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Supplementary Figure 10: Spatial arrangement of cancer clones identified by
cardelino for the breast cancer dataset. a Pathologist’s annotations of the cancerous areas
on the H&E images for sections SB1, SB2, and SB3. b For each section, two rows correspond to
the two nearby samples and seven columns correspond to the presence of the clone in the spots
inferred by cardelino.
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Supplementary Figure 11: Proportion of each clone in each section. a Proportions of
inferred clones by Tumoroscope and cardelino for the breast cancer dataset. The proportions
were computed by summing the inferred fractions across spots for each ST section. Averages
over sections and clone frequences inferred by Canopy from bulk DNAseq data are also shown.
b Proportions of inferred clones by Tumoroscope and cardelino for the prostate cancer dataset.

Supplementary Figure 12: Silhouette score of the STARCH clustering for 1 to 8
clusters. In both breast and prostate tumor samples, clustering the spots to one cancerous
and one normal cluster got the highest score. In each panel, dots correspond to outliers. Each
boxplot for the breast cancer data represents 6 values from n=6 samples, while each boxplot for
the prostate cancer data represents 3 values from n=3 samples.
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Supplementary Figure 13: Analysis of the Canopy tree inference for prostate cancer
dataset. a Bayesian Information Criterion (BIC; y-axis) of the Canopy model for different
numbers of clones in the tree (x-axis). We selected the tree with four clones, for which the BIC
was the largest (indicated with the dotted vertical line). b Log-Likelihood of two MCMC chains
of Canopy (y-axis) across MCMC iterations (x-axis), showing the convergence of the MCMC
procedure. c Acceptance rate (y-axis) across iterations (x-axis). The acceptance rate converges
to around the desired value of around 0.2.

Supplementary Figure 14: Results obtained by cardelino for the prostate cancer
dataset. a Pathologist’s annotation of the cancerous areas on the H&E images for sections SP1,
SP2, and SP3. b For each section (rows), there are four columns corresponding to the presence
of the clones in the spots.
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Supplementary Figure 15: Pairwise Pearson correlations of the proportions of all the spots
taken by the clones for breast cancer (a) and for prostate cancer (b) data.

Supplementary Figure 16: Distribution of the Pearson correlation between the pro-
portions of the spots taken by the clones 3 and 5. The correlation between proportions
of clones 5 and 3 in adjacent spots was computed for 20 different sets of randomly sampled pairs
of 100 adjacent spots. The correlation between the proportions of clones 5 and 3 in the same
spots was computed for n=20 sets of 100 randomly sampled spots.
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Supplementary Figure 17: Agreement of gene expression values computed based
on Tumoroscope results with copy numbers inferred by STARCH for breast and
prostate cancer data. For each gene, we determined its predicted expression in individual
spots of spatial transcriptomics data through the application of a fitted regression model (Fig. 1
h). This involved computing the expected gene expression values based on the clone-specific
gene expression inferred by the regression model for each clone, the fraction of clones in each
spot as determined by Tumoroscope, and the number of cells in each spot. Subsequently, the
copy numbers for genes in each spot were determined using STARCH. We then calculated the
average predicted expression in spots with copy number 2 and copy number 1 for each gene
(n=9799 genes for breast cancer data and n=8559 genes for prostate cancer data). The resulting
distribution (y-axis) over the fraction of these two values (x-axis) shows that the predicted gene
expression for genes with copy number 2 tends to be higher than for the genes with copy number
1, for both breast (a) and prostate cancer (b).
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Supplementary Figure 18: Agreement of gene expression values computed based
on Tumoroscope results with copy numbers inferred by STARCH for breast cancer
data. For each gene, we determined its predicted expression in individual spots of spatial tran-
scriptomics data through the application of a fitted regression model (Fig. 1 h). This involved
computing the expected gene expression values based on the clone-specific gene expression in-
ferred by the regression model for each clone, the fraction of clones in each spot as determined
by Tumoroscope, and the number of cells in each spot. Subsequently, we analyzed gene copy
numbers across tumor samples using STARCH. Focusing on mutated genes appearing in the
evolutionary tree, we selected genes that were detected across a minimum of 20 tumor spots for
both copy number value 1 and 2. This filtering ensured we had sufficient sample sizes for com-
parison. We then plotted the distribution of expression levels (y-axis) grouped by copy number
value (x-axis) for these selected genes. The resulting distributions show that genes tending to
have higher copy numbers in a tumor sample also exhibit elevated expression compared to genes
with lower copy numbers in the same sample.
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Supplementary Figure 19: Agreement of gene expression values computed based on
Tumoroscope results with copy numbers inferred by STARCH for prostate cancer
data. For each gene, we determined its predicted expression in individual spots of spatial tran-
scriptomics data through the application of a fitted regression model (Fig. 1 h). This involved
computing the expected gene expression values based on the clone-specific gene expression in-
ferred by the regression model for each clone, the fraction of clones in each spot as determined
by Tumoroscope, and the number of cells in each spot. Subsequently, we analyzed gene copy
numbers across tumor samples using STARCH. Focusing on mutated genes appearing in the
evolutionary tree, we selected genes that were detected across a minimum of 20 tumor spots
for both copy number value 1 and 2. This filtering ensured we had sufficient sample sizes for
comparison. For each gene we represent 11,461 spots in total. We then plotted the distribution
of expression levels (y-axis) grouped by copy number value (x-axis) for these selected genes. The
resulting distributions show that genes tending to have higher copy numbers in a tumor sample
also exhibit elevated expression compared to genes with lower copy numbers in the same sample.

Supplementary Figure 20: Selecting the optimal number of clusters in cell clustering
based on scRNA-seq data. y-axis: the Dunn Index score determining the quality of clustering
solutions based on scRNA-seq data. The higher the score, the better cluster separation and
cohesion. x-axis: the number of clusters in the evaluated clusterings (from 2 to 25).
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Supplementary Figure 21: Comparison of cell expression profiles in clusters from
scRNA-seq and Tumoroscope clone gene expression profiles. Breast cancer cells (de-
picted by n=120 dots) were collected from the ST sections utilized in this study. They are
clustered using K-means based on their normalized expression profiles of the top 100 genes with
the highest variance. The gene expression vectors specific to each clone, as determined by Tu-
moroscope, are visually represented by crosses alongside their respective clone names. These
crosses are mapped to the closest centroids and color-coded accordingly. The ability to map
inferred gene expression from Tumoroscope to specific clusters from an orthogonal dataset in
scRNA-seq highlights the representativeness of Tumoroscope’s clone-specific gene expression for
cell phenotypes.
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