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ABSTRACT: Computational modeling has emerged as a time-
saving and cost-effective alternative to traditional animal testing for
assessing chemicals for their potential hazards. However, few
computational modeling studies for immunotoxicity were reported,
with few models available for predicting toxicants due to the lack of
training data and the complex mechanisms of immunotoxicity. In
this study, we employed a data-driven quantitative structure−activity relationship (QSAR) modeling workflow to extensively enlarge
the limited training data by revealing multiple targets involved in immunotoxicity. To this end, a probe data set of 6,341 chemicals
was obtained from a high-throughput screening (HTS) assay testing for the activation of the aryl hydrocarbon receptor (AhR)
signaling pathway, a key event leading to immunotoxicity. Searching this probe data set against PubChem yielded 3,183 assays with
testing results for varying proportions of these 6,341 compounds. 100 assays were selected to develop QSAR models based on their
correlations to AhR agonism. Twelve individual QSAR models were built for each assay using combinations of four machine-learning
algorithms and three molecular fingerprints. 5-fold cross-validation of the resulting models showed good predictivity (average CCR =
0.73). A total of 20 assays were further selected based on QSAR model performance, and their resulting QSAR models showed good
predictivity of potential immunotoxicants from external chemicals. This study provides a computational modeling strategy that can
utilize large public toxicity data sets for modeling immunotoxicity and other toxicity endpoints, which have limited training data and
complicated toxicity mechanisms.
KEYWORDS: Immunotoxicity, QSAR, Machine learning, Aryl hydrocarbon receptor, Data mining

■ INTRODUCTION
Immunotoxicity refers to the adverse effects on the immune
system due to exposure to xenobiotic chemicals,1 and the field
of immunotoxicology studies the interactions between xeno-
biotics and the immune system that lead to toxicity. The field
emerged in the 1970s as immune-related adverse events, such
as cancer and reduced resistance to infections, began to rise
with increased human exposure to pharmaceutical drugs and
environmental chemicals.2 Immunotoxicity was then catego-
rized into four major types: hypersensitivity, immunosuppres-
sion, immunostimulation, and autoimmunity.3 However, the
various consequences of immunotoxicity and the complexity of
the immune system make it difficult to determine the
immunotoxic effects induced by a toxic chemical. Another
challenge in assessing toxicity is the use of traditional animal
testing, which can be expensive, time-consuming, and
laborious, and it presents an issue of ethical concern.4 This
challenge signifies the need to develop alternative approaches
to rapidly and efficiently predict immunotoxicity.
High-throughput screening (HTS) is a rapid in vitro testing

method for screening thousands to millions of chemicals. Due

to their cost-effectiveness and efficiency, HTS assays have
become increasingly incorporated in toxicity evaluations.5

Besides indicating specific toxicity mechanisms, the data from
HTS assays can be used for computational modeling studies to
prioritize chemicals that are highly likely to be toxic. For
example, through machine learning (ML), quantitative
structure−activity relationship (QSAR) modeling correlates
the quantitative structural features of chemicals to their
bioactivities/toxicities.6 Employing these alternative ap-
proaches has shown promise in predicting some immunotox-
icity results, such as skin sensitizations.7 In this report, in vitro
assays were developed to detect outcomes of key events that
lead to skin sensitizations,8 and ML models were trained using
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experimental results from these assays.7 These efforts could
successfully classify sensitizers and nonsensitizers of both
animals and humans.7 Aside from skin sensitivity, few studies
used computational modeling for predicting immunotoxicity.
For example, one study predicted immunotoxicity based on
assays that tested for the cytotoxicity of B-cells and T-cells.9

However, cytotoxicity is not the only indicator of immunotox-
icity, as pollutants and drugs can cause adverse immune effects
at noncytotoxic doses.10 This lack of conclusive end points for
immunotoxicity presents a challenge for computational
modeling due to limited training data and the complex
mechanisms of the immune system and associated toxicities.
Due to limited training data, QSAR models trained with

small congeneric data sets have significant limitations, such as
overfitting,11 low chemical diversity,12 and activity cliffs.13

Furthermore, the activation or suppression of the immune
system involves multiple steps comprising various immune
cells and proteins. Proteins involved in the immune signaling
pathway, like cytokines, are currently being studied as
biomarkers for immune-related diseases.14 However, some
cytokines demonstrate proinflammatory and anti-inflammatory
effects depending on the receptors that activate them, making
it difficult to determine their specific roles in immunotoxicity.15

Thus, current HTS assays testing for the release of cytokines
cannot fully reflect or elucidate detailed pathways of
immunotoxicity, and their dual role makes them unsuitable
for training QSAR models.16 On the other hand, the large
amount of data generated from HTS assays can be used to
expand the training data for QSAR modeling of immunotox-
icity. Data from multiple key events (KEs) within immunotox-
icity pathways can result in computational models that can
predict immunotoxicity and cover broader toxicity mechanisms
than testing against one or few assays. One KE that has been
extensively studied as an immunotoxicity pathway is the
activation of the aryl hydrocarbon receptor (AhR) signaling
pathway.17 AhR is a transcription factor that functions as a
xenobiotic and environmental sensor. Upon activation, it
regulates the transcription of multiple genes, including genes
involved in immune response.18 Some chemicals, including
pesticides and environmental pollutants, exert their immuno-
toxic effects by activating AhR. For example, the activation of
AhR by persistent organic pollutants in the environment, such
as polychlorinated biphenyls (PCBs), dioxins, and furans, was
associated with cancer and autoimmune diseases.19 Previous
QSAR modeling studies of AhR could predict toxic
chemicals20 and identify the chemical fragments that facilitate
binding to AhR.21 However, these modeling studies are only
limited to predicting AhR binding and hepatotoxic outcomes,
and currently, there are no existing models of AhR agonism
that can lead to immunotoxicity. As a well-studied toxicity
mechanism, we hypothesize that data from AhR agonism
assays can help identify related KEs in immunotoxicity
pathways, providing more data for QSAR modeling of
immunotoxicity.
In this study, we compiled a probe data set of chemicals

tested for AhR activation from the Toxicology in the 21st
Century (Tox21) program. Tox21 is a collaborative effort by
the National Toxicology Program, the National Center for
Advancing Translational Sciences, the Environmental Protec-
tion Agency, and the Food and Drug Administration.22 The
Tox21 program has screened a library of around 10,000 known
drugs and environmental chemicals against biomolecular
targets using quantitative HTS assays.22 We applied a data-

driven QSAR modeling approach that leveraged the AhR
activation assay from Tox21 as a probe data set to reveal KEs
related to immunotoxicity pathways and thereby expand the
available training data for predicting immunotoxicity. Similar
data-driven modeling strategies were successfully applied for
predicting multiple types of other complex toxicities, such as
acute toxicity,23 carcinogenicity,24 developmental and repro-
ductive toxicity,25 endocrine disruption,26 and hepatotoxic-
ity.27−29 To this end, an automatic in-house tool retrieved
assays where chemicals from the AhR activation assay data set
were present and shared similar responses to the AhR
activation assay.30 Statistically significant assays to AhR
activation revealed likely KEs involved in immunotoxicity
pathways, and toxicity data from these assays were employed
to construct QSAR models.31 Models with the best predictive
performance were selected to predict multiple toxicity
mechanisms in immunotoxic chemicals. The models also
yielded reasonable predictions for external chemical data sets
with immunotoxicity information. The efficiency and applic-
ability of this strategy can advance QSAR modeling studies by
enriching limited training data to model complex toxicities like
immunotoxicity.

■ METHODS

Data Sets
The initial probe data set was retrieved from PubChem (https://
pubchem.ncbi.nlm.nih.gov/bioassay/743122, accessed December 15,
2023), where 8,099 compounds were tested for activation of the AhR
signaling pathway. The biological activities against AhR in this data set
were summarized as active agonist, inactive, and inconclusive.
Chemicals categorized as inconclusive were removed from the data
set, and the data set was then curated and standardized using the
CASE Ultra v1.9.0.4 DataKurator tool (MultiCASE Inc., Beachwood,
OH). Duplicate and inorganic compounds were removed, and the
largest organic components of mixtures were retained. This curation
workflow was also applied to other selected assays and external data
sets for modeling in this study. The resulting probe data set contained
6,341 unique compounds (Table S1), which served as the input for an
in-house automatic profiling tool30 to search PubChem (https://
pubchem.ncbi.nlm.nih.gov/) for assays with in vitro data containing
similar profiles to the probe data set. The profiling tool (code
available on https://github.com/zhu-research-group/HTSProfiling)
programmatically accessed and retrieved bioactivity information from
the PubChem BioAssay database using PubChem’s web service
interface, the Power User Gateway Representational State Transfer
(PUG-REST).32

Four external data sets were collected to validate the predictivity of
the generated QSAR models. The first data set is another PubChem
HTS assay (AID 2796) testing for activation of the AhR, deposited by
the Scripps Research Institute Molecular Screening Center in
PubChem (https://pubchem.ncbi.nlm.nih.gov/bioassay/2796, ac-
cessed February 24, 2022). QSAR models trained on the AhR
probe data set were validated using this external data set. The second
data set was compiled from the literature and consisted of 50
chemicals found to be immunotoxic in either humans or animals
(Table S2). This data set was used as the primary validation set for
predicting the toxicity activities of immunotoxic compounds across
KEs. The third data set was obtained from the CosIng database
provided by the European Commission, which contained information
about cosmetic ingredients and substances (https://ec.europa.eu/
growth/tools-databases/cosing/, accessed March 8, 2023). The
CosIng database served as a negative external validation set in this
study, as most of the compounds were likely to be inactive. This type
of indirect validation was also used in our previous chemical toxicity
modeling studies.24,33 We hypothesize that the predictions for this
data set would likely be inactive as most cosmetic ingredients are not
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toxic due to their extensive safety testing before their release into the
market. The curation of this database resulted in a data set of 5,306
chemicals for the purpose of validating the QSAR models. The fourth
data set was retrieved from the Toxin and Toxin-Target Database
(T3DB) (http://www.t3db.ca/, accessed February 22, 2023), a
project supported by the Metabolomics Innovation Center, the
Canada Foundation for Innovation, and the Canadian Institutes of
Health Research.34 Aggregated from multiple resources, T3DB links
information regarding 3,678 toxins, including drugs, pesticides, and
pollutants, to their respective toxin target records. After curating this
database, the 2,654 remaining chemicals were used for external
validations.
Chemical Descriptors
Three types of binary chemical fingerprints were applied to quantify
the chemical structures as features for modeling and predictions:
molecular access system (MACCS) keys, extended-connectivity
fingerprints (ECFP), and functional-class fingerprints (FCFP).
These molecular fingerprints were implemented through the free
cheminformatics package RDKit v2021.03.1 (https://www.rdkit.org/
) using Python v3.9.4. The MACCS keys used in the QSAR modeling
process are the publicly available set of 166 predefined binary keys
that describe two-dimensional substructures. ECFPs and FCFPs are
circular topological descriptors representing an unlimited number of
unique molecular features within 1024-bit vectors.35 Both fingerprints
were generated through a variation of the Morgan algorithm by
applying a bond radius of 3.
Feature Importance and Scaffold Analysis
Feature importance and Murcko scaffolds for the active AhR agonists
in the curated probe data set were obtained to identify structural
features that contribute to AhR agonism. The Murcko scaffolds were
generated through the RDKit toolkit, while feature importance was
evaluated using the random forest algorithm provided by the open-
source ML library scikit-learn v0.24.1 using Python v3.9.4 (https://
scikit-learn.org/). The algorithm determines which features (i.e.,
MACCS keys) contribute to the model’s predictions of AhR agonism.
Within the developed random forest model, the importance of
MACCS keys was ranked by the gain in decreased impurity in each
tree, with the most important MACCS fingerprint having the highest
mean decrease in impurity.36

QSAR Model Development
Three classic machine learning algorithms and one artificial neural
network were used to develop the QSAR models: random forest
(RF), support vector machine (SVM), extreme gradient boosting
(XGB), and multilayer perceptron (MLP). All algorithms were
assigned the binary classification task of predicting a chemical as
active (1) or inactive (0). The RF and SVM algorithms were applied
using the scikit-learn library. RF is an ensemble learning algorithm
made of multiple random, uncorrelated decision trees, where
predictions are based on a majority vote across the trees.37 SVM
identifies the best line or hyperplane that separates and maximizes the
distance between the active and inactive chemicals.38 The XGB
algorithm was implemented using the open-source gradient boosting
library XGBoost v.1.7.3 with Python v3.9.4 (https://xgboost.
readthedocs.io/en/). XGB is another ensemble method that
combines “weak” predictor trees to form a stronger tree, with some
of its advantages being its speed, high predictive performance, and
efficiency in handling missing data.39 Lastly, the MLP neural network,
consisting of three hidden layers, was also implemented using the
scikit-learn library. MLP is a feed-forward neural network trained
through backpropagation using a nonlinear activation function.40 In
this study, the input layer contains information about the features
(chemical fingerprints) of the chemicals in the training set, while the
output layer represents the model’s predicted probabilities for the
target activity.

Hyperparameters for each ML algorithm were optimized using the
grid-search algorithm provided by the scikit-learn library. As outlined
in previous studies, each ML algorithm was fit to the training set with
varying combinations of hyperparameters to identify the best-

performing model.41−43 For example, the maximum depth of the
RF algorithm was set to 10, and the number of estimators for
optimization were 5, 10, and 25. For SVM, the kernel was set to radial
basis function, and the following parameters were optimized: the
regularization parameter C (1, 10) and the kernel coefficient gamma
(0.01, 0.001). For the MLP models, the following parameters were
optimized: the number of nodes in the hidden layers (100, 1000), the
optimization algorithm (stochastic gradient descent, Adam), the
learning rate (constant, adaptive), and the L2 regularization term
(0.0001, 0.001). The models with the optimal combination of
hyperparameters were reserved for predicting the test set.

Twelve individual models were trained for each data set through a
combination of one of the descriptors (MACCS, ECFP, FCFP) and
one of the algorithms (RF, SVM, XGB, MLP). The models were built
using an in-house modeling pipeline that was described in our
previous publication,31 and the relevant code is available on GitHub
(https://github.com/zhu-research-group/auto_qsar). Averaging pre-
dictions from the resulting 12 individual models for each assay
resulted in a consensus model. The performance of all the models was
evaluated using a 5-fold cross-validation procedure. This process
involved splitting the data set into five subsets, where four subsets
(80% of the data set) were used to train the model, and the remaining
subset (20% of the data set) was reserved to assess the predictivity of
the model. This procedure was repeated five times to ensure that each
compound in the original data set was used for assessment.

Statistical Analyses for Assay Selection and Model
Performance
The assays extracted from PubChem were ranked based on their
relevance to the AhR assay. To achieve this, the statistical significance
(p-value) was calculated using Fisher’s exact test.23 This procedure
requires building a 2 × 2 contingency table for each pair of the AhR
probe data set and one of the PubChem assays, as shown below:

Active chemicals
in PubChem
assay

Inactive chemica
ls in PubChe
m assay

Active chemicals in AhR data
set

A B

Inactive chemicals in AhR
data set

C D

(1)

where A is the sum of the number of chemicals shown as active in
both the AhR data set and a PubChem assay, B is the sum of the
number of chemicals shown as inactive in this PubChem assay but
active in the AhR data set, C is the sum of the number of chemicals
shown as active in this PubChem assay but inactive in the AhR data
set, and D is the sum of chemicals shown as inactive in both the AhR
data set and this PubChem assay. The p-value of each assay was then
calculated using the values obtained from the contingency table (eq
2). Assays were selected using the standard threshold for statistical
significance (p < 0.05).

= + ! + ! + ! + !
+ + + ! ! ! ! !

p
A B C D A C B D

A B C D A B C D
( ) ( ) ( ) ( )

( ) (2)

The performance of the generated QSAR models was evaluated
based on four metrics: sensitivity, specificity, correct classification rate
(CCR), and positive predictive value (PPV). Sensitivity represents the
proportion of active chemicals in the data set that were correctly
predicted as active (eq 3), and specificity is the proportion of inactive
chemicals that were correctly predicted as inactive (eq 4). CCR is the
average of both the sensitivity and specificity (eq 5), reflecting the
overall predictive performance of the resulting models, and PPV is the
proportion of active predictions that were correctly predicted (eq 6).
Two criteria were then applied to select consensus models for the
prediction of external chemicals: 1) CCR > 0.7 across all individual
models for the assay and 2) relevance of the assay to immunotoxicity.
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=
+

Sensitivity
True positives

True positives False negatives (3)

=
+

Specificity
True negatives

True negatives False positives (4)

= +
CCR

Sensitivity Specificity
2 (5)

=
+

PPV
True positives

True positives False positives (6)

Applicability Domain (AD)
The QSAR model predictions yielded the probability of a chemical
being active against a specific assay, ranging between 0 and 1. A
standard single threshold was used to classify predictions as active
(probability ≥0.5) and inactive (probability <0.5) for all compounds.
As a measure of confidence prediction, an applicability domain (AD)
was implemented across the QSAR model predictions. Predicted
probabilities above 0.6 were considered active and probabilities below
0.4 were considered inactive. Predictions between 0.4 and 0.6 were
considered inconclusive and were excluded from the assessment of
QSAR model performance. By applying this domain to new
chemicals, the closer the prediction probability to 0 or 1, the greater
the confidence in the model’s predictions. The implementation of
similar ADs has been successfully applied in several of our previous
studies.24,28,44

■ RESULTS AND DISCUSSION

Study Workflow
The steps for the workflow in this study are summarized in
Figure 1. The bioactivity profile of the target chemicals in the
curated AhR probe data set was first retrieved from PubChem.
Assays in this profile were then ranked by statistical
significance between their testing responses and the activities
in the probe data set. The top-ranking assays, including the
AhR assay data set, were then selected for QSAR modeling.
From the resulting QSAR models, model performance and
assay relevance to immunotoxicity were used as criteria for
selecting the most suitable models for predicting new
compounds. External chemicals from multiple data sets were
then predicted by selected models against KEs, and their
immunotoxicity potentials were assessed.

Probe Data Set and Bioprofile

The lack of curated data sets for chemical immunotoxicity
limited the training of computational models that can predict
chemical immunotoxicity. To overcome this limitation, known
immunotoxicity mechanisms can be used to gather initial
training data for modeling immunotoxicity. The AhR is a well-
studied target that influences multiple pathways and
mechanisms in the body. Crucial to regulating the immune
response, AhR activation can affect the equilibrium of the
immune response, acting as a switch that can turn on/off the
immune signaling pathway.18 Hence, excessive or potent
activation of AhR can lead to forms of immunosuppression,
such as increased susceptibility or reduced resistance to
infection, or immunostimulation, such as autoimmune
diseases.18 All these toxicity mechanisms, especially the
perturbation of pathways leading to immunotoxicity, make
AhR a suitable target for computational modeling of
immunotoxicity.
The probe data set in this study was collected from a Tox21

assay (PubChem AID 743122) that tested 10,486 substances
for AhR activations, of which 8,099 were unique chemicals.
After curation, a total of 6,341 unique chemicals remained in
the probe data set, of which 746 were active agonists and 5,595
were inactive. The biological activity profiles for the chemicals
in the resulting probe data set were retrieved from PubChem,
where a threshold for the minimum number of actives for
probe compounds in a PubChem assay was set as 10. The
search yielded 3,183 assays with bioactivities for varying
proportions of chemicals in the probe data set. This bioprofile
revealed over 20 million data points consisting of active,
inactive, and inconclusive or missing responses between the
probe compounds and their respective assays. The responses in
the bioprofile showed a bias toward inactive outcomes, as the
ratio between active and inactive outcomes was approximately
1:15, including around 130,000 active and 2,000,000 inactive
outcomes. This condition reflects the nature of HTS assays, as
discussed in several previous and recent reviews.45−47

Within the initial bioprofile, most assays may have little to
no relevance to AhR activation and immunotoxicity. Thus, the
initial 3,183 assays within this bioprofile were ranked by their
statistical significance to AhR agonism. The p-value was
calculated using Fisher’s exact test (eq 2), and the threshold for

Figure 1. Computational modeling workflow of this study: (1) profiling the probe data set through PubChem, (2) bioassay selection, (3) QSAR
modeling of selected bioassays, (4) model selection, (5) predictions of external chemicals.

Environment & Health pubs.acs.org/EnvHealth Article

https://doi.org/10.1021/envhealth.4c00026
Environ. Health 2024, 2, 474−485

477

https://pubs.acs.org/doi/10.1021/envhealth.4c00026?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/envhealth.4c00026?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/envhealth.4c00026?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/envhealth.4c00026?fig=fig1&ref=pdf
pubs.acs.org/EnvHealth?ref=pdf
https://doi.org/10.1021/envhealth.4c00026?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


statistical significance was set to the conventional p < 0.05. In
the initial bioprofile, a total of 504 assays had a p < 0.05 (Table
S3), indicating their potential association with AhR agonism.
The top 100 statistically significant assays, including the AhR
probe data set, were then selected for modeling. However, four
assays from the 100 assays contained more than 200,000
chemicals and were thus excluded from the modeling process
due to the biased nature of these HTS assays. The four assays
were substituted with four successive assays containing less
than 10,000 compounds. Thus, a total of 84 assays from the
resulting 100 assays shared a large number of compounds with
the probe data set, and many toxic chemicals showed similar
active responses across these assays. The toxicity targets in
these assays are expected to have significant contributions in
multiple toxicity pathways and may also play essential roles in
inducing immunotoxicity.
QSAR Modeling

Following a combinatorial QSAR modeling workflow, 12
individual models were trained for each of the 100 assays
(Table S1) by varying combinations of binary fingerprints
(ECFP6, FCFP6, and MACCS) and ML algorithms (SVM,
RF, XGB, and MLP). Consensus models were also generated

through averaging predictions for the 12 individual models for
each assay, as consensus models were the closest in
demonstrating the best predictive performance when com-
pared to individual models, as shown by previous stud-
ies.24,43,48−50 Since there was a disproportionate number of
inactive to active responses across all 100 data sets,
downsampling was applied to prevent the models from being
biased to predicting external chemicals as inactive, which
proved necessary in our previous studies.24,25,27 All the data
sets were balanced by randomly removing inactive compounds
to equalize the ratio of active to inactive compounds.
Moreover, chemicals found in both the training sets and the
external validation sets were removed from the training sets to
ensure that the external chemicals were new to the developed
models. The performance of the models generated from the
training sets was then evaluated through the 5-fold cross-
validation procedure. This method assesses the performance of
the models, as required by the Organization for Economic Co-
operation and Development (OECD) guidance on validating
QSAR models.51 Appropriate and reliable methods for model
validation, such as cross-validation, are one of the required

Figure 2. Performance of the generated individual and consensus QSAR models, where models were trained with different combinations of ML
algorithms and molecular fingerprints. (A) 5-fold cross-validation results for the AhR probe data set, evaluated using sensitivity, specificity, CCR,
and PPV. (B) 5-fold cross-validation results for the 100 selected bioassays. Each point represents a QSAR model for an assay trained using the
respective algorithm and fingerprint. The dashed line highlights the assay selection criteria of CCR > 0.7.
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elements for the successful integration of model predictions
into regulatory risk assessments.52

Twelve individual QSAR models were built for the curated
AhR probe data set. After curation and downsampling, the final
training set for the probe data set included 1,474 chemicals
(Table S4), where 737 chemicals were classified as active and
737 as inactive. Figure 2A illustrates the performance metrics
for each individual model and the consensus model through
the 5-fold cross-validation procedure. The overall model
performance was acceptable, with CCRs above 0.74 across
all models. The sensitivity, ranging from 0.77 to 0.84, and
specificity, ranging from 0.69 to 0.80, showed a balanced
prediction of actives and inactives. The PPV was also
satisfactory, ranging from 0.73 to 0.80.
Additionally, the AhR probe data set models were externally

validated using chemicals obtained from another PubChem
assay (AID 2796). This assay also tested AhR activation for
over 300,000 chemicals by the Scripps Research Institute
Molecular Screening Center. Most bioactivity responses in
AID 2796 were inactive outcomes, comprising 97.5% of the
total responses. The data set was curated and randomly
balanced, and inactive chemicals were selected if their
PubChem activity score was zero. Model predictions for this
data set yielded an average CCR of 0.77 (Table S5). The
implementation of the AD improved predictions with an
average CCR of 0.81. Sensitivity, specificity, and PPV were
acceptable overall (>0.64); only specificity for the ECFP6
models was poor (<0.6) due to high bias. This result can be
explained by the downsampling method used to balance the
training data, as the resulting models were likely to emphasize
active predictions. The details of model predictivities for the
cross-validation procedure of the training set and the external
set (AID 2796) are shown in Table S5.

For the remaining 99 assays, the training sets were curated
and balanced using downsampling, where the number of
training set compounds ranged from 78 (AID 1259390) to
6,444 (AID 884). The same workflow was applied for QSAR
modeling, and a total of 1,300 models, including 12 individual
models and a consensus prediction for each assay, were
generated. Figure 2B shows the CCR values from the 5-fold
cross-validation process for all the QSAR models developed for
the 100 assays. 953 models achieved CCR values above 0.7,
which can be considered good model performance.53

Individual models also performed acceptably across the
different combinations of fingerprints and algorithms, with a
minimum of 50% of the ECFP6-RF models and a maximum of
91% of the MACCS-SVM models achieving CCR > 0.7. Thus,
models with satisfactory performance can be used to predict
new compounds of interest for their specific toxicity
mechanism.
Model Selection

Models were selected based on model performance during 5-
fold cross-validation and the relevance of their respective
assays to immunotoxicity. From the 100 assays used for
modeling, the 5-fold cross-validation procedure for 35 assays
achieved CCR > 0.7 for all individual models. Of the 35 assays,
four cell viability assays were removed as they mainly tested for
target cytotoxicity through counter-screening. Three duplicate
assays from Tox21 were also excluded, and only the summary
assay was retained. Manual inspection of the remaining assays
led to the exclusion of eight more assays, as their respective
targets were not associated with immunotoxicity pathways.
The resulting 20 assays, including the AhR probe data set (AID
743122), tested for key signaling pathways that showed
relationships with immunotoxicity through impaired or
abnormal immune responses. Table 1 provides an overview

Table 1. Details of the 20 Selected PubChem Bioassays

KE
PubChem
AIDs

No. of
compounds

No. of active
compounds Relevance to immunotoxicity

AhR agonism 743122 8099 875 Promotes inflammation through the NF-kB signaling pathway and the
differentiation of T-helper 17 (Th17) cells; plays an immunosuppressive role in
dendritic cells54

651777 2327 81

Androgen receptor (AR)
antagonism

1259247 7671 935 Prevents binding of androgen, causing an increase in inflammation; associated
with autoimmune disease55743063 8099 548

CYP1A2 antagonism 1671199 7671 2442 Alters AhR-mediated immune response56

CYP2C9 antagonism 1671198 7671 2368 Slows metabolism of toxic chemicals, leading to the accumulation of such
substances that can lead to immunotoxic outcomes571645842 5095 1985

CYP3A4 antagonism 884 13076 3439 Slows metabolism of toxic chemicals, leading to the accumulation of such
substances that can lead to immunotoxic outcomes571645841 5095 2105

Estrogen-related receptor (ERR)
agonism

1259404 7671 248 Regulates the generation and proliferation of protective effector T cells and
suppressive regulator T cells581259402 7671 320

Mitochondrial membrane potential
disruption

720637 8099 1006 Exacerbates inflammatory responses triggered by oxidative stress and the innate
immune system59

651755 1335 114
Mutagenicity 1259407 7692 4671 Involves epigenetic factors that influence the development of autoimmune

diseases and cancer60,61

Nuclear receptor binding SET
domain protein 2 (NSD2)
inhibition

1645876 8988 2409 Triggers inflammatory signaling pathways in response to cancers that exhibit
immunosuppressive effects62

Pregnane X receptor (PXR)
agonism

1347033 7671 1724 Induces the assembly of the NLRP3 inflammasome in macrophages and inhibits
T lymphocyte response63651751 2327 129

Progesterone receptor (PR)
antagonism

1347031 7671 861 Prevents binding of progesterone, causing an increase in inflammation; associated
with autoimmune disease64

Retinoic acid receptor (RAR)
agonism

1159553 7331 364 Destabilizes the immune signaling pathway by preventing the binding of retinoic
acid, an immunoprotective ligand65

Thyroid receptor (TR) antagonism 743065 8099 1536 Prevents binding of thyroid hormone, causing an increase in inflammation;
associated with autoimmune disease66,67
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of these 20 assays and the mechanisms by which the immune
response is suppressed or stimulated through their respective
pathways. Models generated from these 20 assays were then
selected for predicting new compounds.
External Predictions
The cross-validation procedure is a commonly used method to
validate the performance of the resulting models and avoid
overfitting. Furthermore, predictions of real unknown com-
pounds by the resulting models are the ultimate proof of model
predictivity. Based on our previous studies, consensus
predictions have clear advantages over individual models for
prediction purposes.24,43,48−50 Thus, the consensus models for
the 20 selected assays were employed for the prediction of
bioactivities and potential immunotoxicity of the chemicals
from the external data sets. A data set of 50 known
immunotoxic chemicals was collected from various literature
sources to evaluate predictions from the models (Table S2).
Predicted immunotoxicity in this study was evaluated by
averaging the predictions across the 20 models to obtain the
mean likelihood of being toxic. A total of 49 out of the 50
chemicals showed active responses in at least one of the 20

assays, and 29 chemicals were confidently predicted as toxic
because of active outcomes from over half of the assays (Figure
3). A total of 18 of these 29 toxic chemicals are known to
promote inflammatory signaling pathways related to chronic
inflammation and autoimmunity; these 18 chemicals included
polyaromatic hydrocarbons (PAHs), aflatoxins, xenoestrogens,
and organophosphate pesticides. The remaining 32 chemicals
are immunosuppressants that include anticancer drugs,
corticosteroids, organochlorine pesticides, anti-inflammatory
drugs, and industrial chemicals. Models trained on assays that
test for the same signaling pathway may yield different
predictions for the same chemicals. This difference can be
attributed to the variability in the size of the training sets and/
or the experimental protocols of the assays, such as in the AhR
activation assays AIDs 743122 and 651777.
The PAH benzo(a)pyrene (BaP, CID 2336) scored a high

mean prediction of 0.654. BaP, a toxic environmental
contaminant and a potent carcinogen, can mediate immuno-
toxic effects by activating AhR.68 Consensus models for the
AhR agonism assays AID 743122 and AID 651777 (Table 1)
predicted BaP as active (Figure 3). Through binding to AhR

Figure 3. Predictions of 50 immunotoxicants by the consensus models of the 20 selected PubChem assays. PFOA - perfluorooctanoic acid; NDMA
- N-nitrosodimethylamine; VCD - vinylcyclohexene dioxide; PFOS - perfluorooctanesulfonic acid; TCDD - 2,3,7,8-tetrachlorodibenzo-p-dioxin;
p,p′-DDT - dichlorodiphenyltrichloroethane; 2,3,4,7,8-PCDF - 2,3,4,7,8-pentachlorodibenzofuran; 1,2,3,7,9-PCDF - 1,2,3,7,9-pentachlorodibenzo-
furan; 1,3,6,8-TCDF - 1,3,6,8-tetrachlorodibenzofuran.
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and activating its signaling pathway, BaP is metabolized into
epoxides and diols. These byproducts lead to the formation of
reactive oxygen species (ROS) that can cause oxidative stress
and high inflammation.68 ROS generated from BaP metabolites
can also disrupt the mitochondrial membrane integrity and
potential. This damage results in the release of mitochondrial
ligands that bind and activate pattern recognition receptors
(PRRs) in the innate immune system, thereby triggering
diverse inflammatory signaling pathways.69 Reflecting this
mechanism, the consensus model for the mitochondrial
membrane potential disruption assay AID 720637 (Table 1)
predicted BaP as active (Figure 3). Similarly, 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD, CID 15625) is another
toxic environmental contaminant with strong AhR agonist
activity.70 TCDD was also predicted as active for AhR agonism
and mitochondrial membrane potential disruption by the
respective consensus models. TCDD is a well-known potent
immunosuppressor71,72 while BaP demonstrates both immu-
nosuppressive and proinflammatory characteristics.68 The
difference in immune response between these two AhR ligands
indicates a need to use multiple models, including animal
toxicity studies, to identify different toxicity mechanisms
underlying specific immunotoxicity effects.
The KEs indicated by the 20 assays demonstrate a

relationship to immunotoxicity (Table 1), and chemicals
predicted as active for some of these assays were found to
induce immunotoxicity through these KEs. For example,
consensus models for the AR antagonism assays AID
1259247 and AID 743063 (Table 1) predicted the toxic
pesticide dichlorodiphenyltrichloroethane (p,p′-DDT, CID
3036) as active (Figure 3). p,p′-DDT, an androgen receptor
antagonist, can mediate the reduced expression of the protein
RACK1 (Receptor for Activated Kinase 1) that subsequently
suppresses the immune response.73 The mycotoxin aflatoxin
B1 (CID 186907), scoring the highest mean prediction at
0.672, is a toxic agricultural contaminant that was predicted as
active by the model for the mutagenicity assay AID 1259407
(Figure 3). One study analyzed the mutagenic activity of
aflatoxin B1 in chick embryos and found that the mutagenic
effects of aflatoxin B1 led to long-term immunosuppression.74

Zearalenone (CID 5281576) is an estrogenic mycotoxin that
binds to and activates PXR.75 It was also predicted as active by
the model of the PXR agonism assay (AID 1347033, Figure 3).
Through PXR agonism, zearalenone suppressed NF-κB
activation and reduced the release of the inflammatory
cytokines IL-6, IL-1β, and TNF-α.75
Notably, the organochlorine insecticide lindane (CID 727),

also known as gamma-hexachlorocyclohexane, was the only
chemical not predicted to be active by any of the 20 consensus
models (Figure 3). Compared to other chemicals, lindane has a
special chemical structure that might induce toxicity by
different mechanisms. Although its mechanism of immunotox-
icity is not well-elucidated, lindane was shown to induce
apoptosis in murine thymocytes by increasing the production
of ROS, which may trigger immunotoxic outcomes.76 This
condition indicates the necessity of extending the current assay
list by including more immunotoxicity assays. By adding
immunotoxicants with new clearly defined mechanisms into
the probe data set, we expect that the data mining process will
result in more assays with more training data and eventually
cover all potential immunotoxicity mechanisms.

Feature Importance and Scaffold Analysis

Figure S1 illustrates the top 10 Murcko scaffolds identified in
the AhR agonists from the probe data set. The top four
important MACCS keys that were found to contribute to AhR
agonism represented aromaticity (MACCS 125 and 162) and
nitrogen atoms within or attached to aromatic rings (MACCS
133 and 135). All of the top 10 scaffolds contain one or more
of these MACCS fingerprints. Multiple studies indicate that
aromaticity and hydrogen bond donors/acceptors are two key
components for the binding of AhR agonists to the AhR ligand
binding domain (LBD).77−79 For example, bulky planar
structures, majorly represented by aromatic rings, bind strongly
to the bottom of the hydrophobic pocket within the AhR
ligand binding domain.
Several AhR agonists, such as BaP, TCDD, and the

aflatoxins, bind to nuclear receptors and affect their signaling
pathways, as shown in Figure 3. The ligand-binding pockets
(LBP) in nuclear receptors are lined with several hydrophobic
residues and a few anchoring polar residues, which, in steroidal
nuclear receptors like PR and PXR, tend to bind to ketone side
groups.80 Aromatic rings, including heterocycles, multiple
carbon−carbon double bonds, and/or oxygen atoms represent
some shared side groups in the 18 inflammatory highly
predicted toxic chemicals that confer hydrophobicity and
strengthen binding to the LBPs in nuclear receptors. Moreover,
these side groups are also present in endogenous ligands like
progesterone, testosterone, cholesterol, and thyroid hormone
that bind to other nuclear receptors (PR, AR, ERR, TR). Thus,
chemicals with the underlying scaffolds of AhR agonists
(Figure S1) may behave as ligands of several nuclear receptors
(Table 1), potentially affecting their signaling pathways and
leading to immunotoxic outcomes.
External Validation

The 20 consensus models were also used to predict cosmetic
ingredients from the CosIng database and toxins from T3DB.
Figure 4 shows the probability distributions of mean
predictions for compounds from these two data sets. The
peaks in the distribution curves reflect the mean predictions of
most compounds in a data set. The probability peak for the
T3DB data set was 0.548, similar to the average value of the 50
immunotoxic compounds (0.570). In contrast, the peak of

Figure 4. Kernel density estimate (KDE) plot of the probability
distribution of mean predictions from the Cosmetic Ingredients
(CosIng) database and the Toxin and Toxin-Target Database
(T3DB). The red dashed line represents the peak of the predictions
of the immunotoxic chemical data set.
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mean predictions for the CosIng data set was 0.170. This
significant difference in probability distributions between
compounds in T3DB and CosIng confirms that the chemicals
in T3DB were more likely to induce immunotoxicity than
cosmetic ingredients that were unlikely to be toxic. This
indirect validation process also proves the utility of our
resulting QSAR models and modeling strategy.

■ CONCLUSION
This study described a computational data-driven modeling
framework that provided the first insight into comprehensive
immunotoxicity-related KEs compared to classic modeling
studies for single toxicity endpoints. Although the AhR
signaling pathway encompasses a number of immune response
mechanisms, which are the emphasis of this study, the data
mining process resulted in training data for predictive
modeling of several new immunotoxicity mechanisms. The
expansion of limited training data tested by an AhR activation
assay in PubChem provided ample data for generating
hundreds of QSAR models through a combinatorial modeling
approach. Consensus models were also generated through
averaging predictions from individual models, and models were
selected based on good predictive performance and relevance
of the respective assay to immunotoxicity. This process
revealed critical KEs related to immunotoxicity, such as PXR
and RAR agonism, AR, PR, and TR antagonism, mutagenicity,
and mitochondrial membrane potential disruption. Consensus
models generated from 20 selected assays for these KEs were
able to predict most immunotoxicants by covering various
toxicity mechanisms. A variety of xenoestrogens, pesticides,
and environmental pollutants with active predictions for
specific KEs from the consensus models were validated to
cause immunotoxicity through these KEs. Thus, predictions
from this study can be used to assess potential immunotox-
icants and illustrate their relevant immunotoxicity mechanisms.
Our data-driven framework can also be applied to model
similarly complex toxicity endpoints with limited training data
to advance and accelerate chemical risk assessments and
uncover underlying toxicity mechanisms.
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