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Cells in vivo live in a complex microenvironment composed of the extracellular matrix

(ECM) and other cells. Growing evidence suggests that the mechanical interaction

between the cells and their microenvironment is of critical importance to their behaviors

under both normal and diseased conditions, such as migration, differentiation, and

proliferation. The study of tissue mechanics in the past two decades, including the

assessment of both mechanical properties and mechanical stresses of the extracellular

microenvironment, has greatly enriched our knowledge about how cells interact with

their mechanical environment. Tissue mechanical properties are often heterogeneous

and sometimes anisotropic, which makes them difficult to obtain from macroscale

bulk measurements. Mechanical stresses were first measured for cells cultured on

two-dimensional (2D) surfaces with well-defined mechanical properties. While 2D

measurements are relatively straightforward and efficient, and they have provided us

with valuable knowledge on cell-ECM interactions, that knowledge may not be directly

applicable to in vivo systems. Hence, the measurement of tissue stresses in a more

physiologically relevant three-dimensional (3D) environment is required. In this mini review,

we will summarize and discuss recent developments in using optical, magnetic, genetic,

and mechanical approaches to interrogate 3D tissue stresses and mechanical properties

at the microscale.

Keywords: extracellular matrix, traction stress, elasticity, stress sensor, tension sensor, active microrheology

INTRODUCTION

Tissues are composed of a large collection of ECM macromolecules (Frantz et al., 2010) and
various types of cells (Figure 1A). In addition to extracellular chemical signals, cells in the tissues
can sense and respond to the mechanical cues present (Humphrey et al., 2014). The mechanical
properties of living tissues and their spatiotemporal variations have been associated with various
physiological behaviors. Cellular forces and tissue mechanical properties can, independently or
jointly, coordinate cell migration (Lo et al., 2000; Trepat et al., 2009), cell-cell interaction (Reinhart-
King et al., 2008; Chen et al., 2019), cell division and cell cycle progression (Nam and Chaudhuri,
2018; Uroz et al., 2018), direct cell differentiation (Engler et al., 2006; Ruiz and Chen, 2008), drive
tissue morphogenesis and sculpt organ structures (Nelson and Gleghorn, 2012; Campàs et al.,
2014). Deregulation of the ECM and cellular mechanotransduction often leads to diseases such
as cancer. Altered tissue stiffness, increased cellular softness and traction force generation are often
associated with cancer progression and metastatic potential (Kraning-Rush et al., 2012; Lu et al.,
2012; Plodinec et al., 2012; Boyd et al., 2014; Tan et al., 2014).

Tissues and native ECMs are heterogeneous, anisotropic (Jones et al., 2015), and undergo
constant non-linear local remodeling through strain stiffening, stress relaxation (Nam et al., 2016;
Han et al., 2018), matrix degradation, and matrix deposition (Wolf et al., 2007; Attieh et al., 2017).
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FIGURE 1 | Overview of technologies for probing microscale cellular and tissue mechanics. (A) Schematic of a tissue composed of different types of cells (brown,

yellow, blue, green) and ECMs (pink). (B) Schematic of AFM probing of surface mechanics. (C) Schematic of optical tweezer probing of ECM mechanics. (D)

Schematic of probing tissue mechanics from propagating waves within the tissue either directly by measuring wave speed through imaging or indirectly by measuring

the BFS from light scattering. (E) Schematics demonstrating the measurement of released solid stresses after physical tissue incision (top-left). The deformations of

the cut plane (top-right) are visualized with high-resolution ultrasonic or optical imaging, and the normal stresses perpendicular to the cut plane (σzz) are computed

from finite element modeling (bottom). (F) Schematic of ECM deformations/displacements (green arrows) measured using embedded fluorescent beads (red dots)

around a cell in 3D (blue). (G) Schematics of a cell-sized elastic bead or incompressible droplet (red) embedded within a cell cluster (top-left) and the normal stresses

experienced by the bead/droplet sensor (bottom-right). (H) A representative image showing the distribution of optical retardance in an invading ex vivo breast tumor

organoid as revealed by quantitative polarized microscopy, adapted from Wang et al. (2018a) with permission. Scale bar, 25µm. (I) Schematic showing fluctuating

tracers (green) in the cytoplasm (pink) or nucleus (blue) with superimposed trajectories (black), from which an MSD-lag time (τ ) plot characteristic of intracellular forces

can be obtained (bottom-left). (J) Schematic of FRET-based stress sensors. (K) Schematic of the FliptR membrane tension probe (blue, left) which planarizes under

pressure (red, right) from the neighboring lipid chains (green/ yellow).

Such features can only be revealed through microscale, but not
bulk, mechanical characterization. Microscale characterization of
tissue mechanical properties also contributes to the assessment
of stress distributions in 3D (Steinwachs et al., 2015; Nia
et al., 2016), which was previously mainly done in 2D.
However, cell behaviors and mechanotransduction are often
different between 2D and 3D systems (Baker and Chen, 2012).
Hence, methods for probing stress distributions in native
ECMs and tissues are required. Here, we provide a brief
review to introduce the most current technologies (Table 1)
that probe or have the potential to probe 3D tissue mechanics
at the microscale. Excellent reviews by colleagues with a
different focus can be found to have a more comprehensive
list and comparisons of the technologies (Hall et al., 2013;
Cost et al., 2015; Jurchenko and Salaita, 2015; Campàs,
2016; Gayrard and Borghi, 2016; Polacheck and Chen, 2016;
Sugimura et al., 2016; Kennedy et al., 2017; Roca-Cusachs et al.,
2017).

INTERROGATING TISSUE MECHANICAL
PROPERTIES BY ACTIVE
MICRORHEOLOGY

The microscale tissue or cellular mechanical properties and
constitutive relationships can be probed by active microrheology
(Wilson and Poon, 2011), i.e., by applying controlled forces onto
microscale probes or tracers that are in contact with the material
and observing the resulting probe displacements.

Atomic Force Microscopy (AFM)
By laser tracking the deflection of the probing cantilever tip
during indentation and retraction (Figure 1B), AFM indentation
experiments have been used to measure the local stiffness
of cancer cells (Rother et al., 2014), native ECMs and ex-
vivo tissues (Iwashita et al., 2014; Taufalele et al., 2019).
Viscoelasticity can be measured when the cantilever is operated
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TABLE 1 | Summary of methods for probing microscale cellular and tissue mechanics.

Method Input Output Strengths Limitations Typical

applicationsa
An example

Active microrheology AFM Cantilever tip

deflection

Local cellular/tissue

viscoelasticity

High-resolution,

continuous mapping

Cannot map the

interior of a tissue,

requires physical

contact

2D; in vitro, ex vivo, in

vivo

Surface mapping of

tissue rigidity (Kohn

et al., 2016)

Optical and magnetic

tweezers

Displacement of

optically or

magnetically

controlled microbeads

Able to detect

spectrum-dependent

viscoelasticity

Low throughput,

discrete probing,

invasive injection

3D; in vitro, ex vivo, in

vivo

Measuring

viscoelasticity of cells

and ECMs in 3D

(Staunton et al., 2019)

Deformable

microdroplet

Deformation of

magnetic-responsive

microdroplets

Able to detect cellular

as well as tissue level

mechanical properties

Low throughput,

discrete probing,

invasive injection

3D; in vitro, ex vivo, in

vivo

Measuring

viscoelasticity of a

zebrafish embryo

(Serwane et al., 2016)

Strain-stress

computation

TFM Substrate/Matrix

displacement

Traction stress Full field mapping of

absolute ECM stress

Requires known ECM

mechanical properties,

cannot be applied in

vivo

2D, 3D; in vitro 3D mapping of

cell-generated ECM

stress (Legant et al.,

2010)

Tissue

incision/ablation

Structural, cellular and

tissue deformation

after stress release

Released stress Applicable to clinical

samples

Requires known tissue

mechanical properties,

physical damage to

sample

2D, 3D; in vitro, ex

vivo, in vivo

2D mapping of solid

stress in primary

tumor (Nia et al., 2016)

Cell-sized stress

sensor

Incompressible

microdroplet

Microdroplet shape

deformation

Local anisotropic

normal stress

Able to detect cellular

as well as tissue level

stress,

independent of tissue

mechanical properties

Only measures

anisotropic stress, low

throughput, discrete

probing,

invasive injection

3D; in vitro, in vivo Measuring anisotropic

stress within living

embryonic tissue

(Campàs et al., 2014)

Elastic microbead Volume strain,

bead deformation

Local anisotropic and

isotropic normal

stress, shear stress

Low throughput,

discrete probing,

invasive injection

Measuring

compressive stress

within living tissue

(Mohagheghian et al.,

2018)

Molecular stress

sensor

Genetically encoded

tension sensor

Change in FRET

efficiency

Tension at the sensor

protein

High resolution,

piconewton force

sensitivity

Requires rigorous

control and calibration,

force direction

unknown

2D; in vitro, in vivo Mapping force

transmitted across

vinculin (Grashoff

et al., 2010)

Synthetic

substrate-anchored

tension sensor

Change in FRET

efficiency,

fluorescence gain/loss

digital state

Tension, digital state of

tension

High resolution,

piconewton force

sensitivity, applicable

to virtually any surface

Difficult to apply in

vivo, difficult to obtain

force direction

2D; in vitro Mapping cellular

traction force exerted

on non-deformable

surface (Blakely et al.,

2014)

(Continued)
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TABLE 1 | Continued

Method Input Output Strengths Limitations Typical

applicationsa
An example

Fluctuation-based

approach

Force spectrum

microscopy

MSD of submicron

tracer beads injected

to the cytoplasm

Collective cytoplasmic

force

Based on intrinsic

cellular behaviors,

measurement is

independent of ECM

or probe properties

Low throughput,

discrete probing,

invasive injection,

requires simultaneous

mechanical

characterization

2D, 3D; in vitro Probing cytoplasmic

motor activity in

healthy and diseased

state (Guo et al.,

2014b)

SINK MSD of chromatin

particles

Relative intracellular

force

Only relative force

output,

calibration required for

quantitative output

Measuring relative

cellular force in

heterogenous cell

monolayer (Armiger

et al., 2018)

Opto-mechanical

approach

Brillouin light

scattering microscopy

Brillouin frequency

shift

Material longitudinal

modulus

Label free,

non-contact,

non-invasive,

resolution same as the

optical diffraction limit,

continuous mapping

Calibration and tissue

density distribution

required for

quantitative output

2D, 3D; in vitro, ex

vivo, in vivo

Mapping

biomechanical

properties of the

crystalline lens in a

mouse eye (Scarcelli

and Yun, 2008).

Dynamic

micro-elastography

Wave speed Material shear

modulus

Label free,

non-contact,

non-invasive,

continuous mapping

Tissue density

distribution required,

relatively low spatial

resolution

Mapping of depthwise

stiffness distribution in

the rabbit cornea

(Wang and Larin,

2014)

Quantitative

polarization

microscopy

Optical phase

retardance

Relative stress

distribution

Label free,

non-contact,

non-invasive,

resolution same as the

optical diffraction limit,

continuous mapping

Only relative stress

output, calibration and

control required for

quantitative output

Mapping relative

stress distribution in a

part of the wing of

Drosophila

melanogaster

(Nienhaus et al., 2009)

a It is possible to extend the technique to other applications but with limited efficacy currently.
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in an oscillating mode (Rother et al., 2014; Connizzo and
Grodzinsky, 2017). Surface mapping of tissue mechanics using
AFM can be used to identify mechanical heterogeneities in
tissues, such as age-related heterogeneous vessel stiffening (Kohn
et al., 2016) and malignancy-related heterogeneous tumor cell
softening (Plodinec et al., 2012). However, the surface probing
nature of AFM makes it difficult to use for 3D mapping of
tissue mechanics.

Optical and Magnetic Tweezers
Optical tweezer has been used to probe the viscoelasticity of
living cells and tissues (Staunton et al., 2016, 2019). By exerting
sinusoidal forces at a wide range of the frequency spectrum
on the micron-sized beads injected in the cytoplasm or the
ECM (Figure 1C), and tracking the resulting bead displacements,
optical tweezers were recently used to identify mismatch and
adaptation of cytoskeletal mechanics with surrounding ECM
mechanics (Staunton et al., 2019). Similarly, micron-sized
magnetic-responsive beads injected into cells or tissues can
be controlled by forces and torques using magnetic tweezers
(Bausch et al., 1999). The fine-tuned forces and the wide range
of frequencies of the optical/magnetic tweezer allow for the
detection of spectrum-dependent tissue/cellular viscoelasticity in
vitro and in vivo.

Deformable Microdroplets
Micro-injected cell-sized ferrofluid microdroplets (Figure 1G)
can be used as a mechanical actuator in developing zebrafish
embryos (Serwane et al., 2016). Instead of tracking bead
displacements, the deformations of the cell-sized droplets
are imaged over time upon the application of a uniform
magnetic field. The mechanical properties of the tissue
surrounding the droplet can then be derived from the
deformation profile combined with physical properties of the
ferrofluid droplet and the applied magnetic field. Both the
optical/magnetic tweezer and the microdroplet approaches can
be used to evaluate the 3D distribution of tissue mechanical
properties, albeit with relatively low throughput. However,
the resolution of probing is dependent on the number of
beads/droplets injected, and as a result the spatiotemporal
resolution of this method is limited so as to not compromise
cellular/tissue function.

INTERROGATING TISSUE STRESSES
FROM TISSUE DEFORMATIONS

ECM or tissue deformations provide useful information on
the stress states of cells and tissues (Nam and Chaudhuri,
2018; Zhang et al., 2019), which can be used to calculate the
3D distribution of tissue stresses, as long as the mechanical
properties and constitutive relationships of the tissue are
completely known.

Traction Force Microscopy (TFM)
TFM is one of the most widely adopted approaches using
matrix deformations to compute cell generated traction
forces (Dembo and Wang, 1999; Schwarz and Soiné, 2015).

Facilitated by the development of polyacrylamide hydrogels
with well-controlled linear elasticity within the physiological
range (Wang and Pelham, 1998; Beningo and Wang, 2002),
traction stresses exerted on 2D hydrogels can be easily
calculated from substrate deformations which are tracked
using embedded fluorescent submicron beads (Dembo
and Wang, 1999; Butler et al., 2002). Modifications and
variations of TFM have been implemented to precisely
reconstruct stresses at a resolution down to the level of
focal adhesions (Schwarz et al., 2002; Han et al., 2015),
and up to the level of cell monolayers (Trepat et al., 2009).
Cell-substrate traction stresses can be further processed
to reveal intercellular stress distributions assuming a
force balance, which is known as the monolayer stress
microscopy (Tambe et al., 2011, 2013).

In principal, TFM can be adapted to 3D (Hall et al., 2013). 3D
ECM deformations can be measured using confocal reflectance
or optical coherence microscopy (Kim et al., 2016; Mulligan et al.,
2017) in addition to using tracer beads (Figure 1F). However,
accurate 3D stress mapping is feasible mostly in synthetic
materials that are linearly elastic, homogenous and isotropic,
such as polyethylene glycol (PEG) hydrogels (Legant et al., 2010).
Nevertheless, 3D matrix strain is often too big to meet the small
strain requirement for the linear elasticity approximation (Legant
et al., 2010). Unlike 2D substrates, the non-continuity of a 3D
matrix with irregular cavities due to cell or tissue occupancy
usually requires computational discretization of the cavity surface
and finite element modeling (Legant et al., 2010; Gjorevski and
Nelson, 2012), which is computationally expensive. Despite those
limitations, 3D TFM can be applied to non-linear materials with
large deformations, as long as the matrix mechanical properties
and constitutive relationships are fully resolved (Toyjanova et al.,
2014; Steinwachs et al., 2015; Han et al., 2018).

Tissue Incision/Ablation Approaches
3D TFM relies mostly on randomly distributed fluorescent beads
to compute matrix deformations, which is generally infeasible
for tissue deformations. This obstacle can be overcome by
monitoring tissue deformations directly after releasing the stored
solid stresses (Stylianopoulos et al., 2012; Nia et al., 2016).
By creating an incision surface through planar-cut, slicing,
or needle-biopsy, the residual tissue stresses are released and
the resulting surface deformations can be quantified through
high-resolution ultrasonography or optical microscopy (Nia
et al., 2016). The stresses normal to the incision surface and
the stored elastic energy that are fully released can then be
computed through finite element modeling and mapped to the
incision surface, assuming known tissue mechanical properties
(Nia et al., 2016; Figure 1E). This incision approach can
be used to evaluate solid stresses in clinical tumor samples
(Stylianopoulos et al., 2012; Nia et al., 2016). Additionally,
laser ablation can be used instead of physical incision to
precisely control the release of tension at the cellular/tissue
level, and the resulting retraction response of the ablated
structures can be used to estimate their tensional states before
ablation (Ma et al., 2009; Campinho et al., 2013).
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INTERROGATING TISSUE STRESSES
FROM THE DEFORMATIONS OF
CELL-SIZED STRESS SENSORS

To overcome the complexities associated with the development
of 3D TFM, the dependence of the stress calculation on the local
tissue mechanical properties must be eliminated. Hence, several
recent studies introducedmicrobead/droplet-based stress sensors
of well-controlled mechanical properties to 3D systems. These
types of stress sensors can be introduced to virtually any system,
in vitro or in vivo (Campàs et al., 2014). However, only a small
number of sensors can be used at once to avoid compromising
tissue function, which limits the probe’s throughput. In addition,
these sensors primarily detect compressive stresses (Dolega et al.,
2017), and may not genuinely reflect the active cell-generated
stresses that are largely tensile (Legant et al., 2010; Gjorevski and
Nelson, 2012).

Incompressible Microdroplets
Cell-sized fluorescent oil microdroplets, with defined mechanical
properties and coated with adhesion ligands, can be introduced
to in vitro cell aggregates or living embryonic tissues (Campàs
et al., 2014; Lucio et al., 2017). Local anisotropic stresses can then
be calculated from the deformations of the droplets as visualized
using fluorescent microscopy and calculated using computerized
image analysis (Figure 1G). However, due to its incompressible
nature, the oil droplet can only be used to probe the anisotropic
normal stresses and not the isotropic compressive stresses.

Elastic Microbeads
In addition to the wide application as a compliant substrate in
2D TFM, elastic polyacrylamide hydrogels have also been used to
quantify 3D stresses by creating microbeads that are embedded
into tissues to act as cell-like pressure sensors (Dolega et al., 2017;
Girardo et al., 2018). By simply comparing the volume change
before and after applying an external pressure, the increment
of local isotropic compressive stresses sensed by the microbeads
can be calculated using its well-defined constitutive relationship.
To calculate the absolute magnitude of stresses, however, the
stress-free size of the bead needs to be known. To determine
the size and shape of the beads, there have been two primary
methodologies. The first approach is to release cell-generated
forces, as is done in TFM, by inhibiting cell contractility or
causing cell lysis (Mohagheghian et al., 2018; Lee et al., 2019).
However, stress-releasing may be difficult in vivo (Mohagheghian
et al., 2018), and it is not clear whether cell-sized beads can
become completely stress-free in the ECM. The second approach
is to measure the diffusion time of small molecules within the
sensor using fluorescence correlation spectroscopy. The diffusion
time correlates with the volume fraction of the gel, which in
turn correlates with the compressive stress applied to the bead.
Hence, the stress-free state can be easily measured from any
stress-free beads with the same volume fraction (Ingremeau et al.,
2017). However, this approach may only be good for short-term
monitoring before most of the small molecules have diffused out
from the beads.

Unlike the incompressible microdroplet method which
measures anisotropic stresses, the elastic microbead method
measures the isotropic stresses using volume strain. With more
information about bead deformations, either through surface
tracking (Lee et al., 2019) or full deformation tracking using
submicron tracers incorporated in the beads, similar to what is
done in TFM (Mohagheghian et al., 2018), all types of stresses
experienced by the sensor can be probed, including compressive,
tensile, and shear stresses, albeit with increasing computational
costs. Additionally, Förster resonance energy transfer (FRET)
fluorophore pairs have been recently incorporated to PEG-
based microbeads, which exhibit a characteristic fluorescence
shift upon global or local tissue deformations (Neubauer et al.,
2019). Nevertheless, substantial calibration is required before any
quantitative information on 3D stresses can be derived, especially
when compared to FRET pairs that are conjugated to elastic 2D
substrates (Kong et al., 2005).

INTERROGATING TISSUE STRESSES
FROM THE FLUORESCENCE OF
MOLECULAR STRESS SENSORS

Stress sensors can also be engineered to be of the molecular
size to detect sub-cellular forces with piconewton sensitivity.
Unlike the cell-sized sensor described above, the force-
induced displacement in the molecular sensor is readily
converted to a shift in emitted fluorescence, such as that
observed in FRET (Figure 1J). However, compared to the
detection of tissue or sensor deformations, the detection
of fluorescence may require rigorous calibration and
control (Grashoff et al., 2010; Cost et al., 2015).

Genetically Encoded FRET-Based Tension
Sensors
Cells can be engineered to directly express FRET-based sensors
(Cost et al., 2015; Freikamp et al., 2016; Gayrard and Borghi,
2016), which typically consist of a tension sensor module
(TSMod) inserted into force-bearing proteins, such as vinculin
(Grashoff et al., 2010), talin (Austen et al., 2015), E-cadherin
(Borghi et al., 2012), α-actinin (Meng et al., 2008), β-actin
(Guo et al., 2014a), etc. The TSMod has a spring-like peptide
linker between a pair of FRET fluorophores. Force applied to
the sensor increases the distance (Grashoff et al., 2010) or
changes the orientation (Meng and Sachs, 2012) between the
two fluorophores, thus, causing a decrease in FRET efficiency.
FRET efficiency can be calibrated to the applied force using
DNA springs (Meng and Sachs, 2012) or single-molecule force
spectroscopy (Grashoff et al., 2010). The dynamic range, force
response, and sensitivity of the tension sensor can be tuned by
modifying the linker and FRET pair selection (Ringer et al., 2017;
LaCroix et al., 2018). The genetically encoded sensors can also
be introduced to in vivo applications (Cai et al., 2014), although
more rigorous calibration and control may be required. For
the genetically encoded tension sensor to work properly, it is
important to ensure that the functions of the host protein and
TSMod do not interfere with each other (Grashoff et al., 2010).
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Synthetic Substrate-Anchored Tension
Sensors
Molecular tension sensors can also be functionalized to the
substrate to detect cell-matrix forces (Liu et al., 2017). In
general, these synthetic sensors have a tension-responsive linker
module, which can be peptide-based (Morimatsu et al., 2013)
or PEG-based (Stabley et al., 2012; Liu et al., 2014) molecular
springs, double-stranded DNAs (dsDNA) (Wang and Ha, 2013)
or hairpin DNAs (Blakely et al., 2014; Zhang et al., 2014).
One end of the linker is for surface-anchoring, while the other
end is conjugated with ligands for membrane receptors such
as integrins (Morimatsu et al., 2013; Wang and Ha, 2013;
Blakely et al., 2014) or epidermal growth factor receptors (Stabley
et al., 2012). Force transmitted to the linker can be detected
through FRET (Morimatsu et al., 2013), fluorescence quenching
(Stabley et al., 2012; Blakely et al., 2014; Liu et al., 2014; Wang
et al., 2018b), or simply fluorescence loss (Wang and Ha, 2013).
Fluorescence quenching is also based on FRET or surface energy
transfer except that the acceptor fluorophore is replaced by a
quencher. The tension-induced linker extension then results in
a decrease in quenching efficiency or a gain of fluorescence.
Fluorescence loss can be achieved by conjugating only one
fluorophore to the ligand end of the linker, which is permanently
lost when the dsDNA ruptures under tension. The FRET-
efficiency can be calibrated as is done in the TSMod (Grashoff
et al., 2010) or converted to forces through well-established
mechanical models for PEG-based springs (Stabley et al., 2012),
whereas gain/loss of fluorescence is usually detected when the
applied tension exceeds the designed threshold. Compared to the
FRET approach, the fluorescence gain/loss approach is easier to
use with simpler fluorescence. However, due to the switch-like
behavior, these probes are mostly suitable for detecting the on/off
digital state instead of the actual magnitude of tension, although
the range of forces can be estimated through multiplexing
of multiple sensors with different tension thresholds (Wang
and Ha, 2013; Sarkar et al., 2018). Furthermore, the direction
of molecular tension can be detected when combined with
fluorescence polarization microscopy (Brockman et al., 2018).
These synthetic tension probes can be applied to virtually any
surface including stiff glass that is not suitable for TFM, and have
potential applications in 3D systems when functionalized to ECM
fibers or incorporated into elastic microbeads as discussed earlier
(Neubauer et al., 2019).

Lipid Membrane Tension Sensors
Tensions within the plasma membrane can be measured by
the tether-pulling method, where controlled forces are applied
through functionalized AFM cantilevers or optical/magnetic
tweezer beads that are tethered to the membrane (Lieber et al.,
2015; Diz-Muñoz et al., 2016). However, the tethering method is
difficult to apply to tissues or cells in 3D. Recently, a fluorescent
lipid tension reporter (FliptR) was developed (Colom et al.,
2018), which consists of a membrane-targeting headgroup and
two fluorescent dithienothiophene flippers. The two flippers
can switch from a twisted state to a planarized state when
pushed by the neighboring lipid chains (Figure 1K), resulting

in a measurable increase in fluorescence lifetime. Tension in
the cell membrane induces a lipid phase separation, which
counterintuitively packs part of the lipid chains, pushes the
inserted FliptR sensors and increases the overall fluorescence
lifetime in a roughly linear manner (Colom et al., 2018). The
headgroup of the sensor can be designed to specifically target the
membrane of organelles, such as lysosomes, mitochondria, and
the endoplasmic reticulum (Goujon et al., 2019).While the FliptR
type sensors can be applied to cells in 3D easily through simple
incubation (Hetmanski et al., 2019), a different calibration curve
determined using the tether-pulling method is required to get the
absolute tension values, each time they are applied to a different
type of cell or membrane.

OTHER APPROACHES

Unlike the stress probing methods discussed earlier, which are
based on either the stress-strain constitutive relationship
or the displacement-fluorescence relationship, the last
collection of approaches discussed here do not rely directly
on strain/displacement information.

Fluctuation-Based Approaches
Fluctuation of a freely diffusing Brownian particle has long
been used in passive rheology to measure the particle diffusion
coefficient and fluid viscosity (Wilson and Poon, 2011; Zia,
2018). However, if the particle fluctuation is dominated by
active cellular forces instead of thermal Brownian forces, then
the fluctuation may be used to infer the cellular mechanical
state. One of these approaches is force spectrum microscopy
where submicron tracer particles are injected into the cytoplasm
(Guo et al., 2014b). Instead of measuring static displacements,
the mean-squared displacement (MSD) of the tracer is used
as a readout (Figure 1I). With simultaneous optical tweezer-
based mechanical characterization, the spectrum of cytoplasmic
fluctuating forces can be calculated using Hooke’s law. This
fluctuating force is suggested to be caused by the aggregate
effect of all the motors and active processes in the cytoplasm
(Guo et al., 2014b). Active cytoskeletal forces can be transmitted
through focal adhesions to the ECM and detected by TFM or
tension sensors, as well as into the nucleus through the linker
of nucleoskeleton and cytoskeleton (LINC) (Alam et al., 2015),
which can be detected by sensors from intranuclear kinetics
(SINK), another fluctuation-based approach. SINK uses theMSD
of the fluctuating chromatin particles as a readout, which reflects
cellular force propagation and can be used to evaluate the
relative output of intracellular forces (Spagnol and Dahl, 2014;
Armiger et al., 2018). While the fluctuation approaches were
predominantly developed for intracellular force measurement, it
is also possible to quantify the forces generated by cells within 3D
ECMs (Han et al., 2019).

Opto-Mechanical Approaches
Mechanical properties and states can also directly affect a
material’s optical properties, which can therefore be used to
probe tissue mechanics. One of such approaches with increasing
application in mapping tissue mechanical properties is Brillouin
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light scattering microscopy based on acousto-optic interaction
(Scarcelli et al., 2013, 2015; Elsayad et al., 2016; Margueritat
et al., 2019). Thermally excited sound waves inherent to
a material propagate as acoustic “phonons,” which interact
with optical “photons” of the probing laser, thus, resulting in
light scattering and a spectral shift, known as the Brillouin
frequency shift (BFS). The BFS is proportional to the speed
of the sound wave, which in turn depends on the material
longitudinal modulus (Scarcelli and Yun, 2008). Hence, 3D
tissue mechanics can be mapped by measuring the spatial
distribution of BFS. A similar approach is dynamic micro-
elastography, where local shear modulus is derived from the
speed of the induced mechanical waves propagating in the
tissue (Kennedy et al., 2017; Figure 1D). Different imaging
modalities, such as optical coherence tomography (Zhu et al.,
2016) and microscopic magnetic resonance imaging (Othman
et al., 2005), can be used to obtain the wave images, through
which the wave speed can be determined (Kennedy et al., 2017).
However, the resolution of micro-elastography is limited to
tens of microns, as compared to the optical diffraction limit
reached by Brillouin microscopy (Scarcelli et al., 2015; Kennedy
et al., 2017). Another opto-mechanical approach that maps cell
or tissue stress/strain is quantitative polarization microscopy
based on material birefringence and photoelasticity (Acerbi et al.,
2015; Wang et al., 2018a). Polarized light travels along different
directions at different speeds within birefringent materials
including cytoskeletal filaments and ECM fibers (Oldenbourg
et al., 1998; Katoh et al., 1999; Koike-Tani et al., 2015). This
difference can be quantified as the phase lag or optical retardance
between the slow and fast light beams, which is proportional
to the applied stress (Nienhaus et al., 2009; Shin et al., 2010).
Optical retardance was found to be linearly proportional to
cell contractility in both 2D and 3D, either fixed or live, and
is applicable to complex biological systems including tumor
tissues (Wang et al., 2018a; Figure 1H). However, careful control
for sources other than photoelasticity that contribute to optical
retardance is required. The opto-mechanical approaches are truly

non-invasive, non-contact and label-free, and can be applied to
virtually any system, from in vitro to in vivo (Scarcelli et al., 2015;
Wang et al., 2018a).

CONCLUSIONS AND OUTLOOK

With the growing interest in exploring the roles of tissue
mechanics in physiology and pathology, there are significant
recent advancements in developing tools that can map 3D
tissue mechanical properties and stresses at the microscale.
Future work may be directed at increasing the throughput
and/or accuracy of the 3D mapping of tissue mechanics
using existing methods such as active microrheology and
stress sensors. Opto-mechanical approaches will provide new
insights into tissue mechanics due to their non-invasive, label-
free and high-throughput nature. Furthermore, simultaneous
mapping of local mechanical properties and measurement of
3D deformations will enable accurate 3D TFM. With our
developing knowledge of cellular mechanotransduction, it will
be possible to utilize and/or engineer some of the cell’s intrinsic
behaviors as a type of new mechanical probe, as evidenced by the
fluctuation-based approaches. However, caution should also be
paid to the discrepancies when interrogating tissue mechanics
using different approaches (Wu et al., 2018), microscale
or bulkscale.
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