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Ginkgolide C, isolated from Ginkgo biloba, is a diterpene lactone that has multiple biological functions and
can improve Alzheimer disease and platelet aggregation. Ginkgolide C also inhibits adipogenesis in 3T3-
L1 adipocytes. The present study evaluated whether ginkgolide C reduced lipid accumulation and regu-
lated the molecular mechanism of lipogenesis in oleic acid-induced HepG2 hepatocytes. HepG2 cells
were treated with 0.5 mM oleic acid for 48 h to induce a fatty liver cell model. Then, the cells were
exposed to various concentrations of ginkgolide C for 24 h. Staining with Oil Red O and the fluorescent
dye BODIPY 493/503 revealed that ginkgolide C significantly reduced excessive lipid accumulation in
HepG2 cells. Ginkgolide C decreased peroxisome proliferator-activated receptor c and sterol regulatory
element-binding protein 1c to block the expression of fatty acid synthase. Ginkgolide C treatment also
promoted the expression of adipose triglyceride lipase and the phosphorylation level of hormone-
sensitive lipase to enhance the decomposition of triglycerides. In addition, ginkgolide C stimulated
CPT-1 to activate fatty acid b-oxidation, significantly increased sirt1 and phosphorylation of AMP-
activated protein kinase (AMPK), and decreased expression of acetyl-CoA carboxylase for suppressed
fatty acid synthesis in hepatocytes. Taken together, our results suggest that ginkgolide C reduced lipid
accumulation and increased lipolysis through the sirt1/AMPK pathway in oleic acid-induced fatty liver
cells.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Obesity causes many chronic diseases, including diabetes melli-
tus, hyperlipidemia, and cancer (Forte et al., 2012). Many studies
have also shown that excessive lipid accumulation in the liver of
obese subjects induces nonalcoholic fatty liver disease (NAFLD)
(Neuschwander-Tetri, 2017; Patil and Sood, 2017). NAFLD is
defined as abnormal lipid accumulation in hepatocytes, and this
interferes with the normal metabolism of carbohydrates and lipids
for reduced glycogen synthesis and increased lipid synthesis, lead-
ing to lipid accumulation in the liver (Reccia et al., 2017). NAFLD
can be divided into simple fat accumulation (hepatic steatosis)
and deteriorated steatohepatitis. When the affected hepatocytes
are not repaired, sustained inflammatory and oxidative damage
occurs and nonalcoholic steatohepatitis (NAHS) develops
(Benedict and Zhang, 2017). If NASH patients do not maintain a
healthy lifestyle with moderate rest and regular exercise,
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irreversible liver fibrosis, cirrhosis, and even liver failure and liver
cancer may develop (Reccia et al., 2017). The development of
NAFLD is closely associated with obesity and diabetes. Therefore,
improving obesity and reducing liver lipid accumulation may
attenuate its development.

The most promising treatments for NAFLD are regulated diet,
moderate exercise, weight loss, and possibly bariatric surgery
(Brouwers et al., 2016). Regulating food intake with excess triglyc-
erides is especially important since free fatty acids in the digestive
tract can be transported through the blood to the liver for
metabolism and be converted to simple lipids or cholesterol
(Romero-Gomez et al., 2017). Transcription factors regulating
hepatic lipogenesis are important for liver lipid synthesis, and
can activate fatty acid chain synthesis, causing excessive triglyc-
eride synthesis and lipid accumulation in the liver (Guo et al.,
2015). Thus, blocking the expression of lipogenesis transcription
factors will attenuate the synthesis of triglycerides in the liver.

AMP-activated protein kinase (AMPK) is a source of energy, and
some studies have found that AMPK activity can regulate lipogen-
esis transcription factors in hepatic steatosis (Smith et al., 2016).
The excessive storage of energy in cells leads to AMPK phosphory-
lation, followed by phosphorylation of its substrate acetyl-CoA
carboxylase (ACC) (Lim et al., 2010), which plays an essential role
in regulating fatty acid synthesis (Smith et al., 2016). Interestingly,
ACC phosphorylation reduces the synthesis of malonyl-CoA and
the extension and synthesis of the fatty acid chain (Hou et al.,
2008).

Recent studies have found that many plant extracts and flavo-
noids can improve liver steatosis and NAFLD (Feng et al., 2017;
Tian et al., 2016). Ginkgo biloba is a herbal medicine that has long
been used in Eastern and Western medicine to improve cardiovas-
cular disease (Yin et al., 2014). Western medicine has used the
G. biloba extract EGB-761 to treat cardiovascular disease and
dementia, and the ginkgo fruit is used in Chinese medicine to
improve asthma (Babayigit et al., 2009; Stein et al., 2015). In recent
years, several diterpene lactones and flavonoids were isolated from
G. biloba (Zeng et al., 2013). Ginkgolide A, B, and C are diterpene
lactones that can improve atherosclerosis and attenuate platelet
activating factor (Huang et al., 2014; Zeng et al., 2013). A previous
study found that ginkgolide A can improve NAFLD in high fat diet-
induced obese mice (Jeong et al., 2017). Another study found that
ginkgolide C could reduce transcription factors of adipogenesis
and increase lipolysis by enhancing Sirt1/AMPK activity in 3T3-
L1 differentiated adipocytes (Liou et al., 2015). In this study, we
investigated whether ginkgolide C reduced lipid accumulation
and regulated the molecular mechanism of lipogenesis in oleic
acid-induced HepG2 hepatocytes.
2. Materials and methods

2.1. Chemical reagent

Ginkgolide C (purity � 96% by HPLC) was purchased from Sigma
(St. Louis, MO, USA) and was dissolved in DMSO (�0.1% in all cell
experiments).
2.2. Cell culture and induced fatty liver cells

The HepG2 cell line was obtained from the Bioresource Collec-
tion and Research Center (BCRC, Taiwan). HepG2 cells were grown
in a humidified atmosphere of 5% CO2 at 37 �C in DMEM medium
containing 10% fetal bovine serum (FBS) and 100 mg/L penicillin
and streptomycin. Hepatocytes were treated with 0.5 mM oleic
acid for 48 h and then 3–100 lM ginkgolide C and were incubated
in cell culture plates for 24 h.

2.3. Cell viability assay

HepG2 cells were seeded on culture plates and incubated with
various concentrations of ginkgolide C for 24 h. The culture plates
were treated with 5 mg/ml MTT solution (Sigma) as previously
described (Huang et al., 2017), and purple formazan crystals were
dissolved in isopropanol. Cell viability was determined via the
absorbance at 570 nm using a spectrophotometer (Multiskan FC,
Thermo, Waltham, MA, USA).

2.4. Oil Red O staining

HepG2 cells were seeded on culture plates and incubated with
0.5 mM oleic acid for 48 h. Then, cells were treated with ginkgolide
C for 24 h. Next, cells were fixed with formalin, and Oil Red O stain-
ing was performed (Liou et al., 2015). Oil droplets were observed
using microscopy (Olympus). Next, cells were treated with iso-
propanol and lipid accumulation was measured using a microplate
reader (Multiskan FC, Thermo Fisher Scientific) and recording the
absorbance at 490 nm.

2.5. Hepatic lipid accumulation

HepG2 cells were seeded on culture plates and incubated with
oleic acid (0.5 mM) for 48 h. Then, cells were treated with ginkgo-
lide C for 24 h. Cells were fixed with 10% formalin, and lipid accu-
mulation was evaluated using BODIPY 493/503 (Invitrogen,
Carlsbad, CA, USA) as previously described (Chang et al., 2018).
Lipid accumulation was observed using fluorescence microscopy
(Olympus, Tokyo, Japan) in cells with DAPI stained nuclei.

2.6. Western blot analysis

Equal amounts of protein were separated on 8–10% SDS–poly-
acrylamide gels, and transferred onto polyvinylidene fluoride
(PVFD) membranes (Millipore, Billerica, MA, USA) using a previ-
ously described method (Liou and Huang, 2017) The PVDF mem-
branes were blocked with TBST buffer (150 mM NaCl, 10 mM
Tris-HCl pH 8.0, 0.1% Tween 20) containing 5% FBS for 1 h. Then,
the membranes were incubated overnight at 4 �C with primary
antibodies, including SREBP-1c, carnitine palmitoyltransferase 1
(CPT-1) and 2 (CPT-2) (Cell Signaling Technology, MA, USA);
phosphorylated-AMPKa (pAMPKa), AMPKa, fatty acid synthase
(FAS) (Santa Cruz, CA, USA); sirtuin 1 (Sirt1) (Millipore);
hormone-sensitive lipase (HSL), phosphorylated HSL (pHSL),
adipose triglyceride lipase (ATGL), phosphorylated-acetyl CoA
carboxylase-1 (pACC-1), ACC-1, peroxisome proliferator-activated
receptor a (PPAR-a) and c (PPAR-c) (Epitomics, Burlingame, CA,
USA), and b-actin (Sigma). The membranes were washed with TBST
and incubated at room temperature with secondary antibodies for
1 h. All specific proteins were detected with an enhanced chemilu-
minescence reagent (Millipore), and protein signals were detected
and quantified using the BioSpectrum 600 system (UVP, Upland,
CA, USA).

2.7. Statistical analysis

Statistical analyses were performed using one-way ANOVA and
Dunnett’s post-hoc test. The results were expressed as the mean ±
standard deviation, and p < 0.05 was considered statistically
significant.
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3. Results

3.1. Cell viability of HepG2 cells treated with ginkgolide C

Cell viability was evaluated using the MTT method, and oleic
acid did not have a significant effect on cell viability at
concentrations � 0.5 mM in HepG2 cells (Fig. 1A). Therefore,
0.5 mM oleic acid was used in all experiments. Moreover, ginkgo-
lide C did not have a significant effect on cell viability at
concentrations � 100 lM (Fig. 1B) in HepG2 cells. Therefore,
3–100 lM ginkgolide C was used in all experiments.
3.2. Effect of ginkgolide C on lipid accumulation in oleic acid-induced
hepatic steatosis

Oleic acid was used to induce hepatic steatosis and cells were
then treated with ginkgolide C for 24 h to evaluate lipid accumula-
tion by Oil Red O staining. Oleic acid was able to induce lipid accu-
mulation, which could be reduced by ginkgolide C (Fig. 1C).
Hepatocytes were treated with isopropanol to release oil droplets,
and we found that cells treated with ginkgolide C had significantly
decreased lipid accumulation compared with cells treated only
Fig. 1. Ginkgolide C reduced lipid accumulation in HepG2 cells. (A) Cell viability of oleic
represent the mean ± SD; **P < 0.01 compared with HepG2 cells not treated with OA or
induce lipid accumulation in hepatocytes, followed by ginkgolide C (3–100 lM) for 2
microscope. (D) HepG2 cells were treated with isopropanol and lipid accumulation was
BODIPY 493/503 (green) to detect hepatic lipid droplets. Nuclei were stained with DA
*P < 0.05, **P < 0.01 compared with OA group. Three independent experiments were ana
with oleic acid (Fig. 1D). The fluorescent dye BODIPY 493/503
was also used to detect lipid accumulation, and fluorescence
images demonstrated that ginkgolide C markedly attenuated lipid
accumulation compared with the oleic acid–induced hepatic
steatosis cells (Fig. 1E and F).
3.3. The effect of ginkgolide C on transcription factors of lipogenesis

Ginkgolide C significantly suppressed transcription factors of
lipogenesis, such as PPAR-c and SREBP-1c expression, compared
with oleic acid–induced HepG2 cells. Ginkgolide C also reduced
FAS expression for lipogenesis in fatty liver cells (Fig. 2).
3.4. The effect of ginkgolide C on lipolysis in hepatocytes

Ginkgolide C significantly increased ATGL and pHSL expression
in HepG2 cells compared with cells treated with only oleic acid
(Fig. 3). Ginkgolide C also significantly promoted CPT-1, CD36,
and PPAR-a expression for fatty acid b-oxidation, but CPT-2 was
not increased compared with the oleic acid-induced HepG2 cells
(Fig. 4).
acid (OA) in HepG2 cells. (B) Cell viability of ginkgolide C (GC) in HepG2 cells. Data
GC. Next, HepG2 cells were treated with 0.5 mM oleic acid (OA) at 37 �C for 48 h to
4 h. (C) Oil Red O staining showed lipid accumulation that was observed with a
measured using the absorbance at OD 490 nm. (E) Staining with the fluorescent dye
PI (blue). (F) Fluorescent images were quantified, data represent the mean ± SD;
lyzed.



Fig. 2. Effects of ginkgolide C on lipid metabolism in HepG2 cells. HepG2 cells were treated with 0.5 mM oleic acid (OA) for 48 h to induce lipid accumulation, followed by
ginkgolide C (3–100 lM) for 24 h. (A) Transcription factors associated with lipogenesis and FAS were detected by Western blot. (B) Three independent experiments were
analyzed, and the fold expression levels were measured relative to the expression of b-actin (internal control).

Fig. 3. Effects of ginkgolide C on lipid metabolism in HepG2 cells. HepG2 cells were treated with 0.5 mM oleic acid (OA) for 48 h to induce lipid accumulation in hepatocytes,
followed by ginkgolide C (3–100 lM) for 24 h. (A) Lipolysis proteins were detected by Western blot. (B) Three independent experiments were analyzed, and the fold
expression levels were measured relative to the expression of b-actin (internal control).

Fig. 4. Effects of ginkgolide C on b-oxidation in HepG2 cells. HepG2 cells were treated with 0.5 mM oleic acid (OA) for 48 h to induce lipid accumulation in hepatocytes,
followed by ginkgolide C (3–100 lM) for 24 h. (A) b-oxidation associated proteins were detected by Western blot. (B) Three independent experiments were analyzed, and the
fold expression levels were measured relative to the expression of b-actin (internal control).
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3.5. Ginkgolide C activated sirt1/AMPK in HepG2 cells

Western blotting was used to evaluate whether ginkgo-
lide C regulated sirt1 and AMPK in oleic acid-induced
HepG2 cells. We found that ginkgolide C significantly pro-
moted the expression of sirt1 and phosphorylation of
ACC-1 and AMPKa compared with oleic acid–induced hepa-
tocytes (Fig. 5).



Fig. 5. Effects of ginkgolide C on the AMPK/Sirt-1 pathway in HepG2 cells. HepG2 cells were treated with 0.5 mM oleic acid (OA) for 48 h to induce lipid accumulation in
hepatocytes, followed by ginkgolide C (3–100 lM) for 24 h. (A) The AMPK/Sirt-1 pathway proteins were detected by Western blot. (B) Three independent experiments were
analyzed, and the fold expression levels were measured relative to the expression of b-actin (internal control).
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4. Discussion

This study demonstrated that the diterpene lactone ginkgolide
C could stimulate AMPK, leading to suppressed ACC activity and
the reduction of fatty acid chains, and CPT-1 for enhanced fatty
acid b-oxidation. Ginkgolide C also decreased lipogenesis-related
transcription factors for down-regulated FAS expression, and pro-
moted expression of lipolysis-related enzymes to accelerate the
decomposition of triglycerides. Hence, ginkgolide C significantly
reduced lipid accumulation for improved hepatic steatosis in vitro.

Hepatocytes that take up excessive free fatty acids would acti-
vate enzymes associated with lipogenesis, leading to the synthesis
of triglycerides and more energy accumulation in the liver (Cao
et al., 2016). The expression of lipid synthesis enzymes requires
lipid transcription factors to bind to the promoter of the FAS and
switch on the lipid synthesis genes (Angeles and Hudkins, 2016).
PPAR is the main transcription factor for lipid synthesis (Liss and
Finck, 2017). Many studies confirmed that overexpression of
PPARc contributed to the differentiation of adipocytes and
increased lipid accumulation in adipocytes and hepatocytes
(Janani and Ranjitha Kumari, 2015). In the liver cells, oleic acid
could activate PPARc expression to accelerate lipid accumulation
and cause hepatic steatosis (Kang et al., 2015). Our experiments
showed that ginkgolide C had the ability to reduce PPARc produc-
tion and the accumulation of oil droplets; thus, it was confirmed
that ginkgolide C could reduce excessive lipid accumulation by
reducing PPARc in liver cells. In addition, Srebp-1c could also bind
to the promoter of FAS to switch on triglyceride synthesis (Wang
et al., 2015). We found that oleic acid stimulated Srebp-1c expres-
sion and enhanced downstream FAS expression to initiate fat syn-
thesis. Oil Red O and fluorescent staining demonstrated that oleic
acid-stimulated hepatocytes had significantly increased oil droplet
accumulation compared with normal hepatocytes. However, oleic
acid-induced liver cells treated with ginkgolide C had reduced
Spreb-1c expression, and ginkgolide C also significantly inhibited
FAS expression to block lipid accumulation in hepatocytes. Thus,
we believe that ginkgolide C can improve lipid accumulation in
fatty liver cells by modulating the transcription of lipid synthesis
and FAS.

Another strategy to improve the lipid accumulation in liver cells
is to accelerate the decomposition of triglycerides (Romero-Gomez
et al., 2017; Smith et al., 2016). The main enzymes that regulate
this are ATGL and HSL. ATGL can break down triglycerides to pro-
duce diacylglycerol and a molecule of free fatty acid, and the active
HSL can also break down diacylglycerol to produce monoacylglyc-
erol and a molecule of free fatty acid (Frühbeck et al., 2014). Many
studies found that some flavonoids could enhance lipolysis and
inhibit lipid accumulation in hepatocytes (Chang et al., 2013;
Lasa et al., 2012). Quercetin could reduce lipid accumulation by
enhancing ATGL expression in high glucose-induced fatty hepato-
cytes (Liu et al., 2015). Caffeic acid also promoted lipolysis via acti-
vated ATGL and HSL in oleic acid-induced hepatic steatosis (Liao
et al., 2014). Our results demonstrated that ginkgolide C could sig-
nificantly promote ATGL and phosphorylation of HSL for acceler-
ated decomposition of triglycerides to glycerol and free fatty
acids. Hence, ginkgolide C can accelerate lipolysis to improve lipid
accumulation in fatty liver cells.

The excessive triglycerides broken down by the liver would
release more free fatty acids to stimulate vascular epithelial cells
and macrophages leading to an inflammatory response
(Ducharme and Bickel, 2008; Young and Zechner, 2013). These
macrophages will release pre-inflammatory cytokines to induce
inflammation and interfere with the metabolism of carbohydrates
and lipids, leading to insulin resistance in liver cells or adipocytes
(Hazlehurst et al., 2016; Morrison and Kleemann, 2015). In recent
years, it was determined that excessive fatty acids could be broken
down by fatty acid b-oxidation to produce energy and reduce the
damage to cells (Nguyen et al., 2007; Smith and Minson, 2012).
Our findings suggest that ginkgolide C has the ability to enhance
b-oxidation-associated enzyme expression, including CPT-1,
CD36, and PPARa, while not significantly enhancing CPT-2 produc-
tion. CD36 is a fatty acid translocase that can transfer free fatty
acids or long chain fatty acids from the circulatory system into adi-
pocytes, muscle cells, and liver cells (Pardina et al., 2017; Xie et al.,
2017). Some studies showed that CD36 overexpression caused
excessive free fatty acid uptake and hepatic steatosis, but reduced
free fatty acid damage in hepatocytes, vascular epithelial cells, and
adipocytes (Choi et al., 2017). Interestingly, CD36 can activate the
b-oxidation break down of fatty acids in hepatocytes (Zingg et al.,
2017). Previous studies found that a CD36 gene deletion blocked
b-oxidation and increased lipid accumulation in hepatocytes; thus,
CD36 contributed to b-oxidation expression and the decomposi-
tion of free fatty acids (Xie et al., 2017). The CPT enzyme is the
most important for regulating b-oxidation, and can carry the free
fatty acids from the cytoplasm into mitochondria (Pucci et al.,
2016). CPT1 is located on the outer mitochondrial membrane and
can convert the long-chain acyl-CoA to acylcarnitine, and assist
carnitine translocase to carry acylcarnitine into the inner
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membrane (Vishwanath, 2016). The CPT2 enzyme is located on the
inner mitochondrial membrane and converts acylcarnitine to long-
chain acyl-CoA that enters the fatty acid b-oxidation pathway and
tricarboxylic acid cycle to produce ATP (Houten et al., 2016). Some
studies confirmed that PPARa was an important transcription fac-
tor to modulate mitochondrial fatty acid b-oxidation in liver tissue
(Felicidade et al., 2015; Kim et al., 2017). Previous studies con-
firmed that the gene variants of PPARa increased the development
of cardiovascular disease and dyslipidemia as well as the fasting
and postprandial blood sugar levels (Liss and Finck, 2017). There-
fore, ginkgolide C could increase fatty acid b-oxidation leading to
decreased free fatty acids, inflammation, and insulin resistance in
hepatocytes.

Recent studies found that sirt1/AMPK activation could regulate
the intracellular energy flow (Lim et al., 2010). When cells took up
more energy, they increased AMPK activity to reduce lipid synthe-
sis in liver cells or adipocytes (Forbes-Hernandez et al., 2017).
AMPK phosphorylation also induced phosphorylation of ACC lead-
ing to decreased synthesis of the fatty acid chain (Smith et al.,
2016). Resveratrol is a sirt1 inducer, and some studies showed that
it could reduce lipid accumulation and improve NAFLD via the acti-
vated sirt1/AMPK pathway in HDF-induced obese mice (Elgebaly
et al., 2017; Lasa et al., 2012). In a diabetic mouse model, resvera-
trol also regulated the oral glucose tolerance test and improved
insulin resistance by promoting AMPK activity (Wu et al., 2016).
Our result demonstrated that ginkgolide C significantly increased
sirt1 expression and AMPK phosphorylation. Ginkgolide C also pro-
moted ACC phosphorylation to block the synthesis of the fatty acid
chain in oleic acid–induced hepatocytes.

In conclusion, ginkgolide C can inhibit hepatic accumulation by
blocking transcription factors regulating lipid synthesis and FAS for
lipogenesis. Ginkgolide C also promoted lipolysis and b-oxidation
in hepatocytes, and increased sirt1/AMPK activity to suppress syn-
thesis of the long fatty acid chain. Therefore, ginkgolide C has
potential for improving hepatic steatosis.
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