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Cancer can be generally defined as a cluster of systematic diseases triggered by
abnormal cell proliferation and growth. With the development of biological sciences
and biotechnologies, the etiology of cancer is partially revealed, including some of
the most substantial pathogenic factors [either endogenous (genetics) or exogenous
(environmental)]. However, some remaining factors that contribute to the tumorigenesis
but have not been analyzed and discussed in detail remain. For instance, some
typical correlations between microorganisms and tumorigenesis have been reported
already, but previous studies are just sporadic studies on single microorganism–cancer
subtype pairs and do not explain and validate the specific contribution of microbiome
on tumorigenesis. On the basis of the systematic microbiome analyses of blood and
cancer-associated tissues in cancer patients/controls in public domain, we performed
interpretable analyses. We identified several core regulatory microorganisms that
contribute to the classification of multiple tumor subtypes and established quantitative
predictive models for interpretable prediction by using multiple machine learning
methods. We also compared the optimal features (microorganisms) and rules identified
from microbiome profiles processed using the Kraken and the SHOGUN. Collectively,
our study identified new microbiome signatures and their interpretable classification rules
for cancer discrimination and carried out reliable methodological comparison for robust
cancer microbiome analyses, thereby promoting the development of tumor etiology at
the microbiome level.

Keywords: cancer type, microbiota, machine learning algorithm, decision tree, rules

INTRODUCTION

Cancer, as one of the most threatening diseases all over the world, can be generally defined as
a cluster of systematic diseases triggered by abnormal cell proliferation and growth (McGuire,
2016; Vanhoutte et al., 2016). According to the World Health Organization (Vanhoutte et al.,
2016; Shams-White et al., 2019), cancer is the second leading cause of death compared with other
diseases and causes nearly 10 million deaths and about 20 million newly reported cases worldwide
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in 2018. China has comparable cancer morbidity and a relatively
quite high mortality with the world average, and about 4 million
new cancer cases and 3 million cancer-associated deaths are
reported in 2018 from China (Feng et al., 2019; Shams-White
et al., 2019), indicating that cancer is one of the most threatening
diseases in China.

With the development of biological sciences and the progress
of biotechnologies, the etiology of cancer is partially revealed,
including some of the most significant pathogenic factors
[either endogenous (genetics) or exogenous (environmental)].
In previous studies, the endogenous [like genes EGFR (Wang
et al., 2019), TP53 (Salk et al., 2019), and RAS (Lanfredini et al.,
2019)] and the exogenous [like smoking (Croyle et al., 2019),
alcoholism (Srivastava et al., 2019) and severe air pollutions (Guo
et al., 2019)] factors are widely reported to participate in tumor-
associated biological processes, some of which are reported to
directly trigger the initiation of tumorigenesis. Current studies
are systematic and thorough, but some remaining factors that
contribute to the tumorigenesis but are not analyzed and
discussed in detail remain.

The relationships between microorganisms and cancers have
been reported for decades. For viruses, in the seventh decade
of the 20th century, the infection of the hepatitis B virus
(HBV) is correlated with the initiation and the progression of
hepatocellular carcinoma after a long course of HBV infections
(Feng et al., 2019). Two types of human papillomavirus, i.e., HPV-
16 and HPV-18, are identified as the most important pathogens
for cervical cancers (Shibata et al., 2019). Vaccines against HPV-
16 and HPV-18 are developed and promoted among adolescent
girls and adult women to prevent the high incidence of cervical
cancers (Di Bonito et al., 2019; Shibata et al., 2019). Apart
from the virus, some bacteria are functionally correlated with
certain cancer subtypes. For instance, Helicobacter pylori, as a
digestive infection bacteria, is reported to promote the initiation
and the progression of gastric cancers (Mentis et al., 2019).
Although some typical correlations between microorganisms and
tumorigenesis are already reported, previous studies are just
sporadic studies on single microorganism–cancer subtype pairs
but do not explain and validate the specific contribution of
microbiome on tumorigenesis.

In March, 2020, a systematic microbiome analyses of
blood and cancer-associated tissues in cancer patients/controls
reflect the characteristic distribution of the microbiome among
different cancer subtypes and their potential contributions to the
tumorigenesis procedures (Poore et al., 2020). For the first time,
such research has identified some typical signatures of multiple
cancer subtypes and tried to identify specific biomarkers with
diagnostic or prediction potentials on cancer, confirming that
different cancer subtypes have different microbiome profiling
patterns. Some optimal biomarkers (microorganisms) from
either tumor or blood can be applied for the early diagnosis
of certain cancer subtypes. In this study, on the basis of the
initial microbiome analyses results, we have further performed
two levels of interpretable analyses. On the one hand, we have
identified some core regulatory microorganisms that contribute
to the classification of multiple tumor subtypes and established
quantitative predictive models for accurate prediction by using

multiple machine learning methods. On the other hand, we have
performed and compared the optimal features (microorganisms)
and rules identified from two microbiome profiles [i.e., processed
using the Kraken (Wood et al., 2019) and the SHOGUN
(Hillmann et al., 2020)] by considering the original study that
applied two major sequencing and analysis workflows. Overall,
our study has identified new biomarkers and their interpretable
classification rules for cancer microbiome discrimination by
relying on the systematic analysis of microbiome profiling data
and compared the Kraken and the SHOGUN methods for robust
cancer microbiome analyses, promoting the development of
tumor etiology at microbiome level.

MATERIALS AND METHODS

Data
We downloaded the processed microbiome data of TCGA
patients with cancer from ftp://ftp.microbio.me/pub/cancer_
microbiome_analysis/(Poore et al., 2020). The data were
processed using two different methods, i.e., the Kraken (Wood
and Salzberg, 2014) and the SHOGUN (Hillmann et al., 2018).
Therefore, two datasets were generated. They all relies on
sequence alignment and reference-based taxonomy annotation to
identify potential microorganisms from the microbiome data.

The Kraken method can be sequentially divided into three
major steps (Wood and Salzberg, 2014):

(1) Mapping k-mers of the query sequence to references of
multiple taxonomy.

(2) Identifying all the taxonomies that contain high quality
mapped sequences.

(3) Building a weighted classification tree and find the path
from root (high level classification category) to leaf (low
level classification category) with the highest added score.
And the leaf in the classification path with the highest
added score is the classification used for the query
sequence. The Kraken can also be described as using
the k-mers of each sequence to find the lowest common
ancestor (LCA) as the final annotation.

As for the SHOGUN method, it can also be divided into three
major steps (Hillmann et al., 2018):

(1) Using three methods (Bowtie2, BURST, and UTree) to align
the candidate sequence to the genome.

(2) Using weighted last-common ancestor algorithm to
annotate each sequence with one taxonomy with
confidence generated from all the mapped reads. Further,
the BURST aligner can help build a rank-specific relative
profiling, finding the most relative profiling of such
candidate sequence.

(3) The SHOGUN also applies Bracken algorithm to estimate
rank-specific relative abundance using each genome’s
uniqueness, profiling hits number and length.

There are two major similarities and three differences between
such two computational methods (Wood and Salzberg, 2014;
Hillmann et al., 2018).
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The similarities include:

(1) The initial step of both methods is mapping to the
candidate genomes of multiple microorganisms.

(2) Both methods try to assign one unique taxonomy to each
sequence to avoid redundant annotation.

The differences include:

(1) SHOGUN method takes the coverage of target reference
and abundance characteristics of the query sequence into
consideration to calculate the confidence of annotated
taxonomies, while Kraken only control the mapping
procedure using aligners’ degree of confidence.

(2) Both methods try to annotate the sequence using
one taxonomy, but using different methods: UTree in
SHOGUN trying to find “the lowest-common-ancestor
scheme” for annotation, while Kraken has its own scoring
methods, which search for the root-to-leaf path with the
lowest score, taking the entire classification path into
consideration not just the final ancestor.

(3) SHOGUN can also evaluate relative abundance of each
candidate annotated taxonomies, while Kraken cannot.

As we have presented above, both methods were solid
microorganisms identification methods. Considering the
differences of such two methods, it is quite reasonable
and acceptable for us to identify some different candidate
microbiomes for our further classification analyses.

In the Kraken dataset, 17,625 microbiomes in 1993 samples
were obtained from 32 cancer types. In the SHOGUN dataset,
13,517 microbiomes in 1594 samples were obtained from
32 cancer types. We believed that different cancers had
different microbiomes, indicating cancer-specific microbiomes.
The sample sizes of each cancer type in the Kraken and the
SHOGUN datasets are shown in Table 1. Features used to
represent samples in each dataset were different. Figure 1 shows
the number of common and different features in each dataset.
Evidently, each dataset contained several exclusive features. An
analysis on these two datasets can give a complete view of
different cancer types with microbiome.

Minimum Redundancy Maximum
Relevance (mRMR)
The mRMR (Peng et al., 2005) is a powerful and widely used
feature selection method. The informative features evaluated
by such method should have (i) minimum redundancy among
themselves and (ii) maximum relevance with class labels. To
this end, the method employed mutual information (MI) to
evaluate the relationships between features or class labels. For two
variables x and y, their MI value can be formulated by

I(x, y) =
x

p(x, y) log
p(x, y)

p(x)p(y)
dxdy (1)

where p(x)/p(y) stands for the marginal probabilistic density of
the variable and p(x,y) indicates the joint probabilistic density
of two variables. The mRMR aims to evaluate the importance
of features in a list, simultaneously satisfying the above two

points. Initially, such list is empty. The feature is selected from
the rest features one by one, which has maximum relevance
with class labels and minimum redundancy to features already
in the list. When all features are in the list, the entire procedures
stop. For convenience, the obtained feature list was denoted by
F in this study.

This study used the mRMR program retrieved from
http://penglab.janelia.org/proj/mRMR/. Default parameters
were adopted.

Incremental Feature Selection (IFS)
Although the mRMR method can sort the features with the
decreasing order of their importance, it is still difficult to
determine which features are essential. This study employed
the IFS (Liu and Setiono, 1998) method, which can be used

TABLE 1 | Summary of the Kraken and SHOGUN datasets.

Index Cancer Type Sample size

Kraken
dataset

SHOGUN
dataset

1 Adrenocortical carcinoma 79 79

2 Bladder urothelial carcinoma 729 729

3 Brain lower grade glioma 731 731

4 Breast invasive carcinoma 1483 1483

5 Cervical squamous cell carcinoma and
endocervical adenocarcinoma

451 451

6 Cholangiocarcinoma 45 45

7 Colon adenocarcinoma 1006 417

8 Esophageal carcinoma 340 340

9 Glioblastoma multiforme 489 338

10 Head and Neck squamous cell carcinoma 906 297

11 Kidney chromophobe 191 65

12 Kidney renal clear cell carcinoma 1141 1114

13 Kidney renal papillary cell carcinoma 393 23

14 Liver hepatocellular carcinoma 523 162

15 Lung adenocarcinoma 911 911

16 Lung squamous cell carcinoma 638 534

17 Lymphoid neoplasm diffuse large b-cell
lymphoma

61 61

18 Mesothelioma 87 87

19 Ovarian serous cystadenocarcinoma 1031 1031

20 Pancreatic adenocarcinoma 183 183

21 Pheochromocytoma and Paraganglioma 186 186

22 Prostate adenocarcinoma 829 829

23 Rectum adenocarcinoma 372 372

24 Sarcoma 347 347

25 Skin cutaneous melanoma 792 667

26 Stomach adenocarcinoma 1079 1079

27 Testicular germ cell tumors 139 139

28 Thymoma 122 122

29 Thyroid carcinoma 880 287

30 Uterine carcinosarcoma 57 57

31 Uterine corpus endometrial carcinoma 1222 169

32 Uveal melanoma 182 182
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TABLE 2 | Summary of the performance of the best model with different classification algorithms on two datasets.

Classification algorithm Kraken dataset SHOGUN dataset

Number of features ACC MCC Number of features ACC MCC

Random forest 582 0.921 0.918 146 0.884 0.878

Support vector machine 1989 0.588 0.575 1592 0.633 0.616

k-nearest neighbor 682 0.812 0.804 277 0.895 0.889

Decision tree 580 0.736 0.724 1481 0.824 0.814

to determine the best number of essential features for a given
classification algorithm. At first, IFS produced a series of feature
subsets from the above-constructed feature list F. For example,
the first feature subset consisted of one top-ranked feature, and
the second feature subset consisted of two top-ranked features,
and so forth. Then, for each feature subset, the IFS trained
a classifier on the training samples with features in such set.
And this classifier was evaluated by 10-fold cross-validation
(Kohavi, 1995). Finally, the IFS determined the optimum
feature subset, on which the classification model provided the
best performance evaluated by Matthew correlation coefficient
(MCC) (Matthews, 1975).

Synthetic Minority Oversampling
Technique (SMOTE)
As listed in Table 1, two microbiome datasets had different
numbers of samples in different cancer types. For the Kraken
dataset, the largest cancer type had about 33 times samples
as many as the smallest type, whereas for the SHOGUN, this
number was about 64.5. It is indicated that these two datasets
were imbalanced. To reduce the influence of the imbalance,
SMOTE (Chawla et al., 2002) was adopted when evaluating the
performance of each classification model. This method produces
new samples for the minor sample class, thereby ensuring that the
number of samples in the minor class was equivalent to that of
samples in the major class after an iterative procedure. In detail,
it randomly selects a sample, say x, in the minor class and finds
out some nearest samples to it in the same class. Then, randomly
pick up a nearest sample, say y, among above nearest samples.

FIGURE 1 | Venn diagram to show the common and different features used in
two datasets. Several exclusive features are contained in each dataset.

A new sample is generated by a linear combination of x and y.
Because the new generated sample has strong associations with
x and y, it has a high probability to be in the same class of x
and y. Thus, it is also assigned such class label. In this study,
the SMOTE was employed to enlarge each cancer type except the
largest one. Finally, each type has equal number of samples. The
“SMOTE” tool available in Weka (Witten and Frank, 2005) was
applied in this work.

Classification Algorithm
Four classification models were used in the microbiome feature
learning and rule extraction.

Random Forest (RF)
The RF (Breiman, 2001; Wei et al., 2017; Zhao et al., 2018;
Baranwal et al., 2019; Jia et al., 2020; Liang et al., 2020) is a tree-
based assembly model that predicts the class label of a new sample
on the basis of the consensus results of the average predictions
from multiple decision trees (DTs). In the present study, we used
the RF implemented in the Scikit-learn package.

Support Vector Machine (SVM)
The SVM (Cortes and Vapnik, 1995; Sun et al., 2015; Chen
et al., 2017; Sang et al., 2020; Zhou et al., 2020a,b) can transform
the data point from a low-dimensional data space to a high-
dimensional data space. The SVM divides the data samples of
each label in the principle of data interval maximization in a
high-dimensional space and predicts the class label of a new
sample depending on the interval to which this new sample
belongs. The SMO algorithm in the Weka software is used to
build the SVM model.

k-Nearest Neighbor (kNN)
The kNN (Cover and Hart, 1967) first calculates the distance
between the test and the training samples and ranks the training
samples by using their distance from the test sample. The kNN
then selects the k high-ranked training samples (i.e., nearest
neighbors), estimates the label distribution of such k samples, and
predicts the label of the test sample as the class label with the
highest frequency of the label distribution. The IBk algorithm in
the Weka software is used to build the kNN model.

DT
The DT (Safavian and Landgrebe, 1991) aims to build the human
understanding classification and the regression models by using
interpretative rules in a white box model, e.g., using the IF–TEHN
format to describe individual features roles and weights in the
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classification and the regression models. The CART algorithm
with the Gini index in the Scikit-learn package was used to
build the DT model.

Performance Evaluation
The MCC (Matthews, 1975), which can evaluate the performance
of the classification model, has values from−1 to+1 and achieves
+1 when one classification model has the best performance.
In this work, the multiclass version of the MCC (Gorodkin,
2004) was applied because the analyzed microbiome data were
organized as multiple categories and can be calculated as:

MCC =
cov(X, Y)

√
cov(X, X)cov(Y, Y)

, (2)

where the binary matrix X indicates the predicted class of each
sample, the binary matrix Y represents the true classes of all
samples, and cov(X, Y) represents the covariance of two matrices.

RESULTS

In this study, we analyzed two microbiome datasets using
several computational methods. The entire procedures are
illustrated in Figure 2.

mRMR Results
The Kraken and the SHOGUN datasets were all analyzed by the
mRMR method. As a result, two feature lists were produced,
which are available in Supplementary Tables S1, S2, respectively.

IFS Results
The feature lists were obtained by applying mRMR method to the
Kraken and the SHOGUN datasets, which were fed into the IFS
with four classification algorithms.

Of the feature list on the Kraken dataset, we constructed
several models with one classification algorithm and some top
features in the list. Each model was assessed by 10-fold cross-
validation. Obtained measurements, including accuracy on each
cancer type, overall accuracy (ACC) and MCC, are provided in
Supplementary Table S3. For an easy observation, an IFS curve
was plotted for each classification algorithm with MCC as the
Y-axis and number of features as the X-axis, which is illustrated
in Figure 3. When RF was selected as the classification algorithm,
the highest MCC was 0.918. It was obtained based on the top
582 features. The highest MCCs for the other three algorithms
were 0.804, 0.724, and 0.575, respectively, which were based
on top 682, 580, and 1989 features. These highest MCCs and
corresponding ACCs were collected in Table 2. Evidently, the RF
with top 582 features was the best model among all tested models.
In addition, the accuracies on 32 cancer types yielded by above
best models with different classification algorithms are shown
in Figure 4A. Clearly, The RF model yielded higher accuracies
on cancer types than those obtained by other models. We called
the 582 features used in such RF model as the global optimum
features on the Kraken dataset.

For the feature list on the SHOGUN dataset, same procedures
were done. The performance of all tested models is listed in

FIGURE 2 | Flow chart to show the detailed analysis procedures. The two
datasets are analyzed by minimum redundancy maximum relevance, resulting
in a feature list for each dataset. The incremental feature selection, which
incorporates synthetic minority oversampling technique, four classification
algorithms and 10-fold cross-validation, is applied to each feature list. The
results include interpretable classification rules, key features and efficient
classification models.

Supplementary Table S4. Also, four IFS curves were plotted, as
shown in Figure 5. It can be observed that the highest MCCs
for different classification algorithms were 0.889, 0.878, 0.814,
and 0.616, respectively, which were based on top 277, 146, 1481,
and 1592 features, respectively. Above MCCs and corresponding
ACCs are listed in Table 2. Among these best models with
different classification algorithms, the kNN with top 277 features
was the best. To further confirm this fact, the accuracies on
32 cancer types yielded by the best models using different
classification algorithms are shown in Figure 4B. Evidently, the
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FIGURE 3 | IFS curves yielded by models with different classification algorithms on the Kraken dataset. The random forest with the top 582 features produces the
highest MCC of 0.918.

FIGURE 4 | Violin plot to show the accuracies on cancer types which are
produced by the best model with different classification algorithms on two
datasets. (A) Kraken dataset, the RF model yields the most high accuracies;
(B) SHOGUN dataset, the kNN model produces the most high accuracies.

accuracies produced by the kNN model were in higher levels than
those produced by other models. Accordingly, these 277 features
were called global optimum features on the SHOGUN dataset.

Given a classification algorithm, IFS method can detect its
optimum features on each dataset. In detail, for RF, 582 and 146
optimum features were extracted from Kraken and SHOGUN
datasets, respectively. A Venn diagram was plotted to show the
common and difference of these two feature sets (Figure 6A),
from which we can see that several exclusive features were
extracted from each dataset. Similar situations occurred for other
three classification algorithms (see Figures 6B–D). Besides, we
also analyzed the common and difference of the global optimum
features on two datasets (Figure 7). Also, several exclusive
features were obtained for each dataset. Above results indicated
that the two datasets can provide different information on cancer

type at microbiome level. Analyzing them together can give a
more complete view on such problem.

Classification Rules
As mentioned in section “IFS Results,” DT can provide the highest
MCC on the Kraken dataset when top 580 features were used.
Thus, we applied DT on the Kraken dataset, in which samples
were represented by these features. As a result, 3579 rules were
obtained, which are provided in Supplementary Table S5. Each
cancer type was related to some rules. Rules (310) on cancer
type “Breast Invasive Carcinoma” were most, while those (10) on
“Uterine Carcinosarcoma” were least. The number of rules related
to each cancer type is listed in column 3 of Table 3.

Of the SHOGUN dataset, DT with top 1481 features was best.
Accordingly, we applied DT on this dataset, where samples were
represented by these 1481 features. As a result, 2030 rules were
accessed. These rules are available in Supplementary Table S6.
In such rule group, rules (173) on cancer type “Breast Invasive
Carcinoma” were still most, while rules (5) on cancer type “Uveal
Melanoma” were least. The number of rules related to each cancer
type is listed in column 4 of Table 3.

Detailed investigation on above rules can improve our
understanding on different cancer types at microbiome level.
Some rules were analyzed in section “Discussion.”

DISCUSSION

Here, we have identified the essential microorganisms for the
distinction of different tumor subtypes on the basis of the
optimal features produced from two microbiome computational
methods (i.e., the Kraken and the SHOGUN). According to
recent publications, all predicted microorganisms with distinctive
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FIGURE 5 | IFS curves yielded by models with different classification algorithms on the SHOGUN dataset. The k-nearest neighbor with top 227 features generates
the highest MCC of 0.889.

FIGURE 6 | Venn diagram to show the common and difference of optimum feature subsets by applying a given classification algorithm to each of two datasets.
(A) Random forest; (B) Support vector machine; (C) k-nearest neighbor; (D) Decision tree.

capacity are validated and functionally correlated with one or
multiple tumor subtypes. Apart from such qualitative analysis to
identify potential tumor subtyping signatures, we have further
built up a group of quantitative rules for detailed tumor

classification, and these rules are also supported by related
literature and datasets in the public domain. The detailed
analyses on the optimal features (microorganisms) and their rules
can be seen below.
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FIGURE 7 | Venn diagram to show the common and difference of the global
optimum feature subsets on two datasets.

Key Features Identified From the
Microbiome Data Produced by the
Kraken Method
The first microorganism in our prediction list on the Kraken
data is Robiginitomaculum from the specific genus named
Hyphomonadaceae. According to recent publications, a
research preprint from the bioRxiv has confirmed that such
microorganism may share some similar sequences with the
Sonic hedgehog factors in multiple animals and contribute to
the internal regulation of related signaling pathways due to
such sequence similarities (Jägers and Roelink, 2019). Sonic
hedgehog factors are key regulators for the hedgehog signaling
pathway, which has been widely reported to contribute to
multiple cancer subtypes, including basal cell carcinomas
(Daya-Grosjean and Couvé-Privat, 2005), prostate cancer
(Datta and Datta, 2006), and pancreatic cancer (Nakashima
et al., 2006) with different expression profiling. Therefore, such
bacteria can contribute to the detailed classification of multiple
cancer subtypes, thereby validating the efficacy and the accuracy
of our prediction.

The next predicted microorganism, i.e., Mycoplasma, is a
specific kind of microorganism without cell wall around the cell
membrane. Mycoplasma, as a unique kind of microorganism,
is reported to be correlated with multiple cancer subtypes
with infections detected either in blood [like cervical cancer
(Zhu et al., 2007)] or tumor in situ [like prostate (Barykova
et al., 2011), gastric (Yang et al., 2010), and ovarian (Chan
et al., 1996) cancers]. Furthermore, the detailed mechanisms
for Mycoplasma contributing to tumorigenesis are reported. The
microorganism can directly cause pathological chromosomal loss
and translocations in multiple cell subtypes (Chan et al., 1996).

The third tumor-associated pathogen, Lachnoclostridium, is
predicted to be functionally correlated with tumorigenesis and
may further participate in the detailed tumor classification.
According to recent publications, as one of the most famous
member of the gut microbiome, these bacteria are functionally
correlated with colorectal adenoma and cancer (Liang et al.,
2020). Another independent study further validates that such

TABLE 3 | Number of rules for each cancer type on two datasets.

Index Cancer Type Number of rules

Kraken
dataset

SHOGUN
dataset

1 Adrenocortical carcinoma 24 8

2 Bladder urothelial carcinoma 235 168

3 Brain lower grade glioma 128 53

4 Breast Invasive carcinoma 310 173

5 Cervical squamous cell carcinoma and
endocervical adenocarcinoma

91 89

6 Cholangiocarcinoma 12 13

7 Colon adenocarcinoma 217 112

8 Esophageal carcinoma 55 33

9 Glioblastoma multiforme 31 18

10 Head and Neck squamous cell carcinoma 228 85

11 Kidney chromophobe 40 16

12 Kidney renal clear cell carcinoma 164 104

13 Kidney renal papillary cell carcinoma 132 22

14 Liver hepatocellular carcinoma 122 60

15 Lung adenocarcinoma 232 150

16 Lung squamous cell carcinoma 143 135

17 Lymphoid neoplasm diffuse large b-cell
lymphoma

15 18

18 Mesothelioma 19 32

19 Ovarian serous cystadenocarcinoma 59 35

20 Pancreatic adenocarcinoma 65 59

21 Pheochromocytoma and Paraganglioma 26 29

22 Prostate adenocarcinoma 203 137

23 Rectum adenocarcinoma 89 86

24 Sarcoma 56 68

25 Skin cutaneous melanoma 210 94

26 Stomach adenocarcinoma 129 69

27 Testicular germ cell tumors 38 23

28 Thymoma 33 14

29 Thyroid carcinoma 199 101

30 Uterine carcinosarcoma 10 10

31 Uterine corpus endometrial carcinoma 228 11

32 Uveal melanoma 36 5

Total – 3579 2030

microorganism may even contribute to the non-invasive
detection of colorectal cancer (Mangifesta et al., 2018), implying
that such bacteria can act as an effective classification parameter
to identify colorectal cancers from other cancer subtypes.

Achromobacter and Acidithiobacillus are the next two
predicted microorganisms identified on the Kraken data and
predicted to be essential classification parameters by our newly
presented computational methods. As a pathogen for respiratory
tract infection, Achromobacter is reported to be correlated
with multiple cancer subtypes related to the respiratory tract
(Barragán et al., 2018; Nolley et al., 2019), confirming its potential
contribution on cancer subtyping. Similarly, Acidithiobacillus
infects lung cells and contributes to the initiation of lung
cancer (Ramírez-Aldaba et al., 2017) but not to other
cancer subtypes.
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Rules Identified From the Microbiome
Data Produced by the Kraken Method
Apart from such qualitative analyses on the mapping and
annotation results following the Kraken data, we have identified
some quantitative rules for the identification of certain
cancer subtypes.

Among such rules, a specific rule contributing to the
identification of breast cancer is established with multiple
quantitative parameters, including Succinimonas and
Campylobacter. These two microorganisms are chosen as
typical parameters for detailed discussion. The microorganism
named Succinimonas is functionally correlated with the
metabolism of breast lactation in cows and human beings
(Elolimy et al., 2018). Considering that the breast lactation
metabolism is correlated with breast cancer tumorigenesis (Kim
and Wysolmerski, 2016; Wani et al., 2017), this microorganism is
regarded as a potential quantitative parameter for breast cancer.
Many studies have identified the infection of Campylobacter
in breast cancer (Korneev et al., 2018; Parida and Sharma,
2019), further validating the efficacy and the accuracy
of our prediction.

Apart from breast cancer, the urothelial bladder carcinoma is
identified using multiple rules. Among them, in a typical rule,
Acidibacillus and Nitrospira are two typical microorganisms that
may contribute to the tumorigenesis of such cancer subtype and
may participate in the distinction from other cancer subtypes.
According to recent publications, these two microorganisms are
identified in biological samples from patients with urothelial
bladder carcinoma, indicating that both microorganisms are
enriched in urothelial bladder carcinoma-associated tissues
(Oliveira, 2014; Weng et al., 2016).

Some specific quantitative parameters are screened for
sarcoma. Collinsella and Hepacivirus are identified to contribute
to the progression of such disease. In 2019, Collinsella is reported
as one of the most important gut microbiota that contribute to
the initiation and the progression of sarcoma, and these findings
correspond with our prediction rules (Vivarelli et al., 2019). As for
Hepacivirus, according to recent publications, Kaposi’s sarcoma is
functionally correlated with the hepatitis C virus, validating our
prediction on the upregulated level of Hepacivirus in such tumor
subgroup (Ray et al., 1995; Wu et al., 2018).

Key Features Identified From the
Microbiome Data Produced by the
SHOGUN Method
A similar analysis is performed on the SHOGUN data,
and the first microorganism in our prediction result is
Caballeronia, which is widely shown to be functionally correlated
with the biosynthesis of D-tagatose (Li et al., 2019). The
intake and the metabolism of D-tagatose in human beings
are reported to be functionally correlated with the specific
cell cycle arrest in hepatocytes (Yamaguchi et al., 2008),
which contribute to the initiation and the progression of
hepatocellular carcinoma. Therefore, such microorganism may
be applied to distinguish hepatocellular carcinoma from other
cancer subtypes.

The next predicted microorganism can be classified into the
Gammaproteobacteria (order). As for its distinctive contribution
on different cancer subtypes with specific distribution patterns
in human beings, such microorganism has been identified
in the pathogenic tissues of two specific digestive system-
associated cancer subtypes, i.e., colorectal (Peters et al., 2016) and
pancreatic (Choy et al., 2018) cancers.

Another predicted microorganism named as Chlamydia is
similar with Mycoplasma as we have analyzed above and a
typical subtype of prokaryotic organisms with severe pathogenic
capacity. According to recent publications, such organisms are
identified in multiple cancer subtypes, including cervical cancer
with reproductive tract Chlamydia infection (Koskela et al.,
2000; Smith et al., 2004) and lung cancer with respiratory tract
Chlamydia infection (Laurila et al., 1997; Littman et al., 2005).
Such microorganism can infect exposed mucosal tissues and
induce tumorigenesis at the regional infection sites, implying its
potential capacity on distinguishing different tumor subtypes via
their relationship with mucosal tissues.

Moreover, the predicted microorganism named as
Bradyrhizobium has quite few reports on its differential
correlations with different cancer subtypes (only reported to be
detected in the serum samples from cancer patients) (Nordlund
et al., 2005). The predicted microorganism named as Kurthia
participates in the malignant tumorigenesis, and its distribution
may be functionally correlated with the colorectal cancer
tumorigenesis. The abundance profiling of such microorganism
in gut may contribute to the diagnosis and the prognosis
prediction on colorectal cancer at least in a mouse model
(Yu et al., 2018).

Rules Identified From the Microbiome
Data Produced by the SHOGUN Method
Apart from such microorganisms predicted as qualitative
parameters for cancer subtyping on the SHOGUN data, we
have established some effective prediction rules for the accurate
prediction of certain cancer subtypes on the basis of the detailed
microorganism abundance. The optimal rules and the associated
features are discussed below.

Specific rules for ovarian cancers are established. The high
abundances of Oribacterium and Selenomonas are predicted to
be correlated with the initiation and the progression of ovarian
cancers. For Oribacterium, recent publications have confirmed
that such microorganism is functionally correlated with the
hemorrhagic ovarian cyst syndrome in the pathological ovary
(Thackray, 2019). Considering that the hemorrhagic ovarian cyst
syndrome is one of the typical precancerous lesions of ovarian
cancer, speculating the tight correlations between Oribacterium
and ovarian cancers is quite reasonable (Brown and Frumovitz,
2014). Selenomonas is confirmed to be correlated with multiple
cancer subtypes, including oral and ovarian (Al-Hebshi et al.,
2019) cancers, and these findings correspond with our rules.

Typical rules contributing to the identification of kidney
renal clear cell carcinoma are also identified. Among them,
two typical parameters are named as Terasakiispira and
Candidatus. Thiodiazotropha contributes to the identification
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of such cancer subtype with publication support. Terasakiispira
is detected in the pathological urinary system, including the
malignant transformed urinary system (Schultz et al., 2020), and
contributes to abnormal genomic alterations in human beings
(Angiuoli et al., 2008).

As the final examples, specific rules about the uterine
carcinosarcoma involve multiple parameters, including
Natronococcus and Terasakiispira. Both microorganisms are
functionally correlated with tumorigenesis (Angiuoli et al.,
2008; Hamidi et al., 2019). Although the lack of direct
connections between such two microorganisms with the
uterine carcinosarcoma, their upregulation at least confirms
the malignant transformation in candidate tissues, validating
our prediction.

Comparison of Features and Rules
Identified Between the Kraken and the
SHOGUN Methods
The results obtained from two kinds of data are compared.
Among 1993 Kraken- and 1594 SHOGUN-based predicted
microorganisms, 907 specific species are identified to be
shared in both methods, implying the reproducibility and the
comparability of the two analytic microbiome methods and
validating the efficacy and the accuracy of our new prediction
methods. For top predicted microorganisms, the detailed species
name may vary, but multiple genera are identified to be shared
in the 20 top-ranked microorganisms, like Mycoplasmataceae,
Enterococcaceae, and Rhodobacteraceae, which indeed have solid
publication support to be correlated with the tumorigenesis of
some cancer subtypes.

CONCLUSION

Overall, the optimal features and rules in our prediction lists
have been validated by recent publications, and they are robust
and efficient for different analytic microbiome methods (i.e.,
Kraken and SHOGUN). Our study has identified a group of
novel potential biomarkers/rules for the subgrouping of different
cancer subtypes on the microbiome level and provided an
effective computational tool to identify the potential associations
between microbiome and tumorigenesis, thereby exploring
the complicated microenvironment components associated
with tumorigenesis.
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