
281© Springer Nature Switzerland AG 2018 
Y.-W. Tang, C. W. Stratton (eds.), Advanced Techniques in Diagnostic 
Microbiology, https://doi.org/10.1007/978-3-319-95111-9_12

The Role of the Human Bocavirus (HBoV) 
in Respiratory Infections

Oliver Schildgen and Verena Schildgen

 Introduction

The current classification of human bocaviruses is based on the latest recommenda-
tions of the International Committee for the Taxonomy of Viruses (ICTV) (https://
talk.ictvonline.org/taxonomy/). The variant 1 of the human bocavirus (HBoV-1) 
that causes respiratory infections in primates and humans belongs to the family of 
Parvoviridae, subfamily Parvovirinae and genus Bocaparvovirus and was discov-
ered originally in 2005 by Tobias Allander [1] and co-workers and represents 
together with the strains HBoV-3 and the gorilla bocavirus the species Primate 
bocaparvovirus 1 [2].

The discovery of HBoV-1 was one among a series of virus discoveries that 
occurred during the first 15 years of this century. These discoveries were based on 
novel virus discovery systems using molecular approaches developed in order to 
reduce the considerable number of cases in which a clinical diagnosis of a respira-
tory infection could not be confirmed by the laboratory detection of a pathogen. 
Following the initial description of the virus, a huge number of clinical studies and 
case reports have been published which were supplemented by some basic research 
reports. In parallel, several related viruses have been newly identified, such as a 
swine bocavirus, a feline bocavirus and a novel canine parvovirus, of which of them 
share some biological features with HBoV [3, 4]. In 2016, an additional novel boca-
virus variant occurring in chimpanzees was identified, which along with the gorilla 
virus gives rise to the assumption that a long co-evolution between primates and 
bocaviruses exists [5–7].

Unfortunately, HBoV research still relies on clinical studies and case reports 
with accompanying cell culture studies as the major source of information on HBoV 
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pathophysiology, because to date no animal model has been identified. Preliminary 
data on the use of ferrets as a model for gene therapy with HBoV capsid-based vec-
tors suggests that ferrets might be a possible model for future research on HBoV- 
host interactions and vaccinations [8].

 HBoV Biology

The human bocavirus (HBoV) was initially discovered in clinical samples from the 
respiratory tract of children suffering from respiratory infections of unknown aeti-
ologies [1]. To date, HBoV is the fourth most detected respiratory virus, but as there 
is still no animal model or a broadly convertible cell culture available, Koch’s modi-
fied postulates have not been experimentally fulfilled yet [9], but a case study from 
the group of Maria Söderlund-Venermo, Klaus Hedman and Olli Ruuskanen has 
shown that human-to-human transmission is most likely [10]. This report describes 
an intra-family infection chain that was characterized by both symptomatic and 
asymptomatic infections/transmissions, subsequent reactivation of the virus and 
hints for latency of HBoV.

Nevertheless, HBoV is the second parvovirus known so far that is capable of 
infecting humans with the potential to cause clinical disease. Until HBoV was dis-
covered, the parvovirus B19 was the sole human parvovirus, which is difficult to 
culture in in vitro cell cultures, likely because infection strongly depends on the 
optimal cell cycle phase [11–20]. This latter fact hampered the development of 
potent and specific antivirals; tenacity studies and the development of disinfectants 
active against human parvoviruses as surrogate pathogens with animal pathogenic-
ity were used. The narrow parvoviral host tropism also hampered the development 
of cell culture systems that support the replication of human bocavirus.

The discovery of HBoV has resulted in several molecular findings that are of 
major interest regarding the pathophysiology of human parvovirus. Within a pri-
mary cell culture in which the human bocavirus was replicating, it was possible to 
identify the HBoV transcriptome including splicing variant of viral RNA [21]. This 
cell culture demonstrated for the first time a potential tool for the investigation of 
human parvovirus in its natural infectious setting, enabling investigations of the 
molecular biology of human parvoviruses in general and HBoV in particular. 
Unfortunately, the primary cell culture that enables HBoV growth in vitro is very 
expensive and requires a highly specialized laboratory. Moreover, this is an error- 
prone cell culture, which means the availability of this technology is limited to 
several laboratories worldwide, which in turn will delay further research. In search 
for a broadly convertible replication system, the group headed by Dr. Jianming Qiu 
from the University of Kansas Medical Center made a significant step forward: this 
group has established a plasmid-based replicon-like system that has identified addi-
tional RNA species that are transcribed during the HBoV replication cycle [22]. The 
system is based on plasmids that contain the complete published HBoV sequence 
but are flanked by ITR regions of the adeno-associated virus (AAV); the ITR regions 
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are terminal repeats containing palindromic sequences that form hairpin-like struc-
tures which in turn are required for the replication of parvoviruses according to the 
so-called rolling hairpin mechanisms of replication [23]. With this first replicon 
system, Chen et al. have shown that HBoV types 1 and 2 express a similar RNA 
pattern like other parvoviruses. In particular, they identified a spliced NS-1 tran-
script that was not recognized before and have shown that the NP-1 transcripts are 
expressed abundantly [22]. In this context it is worth to note that the viral NP1 
protein, which is a small NS protein encoded by the middle open reading frame, is 
required for the expression of viral capsid proteins (VP1, VP2 and VP3), whereas 
the other NS proteins (NS1, NS2, NS3 and NS4) are not essential for the expression 
of VP proteins [24].

Although the hairpin-like structures of HBoV were not described when the first 
genomic analyses were performed, it has been postulated that the HBoV genome 
also is flanked by such structures and that HBoV replicates its genome by the rolling 
hairpin mechanism, although this assumption is exclusively based on phylogenetic 
analogous conclusion rather than on experimental evidence. In theory, the rolling 
hairpin replication results in progeny genomes that occur in equal amounts of both 
polarities, whilst packaging of viral genomes is dependent on additional factors 
[25–31]. For almost four decades, it is postulated that all parvoviruses replicate 
according to this mechanism, although this replication model is solely based on 
experimental data obtained by the research on rodent parvoviruses. The model is 
characterized by a terminal hairpin-dependent self-priming initiation of the viral 
genome replication and concatemeric replication intermediates of head-to-head or 
tail-to-tail replication intermediates. Based on an early publication of the postulated 
model in 1976  in Nature, this replication model became a dogma in the field of 
parvovirology and was deemed to be true for all parvoviruses. Interestingly it was 
impossible to identify both genome polarities in clinical samples containing HBoV- 
infected cells [32]. Thereby, NASBA analyses revealed that all HBoV strains pack-
age negative-strand genome, whilst only a minority also packages the plus strand; 
this observation is compatible with another replication mechanism known as rolling 
circle replication. In order to test the hypothesis if rolling circle replication may 
occur in HBoV infection and in order to decipher the unknown terminal hairpins, a 
couple of systematic PCR-based analyses were performed [33].

This approach has identified DNA sequences that contain head-to-tail genome 
fragments linked by a newly identified linker stretch that has a partial by high 
homology to the minute virus of canine (MVC) ITR and to the ITR of bovine par-
vovirus. Most recently it was shown that these sequences most likely represent the 
missing terminal hairpin-like structures [33, 34]. Despite identifying the terminal 
sequences in both clinical samples and cell cultures, a lack of self-priming activity 
of HBoV genomes as well as the lack of intermediates typical for rolling hairpin 
replication has been noted. Instead the samples contained head-to-tail structures. 
Additional groups have published similar observations, all questioning the dogma 
of parvovirus replication [35–38]. It is thereby important to know that the head-to- 
tail episomal form of HBoV differs from formerly described circular parvoviral 

The Role of the Human Bocavirus (HBoV) in Respiratory Infections



284

episomes that have been shown to consist circular-closed genome dimers of head- 
to- head and tail-to-tail orientation [39].

Although the role of the linker sequence and the head-to-tail junction remains 
unclear, these findings were surprising as they support the hypothesis that HBoV 
replicates differently from non-human parvoviruses by possibly initiating a rolling 
circle mechanisms, at least as an alternative route of replication.

Based on the newly identified sequences, the structure of the putative terminal 
repeats of the HBoV genome was predicted in silico [34]. In addition, the Kansas 
group has developed a true full-length vector clone of HBoV which can be trans-
fected to HEK-293 cells and produced a “recombinant wild-type” human bocavirus 
that in turn is infectious for differentiated CuFi-8 cells [40]. CuFi-8 cells are derived 
from a patient with cystic fibrosis and can be grown as monolayer cultures that can 
be differentiated into a polarized respiratory epithelial structure by changing the 
culturing media. This polarized respiratory epithelial structure in turn supports 
HBoV replication [40]. It is worth noting that CuFi-8 cells experience a serious 
cytopathic effect that is able to destroy the cellular glycocalyx structures (Fig. 1) 
and is accompanied by a loss of cilia [41]. This novel cell culture moreover supports 
the hypothesis that HBoV is a serious pathogen as it induced a remarkable cyto-
pathic effect in the polarized CuFi-8 cell line which in turn is compatible with the 
assumption that the clinical symptoms of an HBoV infection are caused by tissue 
damages related to viral replication. Thereby, this infection model harbours a sur-
prising feature that is a further hint for an alternative replication of the human 
 bocavirus: if the full-length HBoV plasmid containing the hairpin sequences is 
transfected into HEK293 cells, infectious progeny virions are produced although 
based on the rolling hairpin model this process should be impossible, as the free (!) 
hairpin sequences are believed to be essential for the replication. In contrast, repli-
cation is possible in the plasmid although they are flanked by the vector’s backbone 
sequence and no helper plasmids are required as known for the dependoviruses. 
This simple observation strongly contradicts the model of rolling hairpin replication 
but in turn favours other replication models known for circular DNA, as, for exam-

Fig. 1 Loss of cilia from glycocalyx of HBoV-infected cells in comparison to mock-infected cells 
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ple, the rolling circle replication, which in the natural infection would produce 
head-to-tail concatemers. However, it has to be mentioned that despite these con-
flicting data, the minimal essential origin of replication was identified in the right-
end hairpin sequence [42]. Thereby, unlike other parvoviruses, the HBoV-NS1 
protein did not specifically bind to the oriR in vitro, indicating that other viral and/
or cellular components or oligomerization of NS1 is required for NS1 binding to the 
oriR.  Of note, NP-1 and other viral nonstructural proteins (NS1–4) co-localized 
with the viral replication centres [42]. During the viral replication cycle, it appears 
that the expression of viral capsid proteins is regulated by polyadenylation mecha-
nisms of the viral RNA transcripts [43]. It was shown that in addition to a distal 
polyadenylation signal named (pA)d, a further distal polyadenylation site named 
(pA)d2 is present in the right-end hairpin sequence, which does not contain the typi-
cal hexanucleotide polyadenylation motif. Moreover, the viral replication is strongly 
dependent on a newly identified small non-coding RNA named BocaSR within the 
3′ non-coding region (nt 5199–5338) [44]. This RNA is transcribed by the RNA 
polymerase III from an intragenic promotor at amounts similar to the RNAs of the 
nonstructural genes. BocaSR accumulates in the replication centres within the 
nucleus and is suspected to directly influence the viral DNA replication.

Furthermore, clinical observations give rise to the hypothesis that the HBoV rep-
lication can be triggered or influenced by human herpesviruses such as HHV-6, CMV 
and herpes simplex virus. In this context it is noteworthy that herpesviruses, espe-
cially HSV, are capable of initiating a rolling circle replication mechanism of replica-
tion in trans as shown for SV40, which has a circular double-stranded genome [45].

Thereby herpesviruses may either act as a trigger that arrests the host cell at 
transition from G1- to S-phase of the cell cycle, or they could directly interact with 
the HBoV DNA supporting the replication by the herpesviral replication enzymes. 
The latter appears likely, as head-to-tail intermediates are a feature of the rolling 
circle replication that may be initiated by a couple of viruses including the human 
herpesviruses type 1 and type 6 [45–52]. These viruses (e.g. the adeno-associated 
virus, AAV) in turn are able to act as helper viruses for the parvoviral subclass 
dependoviruses that require those helper viruses for their replication [48–52]. 
Recently, a clinical case was observed in which the HBoV infection appeared to 
depend on a co-infection and co-replication of human herpesvirus type 6. In this 
case the HBoV infection persisted because of an immune disease but was termi-
nated by antiviral therapy with cidofovir which is directed against HHV6 [53]. This 
was the key observation leading to the assumption that HBoV is either sensitive to 
cidofovir or that a possible rolling circle HBoV replication is triggered by HHV6, 
which in turn would explain the high frequency of co-infections observed in case of 
HBoV [52, 54, 55].

In 2011, two severe cases of respiratory failure in adults associated with HBoV 
infection and herpesvirus co-infection, with a history of lung fibrosis likely related 
to the presence of chronic HBoV infection [56], strongly suggest that the head-to- 
tail structures could have been episomal reservoirs enabling the virus’ persistence as 
postulated by Kapoor and co-workers [35]. It may be speculated as to whether the 
persistence of HBoV episomes in the lung of the patients is analogous to a HBV 
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infection, in which episomal cccDNA persists in the infected cell until the cell is 
targeted by the immune response or subjected to apoptosis and in which this chronic 
state frequently produces a mild inflammation that is subclinical but could induce 
fibrosis over time. The persistence of HBoV episomes in the lung could have led to 
mild chronic inflammation eventually resulting in fibrosis of the lung, which would 
not be easily compensated as in the liver. In the context of a putative chronic HBoV 
infection or a persistence of HBoV at a subclinical level, it thus appears possible 
that HBoV could directly or indirectly, by interactions with the immune system, 
contribute to chronic lung disease such as idiopathic lung fibrosis.

Another, recently detected novel feature of HBoV is the expression of more non-
structural proteins that concluded from our previous knowledge on parvovirus rep-
lication studies. Shen et al. have shown that besides NS1 three novel proteins named 
NS2, NS3 and NS4 are expressed during the viral replication, of which NS2 is 
believed to have a crucial role during the viral life cycle [57].

Moreover it is important to mention that the HBoV replication cycle is indepen-
dent of the cell cycle phase. As early as in 2010, it was shown in A549 cells that the 
expression of HBoV-1 proteins, unlike the parvovirus B19 infection, does not 
induce cell cycle arrest and apoptosis [22]. In contrast, two recent studies have 
shown that the DNA damage repair system is involved in HBoV-1 replication [58, 
59]. Thereby the hallmarks of the DDR response, the phosphorylation of H2AX and 
RPA32, are activated accompanied by the activation of all three PI3KKs. In  addition, 
the polymerases Pol-η and Pol-κ, both being part of the DNA repair system, are 
recruited to the viral replication sites, thus providing additional evidence that parvo-
virus DNA replication has to occur in cell cycle-arrested cells.

 Epidemiology

Like all respiratory pathogens (except SARS and MERS coronavirus) causing 
respiratory infections, HBoV-1 is distributed worldwide and has been detected in 
patients from several regions of each continent [60–112]. However, unlike most 
other viruses that are known to peak seasonally in autumn and winter, HBoV infec-
tion peaks do not seem to be restricted to these seasons.

Although the route of transmission was not yet systematically investigated, it is 
widely accepted that the transmission of HBoV most likely occurs by smear or 
droplet infections or aerosols and nasal or oral uptake as described for the majority 
of “common cold viruses.” The transmission route passes through airway excretions 
but could also be via the gastrointestinal route, as HBoV is shedded also by 
stool (Figs. 2 and 3).

The HBoV seroprevalence is high and reached 95% and more in children up to 
the age of 5 years [113, 114]. This seroprevalence remains high in most adults [76, 
82] but decreases from 96% to 59% in European adults if antibodies against HBoV 
strains two to four were depleted. Thus in 41% of patients, no long-term immunity 
could be generated, supporting the assumption that the virus is able to persist and 
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could also reinfect elderly patients [115]. Surprisingly, HBoV-1 DNA can also be 
detected in blood and blood products from healthy Chinese blood donors with a 
lower seropositivity compared to the above-mentioned cohorts [116].

In recent months a few studies have been published that demonstrated that human 
bocaviruses are also stable in the environment. As an example, Iaconelli et al. have 
shown the frequent detection of HBoV in urban sewages, an observation confirmed 
by a study from Egypt [117].

 Clinical Features

HBoV-1 respiratory infection is clinically indistinguishable from other respiratory 
infections and can only be diagnosed using molecular assays. The spectrum of 
HBoV infections ranges from asymptomatic [67, 118, 119] to mild upper respira-
tory infections [67, 120–122] up to serious and life-threatening lower respiratory 
tract infections [70, 109, 123–133] in all age groups [70, 71, 109, 119, 123–136]. 
The immune response against HBoV starts with an IgM response and is followed by 

Fig. 2 Overview of the putative zoonotic transmission of animal bocaviruses to the human popu-
lation. Based on sequence analyses, especially of the terminal sequences, a zoonotic event is likely, 
as HBoV-1 contains genome structures highly conserved from the Canine minute virus and the 
Bovine parvovirus
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Fig. 3 Schematic overview of the HBoV life cycle. (1) Entry through the nasopharyngeal space, 
(2) infection of the lung, (3) and (4) swallowing of the expectorated infectious secretion, and (5) 
infection of the gastrointestinal tract. Additionally, the virus spreads via the bloodstream and 
causes classical viremia (not indicated)
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the formation of IgG [113, 114], but no lifelong immunity is generated in at least 
40% of patients due to the original antigenic sin [i.e. Hoskins effect] [76, 82, 137].

The general HBoV-1 infections appear to start in the upper airways; in 2014 
Proenca-Modena and co-workers demonstrated that hypertrophic adenoid is a major 
infection site with 25.3% of tested tissues positive for viral RNA and DNA, fol-
lowed by nasopharyngeal secretions (10.5%), tonsils (7.2%) and peripheral blood 
(1.5%) [138]. Thereby it is worth to note that tonsils are suspected to be a major site 
of persistence as hypothesized by Clement and colleagues [139]. Subsequently the 
virus most likely initiates a downstream infection caused by swallowing of virus- 
containing secretions, which then enter the gastrointestinal tract where active viral 
replication occurs and is accompanied by a true viremia. Persistence of HBoV in the 
respiratory tract has been confirmed by a novel pyrosequencing approach by Wagner 
and co-workers, who observed primary infections and recurrence in a large cohort 
of paediatric patients [140].

HBoV-1 is able to infect the central nervous system and induces clinical symp-
toms of encephalitis or necrotizing encephalopathies [96, 98, 141]. HBoV-1 has 
been identified as a putative cause of idiopathic lung fibrosis [56] supported by the 
fact that a set of profibrotic cytokines were upregulated during HBoV infection in 
adults and their HBoV-dependent upregulation was confirmed in cell culture [142], 
whereas HBoV does not induce a clear Th1 or Th2 response [143]. The HBoV- 
dependent regulated cytokines furthermore include a subset of cytokines which are 
known to be involved in several cancer-associated pathways, supporting the hypoth-
esis that HBoV may be associated with chronic diseases or even cancerogenesis 
[144–146]. Although this hypothesis requires further prospective studies, HBoV 
DNA was detected in lung and colorectal tumours. Detection of HBoV DNA, even-
tually associated with persistence, has been described in addition to detection in 
normal lung tissue [119] and in lung and colorectal tumours [146, 147]. HBoV-1 has 
been detected in other tissues such as tonsils [35, 139, 148, 149] and myocardium 
and may affect additional tissues that have not yet been tested for HBoV positivity.

Lung fibrosis, especially idiopathic lung fibrosis (IPF), is characterized by a Th2- 
type dominated immune response in the affected tissue (reviewed by [150–152]). 
The Th2 response in the lung is accompanied by increased expression levels of IL-4, 
IL-5, IL-10 and IL-13 and is followed by increased levels of CCL17 (TARC), CCL5 
(RANTES) and others. Moreover, fibrosis is related to expression of TNF and IL-8; 
it is worth noting that the neutralization of TARC leads to a reduction of fibrosis in 
the animal model [151, 153]. In addition, an elevation of the TARC/IP-10 ratio is also 
characteristic for fibrosis and was previously discussed as a marker for IPF [154].

Moreover, a unique case has been described in which the infection/reactivation 
of HBoV occurred between two episodes of BAL sampling; the fibrosis-associated 
cytokines were expressed in association with the HBoV infection but not before, 
supporting the previously mentioned data. This data leads to the conclusion that 
HBoV colonization/chronic infection may be at least one trigger that could stimu-
late airway remodelling. However, it could be argued that not only the resident air-
way epithelial cells are involved in the in vivo immune response, but also additional 
patient-specific factors will contribute to altered profibrotic cytokine profiles. In 
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order to address this problem, experiments in an air-liquid interface culture of 
human airway epithelial cells were performed. These experiments confirmed that 
profibrotic cytokines were expressed by the infected cell cultures but were mini-
mally or not at all expressed in mock-infected cells; the identified cytokines belong 
to the initial immune response following HBoV infection [123].

According to the literature, the two HBoV proteins VP2 and NP1 seem to influ-
ence the regulation of the interferon-beta pathway, but the data appear to be contro-
versial as VP2 upregulates the pathway [155], whilst NP1 inhibits the IFN-beta 
production when overexpressed [156]. In addition, in an experimental setting with 
overexpression conditions, it has been shown that HBoV NS1 and Ns1–70 proteins 
inhibit the TNF-α-mediated activation of NF-κB by targeting p65 [157].

Moreover, based on clinical observations of a longitudinal study, Martin and col-
leagues concluded that HBoV infections could possibly be divided into two distinct 
clinical subgroups, one with a short viremic phase and short viral shedding, most 
likely being the primary infection, and a second group with long-term shedding; the 
second group is likely to be co-infections with other pathogens or a reactivation of 
a persistent HBoV infection [158].

 Coinfections and Persistence

Simultaneously with the discovery of HBoV in 2005, multiplexing PCR methods 
started to become an accepted diagnostic tool, and consequently detection of mul-
tiple infections, especially in respiratory tract diseases, has become a common phe-
nomenon [67, 159–163]. Nowadays, multiple infections with up to six pathogens 
being simultaneously present in a single respiratory sample are frequent [67, 159–
164] and may mislead some researcher to claim that the human bocavirus, also 
occurring in asymptomatic patients, is a harmless bystander rather than a pathogen 
[165, 166]. This hypothesis seems to be supported by the fact that a formal fulfil-
ment of Koch’s modified postulates was not yet possible for HBoV [167], as no 
animal model exists to date and volunteer transmission trials cannot be recommend 
based on our current knowledge of this virus [145].

In contrast, although there is a cohort of asymptomatic carriers [67, 119, 159, 
166, 168, 169], several studies have shown that HBoV induces clinical respiratory 
symptoms [64, 91, 126, 127, 159, 170–176]. The asymptomatic viral shedding is 
meanwhile believed to originate from long-term shedding after an acute infection or 
from persistent viruses [34, 35, 95, 137, 177–180]. This has most recently been 
confirmed by a long-term prospective cohort study [67, 181]. Thereby it was shown 
that the rate of asymptomatic HBoV infections is similar to the rate of rhinovirus 
infections and no one would doubt that rhinoviruses are true pathogens [67]. Finally, 
HBoV is known to induce serious cytopathic effects in infected cell cultures, which 
is a typical feature of a pathogen [21, 40, 57, 177].
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 Diagnostics

In addition to several published home-brew PCRs and real-time PCRs (reviewed by 
[9]), numerous commercial assays, such as the Luminex RVP assay [119, 182], the 
Idaho FilmArray [164, 182] or the RespiFinder assay [119], have been developed 
and released to the market enabling the detection of HBoV from clinical samples. 
However, multiplexing solely allows detection of the viral DNA in a respiratory 
sample without providing the essential information as to whether an active replica-
tive infection underlies the currently clinical episode requiring laboratory testing 
[67]. As HBoV can be shedded for longer than 3 months after the acute symptom-
atic phase [67], a proper diagnostics of human bocavirus requires the proof of active 
replication, which can be done either by detection of a viremia in the peripheral 
blood [91, 107, 115, 137, 183–187] or by detection of spliced viral RNA transcripts 
that were shown to be present exclusively during the active phase of the replication 
[188]. Recently, a novel rapid antigen test was developed which could be a major 
advance in HBoV diagnostics [189]. Further progress in this direction can be 
expected from novel approaches to test for human antibodies and bocviral antigens 
from all four subtypes based on yeast-derived virus-like particles [190].

 Advanced Molecular Techniques in HBoV Research 
and Diagnostics

The discovery of HBoV has become possible due to the usage of a novel virus dis-
covery strategy used by Allander and colleagues in 2005 [1]. These authors used a 
strategy of a virus screening library combined with a 96-well format high- throughput 
sequencing approach based on rolling circle amplification and sequencing. This 
technique was used subsequently also by other labs and has become a simple but 
work-intensive strategy to identify novel viruses and virus variants.

In addition, with the isolation and propagation of HBoV in three-dimensional 
air-liquid interface cell cultures, another novel method has set standards for the 
research on respiratory viruses in general and human bocavirus in particular [21]. 
This technique has meanwhile been refined, and several models are available [8, 40, 
59, 177].

 Summary and Perspective

There is an increasing body of evidence showing that the human bocavirus is a seri-
ous pathogen that is associated with acute respiratory infections, sometimes with 
life-threatening complications. In addition, there is evidence that the human bocavi-
rus could contribute to long-term disease of the airways resulting in lung carcinoma 
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or lung fibrosis. It is therefore crucial to analyse the long-term effects of HBoV 
infections in order to identify the mechanisms of HBoV persistence as well as for 
determining host factors for asymptomatic infections and to test the hypothesis that 
HBoV could trigger the development of lung cancer and fibrosis. Novel studies have 
identified the antigenic epitopes on the viral surface and may enable the develop-
ment of potent vaccines or antibody-based therapies [191].

In any cases, the proper diagnostics of HBoV require additional attention as does 
the need for HBoV to be evaluated in terms of its interaction with other respiratory 
viruses that may simultaneously be detected during clinical episodes.
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