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Cancer cells typically heavily rely on the G2/M checkpoint to survive endogenous and
exogenous DNA damage, such as genotoxic stress due to genome instability or radiation
and chemotherapy. The key regulator of the G2/M checkpoint, the cyclin-dependent
kinase 1 (CDK1), is tightly controlled, including by its phosphorylation state. This
posttranslational modification, which is determined by the opposing activities of the
phosphatase cdc25 and the kinase Wee1, allows for a more rapid response to cellular
stress than via the synthesis or degradation of modulatory interacting proteins, such as
p21 or cyclin B. Reducing Wee1 activity results in ectopic activation of CDK1 activity and
drives premature entry into mitosis with unrepaired or under-replicated DNA and causing
mitotic catastrophe. Here, we review efforts to use small molecule inhibitors of Wee1 for
therapeutic purposes, including strategies to combine Wee1 inhibition with genotoxic
agents, such as radiation therapy or drugs inducing replication stress, or inhibitors of
pathways that show synthetic lethality with Wee1. Furthermore, it become increasingly
clear that Wee1 inhibition can also modulate therapeutic immune responses. We will
discuss the mechanisms underlying combination treatments identifying both cell intrinsic
and systemic anti-tumor activities.
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WEE1, THE CELL CYCLE, AND THE DNA DAMAGE RESPONSE

The cellular genome is exposed to insults by several endogenous (reactive oxygen species, DNA
replication errors) as well as exogenous (chemical mutagens, ionizing radiation, ultraviolet light)
DNA damaging factors. Ionizing radiation from cosmic radiations or medical treatments (X-ray
scans or radiation therapy) can generate base lesions as well as single and double-strand DNA
breaks. Additionally, cancer chemotherapeutics can intentionally induce a variety of DNA lesions,
including inter- and intra-strand cross-links arising from drugs like cisplatin or Mitomycin C. To
ensure safe passage of the genomic material to the next generation, all organisms have evolved
mechanisms – collectively termed the DNA damage response (DDR) – to detect DNA damage and
to activate a signaling cascade to promote repair, including via cell cycle checkpoint activation (1),
or in the case of extensive DNA damage to trigger mechanisms to either permanently exit the cell
cycle (senescence) or undergo programmed cell death (apoptosis), presumably preventing cells from
accumulating mutations and resulting in the development of cancer.
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The DNA damage response and the cell cycle are intimately
linked through cell cycle checkpoints, “control mechanisms
enforcing dependency in the cell cycle” (2). Of the four cell cycle
checkpoints, only the spindle checkpoint in mitosis is not clearly
linked to pathways activated by DNA damage. As most cells in a
human are in G1 (G0) phase, the G1/S checkpoint will prevent
most normal cells to enter the cell cycle after DNA damage. The
pathways initiated by the apical kinases Ataxia Telangiectasia-
mutated (ATM) (3, 4) and Ataxia telangiectasia and Rad3 related
(ATR) (5) relay the damage signal to downstream effectors,
including the tumor suppressor p53, a central node in the DNA
damage response (6). These two kinases also play an important
role in the S phase checkpoint (7–9), which ensuring accurate
replication, and for the G2/M checkpoint (7, 10). The latter
checkpoint prevents cells with damaged or under-replicated
DNA to enter mitosis, an event which poses a high risk of
chromosome aberrations (11). As all checkpoints are governed
by cyclin-dependent kinases (CDKs), all DNA damage pathways
ultimately converge on the regulation of the CDK activity. A
dysregulated cell cycle is able to lead to DNA damage and genomic
instability is a hallmark of cancer (12).
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THE KINASE WEE1, A GATEKEEPER AT
SEVERAL CELL CYCLE CHECKPOINTS

Wee1 is a tyrosine kinase originally discovered in Schizosaccharomyces
pombe (13). Human Wee1 was subsequently discovered as a crucial
regulator of the G2/M checkpoint (14). The primary structure of
Wee1 is composed of an amino-terminal regulatory domain, a kinase
domain, and a short C-terminal domain. The N-terminal domain
coordinates signals to shuttle Wee1 into and out of the nucleus (15,
16).Wee1 contains four cyclin bindingmotifs, RxL1, RxL2, RxL3, and
RxL4, to facilitate interaction with CDK (15) (Figure 1A).

The Wee kinase family comprises three serine/threonine
kinases: Wee1, PKMYT1, and Wee2. In mammalian cells,
Wee1 and PKMYT1 (protein kinase membrane-associated
tyrosine/threonine 1; also known as Myt1) have a vital role in
regulating the G2/M transition (17) (Figure 1B). Wee2 (or
Wee1B) is only expressed in germ cells, where it prevents
premature restart of oocyte meiosis prior to ovulation and
permits metaphase II exit at fertilization (18). PKMYT1
functions as an essential component of an organelle-based cell
cycle checkpoint to prevent CDK1-induced premature
A

B C

D

FIGURE 1 | (A) The 642 amino acid long protein kinase Wee1 contains a N-terminal regulatory domain (dark blue), a kinase domain (yellow green), and a short
C-terminal domain (gray). The diagram also shows a nuclear localization sequence (NLS; orange), a nuclear export sequence (NES; green), a highly conserved
regulatory Wee1 box (red), and four cyclin binding motifs (RxL1, RxL2, RxL3, and RxL4; black). (B) Regulation of the cell cycle via phosphorylation of Cyclin-
Dependent Kinases (CDKs) by Wee1 and the related protein kinase MYT1. (C) Images of HeLa cells in metaphase undergoing unperturbed mitosis or centromere
fragmentation due to mitotic catastrophe as a result of premature entry into mitosis. (chromosomes, blue; tubulin, red; centromeres, green) (D) The fateful triangle
underlying the conditional synthetic lethality observed in cancer cells leading to selective killing by combined ATR and Wee1 inhibition.
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fragmentation of Golgi and the endoplasmic reticulum during
the G2 phase (19). PKMYT1 negatively regulates CDK1 activity
by phosphorylation on both threonine 14 and tyrosine 15 (20,
21) - unlike Wee1, which only phosphorylates CDK1 on tyrosine
15 rendering CDK1 inactive (22, 23). In the absence of DNA
damage, CDK1 is dephosphorylated by the Cell division cycle 25
(Cdc25c) phosphatase resulting in CDK1/cyclin B activation and
initiation of mitotic events (24). In the unperturbed cell cycle
Polo-like kinase 1 (PLK1) phosphorylates Wee1 at the G2/M
transition, which targets Wee1 for degradation via the ubiquitin
proteasome system (25). PLK1 also phosphorylates and activates
the phosphatase cdc25 resulting in CDK1 activation (25, 26).
Furthermore, Wee1 has a role in regulating replication dynamics
during S phase. During S phase, initiation of replication results in
the firing of many replication origins triggered by the action of
DBF4-Dependent cdc7 kinase (DDK) and CDK2, the main S
phase CDK (26, 27). Wee1 and cdc25 control CDK2 activity by
regulating the phosphorylation status at tyrosine 15 (28).
Importantly, Wee1 downregulation triggers a DNA damage
response resulting in DNA replication stalling and reduced
replication fork speed and causes cells to accumulate in S
phase (29). It was proposed that in unperturbed cells, Wee1
protects replication forks and prevents generation of DNA
damage by inhibiting the Mus81 endonuclease (29). Several
studies have indicated that Wee1 levels are regulated by non-
coding RNAs, which could impact cellular sensitivity to
genotoxic agents (30).

Cancers often have a deregulated G1 checkpoint. As a result,
they are heavily reliant on the G2/M checkpoint for survival and
mitosis. Consequently, Wee1 is often highly expressed in many
cancers including breast (31, 32) and lung (31) cancers, glioma
(33), melanoma (34), leukemia (35, 36), osteosarcoma (37), and
squamous cell carcinoma (38). As most cancer therapies aim to
induce lethal amounts of DNA damage in cancer cells, Wee1
overexpression promotes cancer cell survival (and resistance) by
reinforcing DNA damage checkpoints and preventing mitotic
catastrophe (33). The key role of Wee1 in regulating the G2/M
checkpoint in response to DNA damage has made it an attractive
target for cancer therapy. Despite its appeal, to date only one
selective and highly potent small molecule Wee1 inhibitor,
AZD1775 (also known as Adavosertib or MK-1775) (39), has
been widely reported and is being evaluated against various
advanced cancers in phase I/II clinical trials either as a
monotherapy (40–42) or in combination with other
chemotherapies (40, 43, 44). Yet several new inhibitors are
being developed or are already making it into the clinic
(see below).
WEE1 INHIBITION AND MITOTIC
CATASTROPHE

Mitotic catastrophe is a major mode of tumor cell death
following genotoxic treatments including irradiation (45).
Mitotic catastrophe is loosely defined as cell death that occurs
during or following an aberrant mitosis (46, 47). While its
Frontiers in Oncology | www.frontiersin.org 3
molecular mechanism is unclear, increasing evidence points to
the involvement of caspases (46, 48).Wee1 knockout and the loss of
Cdk1 T14 and Y15 phosphorylation causes ectopic Cdk1 activity,
uncontrolled mitotic entry and cell death (14, 49–51). Similarly,
Wee1 inhibitionwithAZD1775 or siRNA-mediated knockdown of
Wee1 results in premature mitotic entry, prolonged mitotic arrest
and mitotic catastrophe (33, 52–56). Furthermore, ectopic
activation of Cdk1 and activation of the Mus81 endonuclease
complex in S phase results in stalled DNA replication forks and
DNA damage (29, 57). The ectopic Cdk1 activity induces
replication stress and fork collapse through the depletion of
dNTPs and aberrant replication origin firing (58–60), as Cdk1
phosphorylation of the ribonucleotide reductase subunit RRM2
induces its ubiquitin mediated degradation during DNA synthesis
resulting in a 70% drop in dNTPs (60). Since Cdk1 activity induces
chromosome condensation, ectopic Cdk1 activity also promotes
premature chromosome condensation (61–63), generates torsional
strain to the DNA backbone and results in DNA breakage (64, 65).
Centromeres are late replicating due to a lower prevalence of
replication origins and are prone to breakage during premature
condensation or cleavage by theMus81 endonuclease complex (64,
66). In a process known as checkpoint adaptation, cells with
damaged DNA eventually escape the S and G2 checkpoint and
enter mitosis prematurely (67). Checkpoint adaptation in both
lower eukaryotes andmammalian cells has been consistently linked
to thePlk1 [reviewed in (68)], thekinasephosphorylatingWee1and
promotes its ubiquitinmediated degradation through the SCFbTrCP

pathway (69, 70). Underlining the importance of this coordinated
timing of kinases,Wee1 inhibition and subsequent premature entry
into mitosis in the presence of under-replicated chromosomes can
result in centromere fragmentation, a morphological marker of
mitotic catastrophe (53, 71) (Figure 1C). Conversely, Wee1
overexpression can promote cell survival by reinforcing the DNA
damage checkpoints and preventing mitotic catastrophe (33).

Wee1 inhibition byAZD1775 has been shown to induce in vitro
and in vivo synergistic tumor cell killing with several DNA
damaging therapies including IR (55) and chemotherapeutics like
cisplatin, paclitaxel doxorubicin, 5-fluorouracil, and gemcitabine
(53, 72–74). Given the role of p53 in regulating the G1 cell cycle
checkpoint, treatment with AZD1775 has been reported to
selectively target cancers harboring p53 mutations or loss of gene
function (39, 75). Having said that, a few studies have also shown
that AZD1775 sensitizes cancer cells to DNA damaging therapies
independent of p53 status (76–78). Additionally, DNA damaging
agents that specifically interfere withDNA synthesis and arrest cells
inS-phase showhigh synergywithAZD1775 (59, 72).Overall, these
preclinical studies support that AZD1775 has antitumor effects in a
wide range of tumors both as a monotherapy and in combination
with other chemotherapeutics.
WEE1 INHIBITORS IN THE CLINIC

There are 60 clinical trials listed on clinicaltrials.gov (accessed
January 2022) for AZD1775 where it is being evaluated against a
wide range of cancer types including breast cancer, cervical
February 2022 | Volume 12 | Article 828684
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cancer, leukemia, lung cancer, ovarian cancer, pancreatic cancer,
pediatric and adult brain tumors (For a list of completed and active
clinical trialswithWee1 inhibitors, seeTable 1). Findings of phase I
clinical trials show that AZD1775 is relatively well tolerated with
acceptable toxicity profiles both as a single agent and in
combination with other therapies (42). As a monotherapy, the
maximum tolerated dose was determined as 225 mg, which was
administered orally to ovarian cancer patients in five doses (2 twice
per day, 1 once a day) per week over 3 weeks (42). The dose limiting
toxicities included hematologic events, nausea, vomiting, and
fatigue (40, 42). Interestingly, two of nine patients harboring
BRCA1 mutation recorded partial response, but unexpectedly
none of the patients with documented p53 mutation exhibited a
response (42). Early indications from a phase II trial evaluating
AZD1775 plus carboplatin in p53mutant ovarian cancer refractory
or therapy-resistant patients show encouraging antitumor activity
with one (5%) complete response and eight (38%) partial responses
(43). Moreover, the overall response rate (43%) far exceeded the
results that could be expected with second-line single agent
treatments (11% to 21%) (43). A recent clinical trial evaluated the
efficacy of AZD1775 as a monotherapy given once-daily as 5 days
on and2 days off in a 21day cycle to patients (n= 42)with advanced
solid tumors (79). The recommendedphase II dosewas determined
Frontiers in Oncology | www.frontiersin.org 4
as 300 mg, with most common toxicities including gastrointestinal
and hematologic adverse effects. The dose-limiting toxicities
included grade 4 hematologic toxicity and grade 3 fatigue (79).
Six patients (14%; four ovarian and two endometrial cancers)
confirmed partial response as the best response. Interestingly, one
patient who progressed rapidly was found to have a Wee1 tumor
mutation and potential compensatory PKMYT1 overexpression
(79) (see below).

While AZD1775 is the most promising Wee1 inhibitor
undergoing phase II clinical testing to date, its toxicity profile
limits its use to intermittent dosing, potentially impacting clinical
efficacy. Recently, Zentalis Pharmaceuticals reported the
development of ZN-c3, a selective small molecule orally active
bioavailable inhibitor of Wee1. Compared to AZD1775, which at
higher concentrations also inhibits PLK1, a negative regulator of
Wee1, ZN-c3 showed much higher selectivity for Wee1 over
other kinases (80). Moreover, ZN-c3 demonstrated similar
efficacy to AZD1775 in vivo. The expected superior safety
profiles of ZN-c3 has enabled its quick transition to phase I/II
clinical testing either as a monotherapy or in combination with
other chemotherapies (NCT04158336). Similarly, a Wee1
inhibitor developed by Debiopharm, Debio 0123, is being
tested in a phase I study (NCT03968653).
TABLE 1 | Wee1 inhibitors in clinical trials.

Study Identifier Co-Treatment Tumor Type Phase Status

Adavosertib (AZD1775) as Monotherapy
NCT01748825 – S 1 Complete
NCT03313557 – S 1 Complete
NCT03668340 – S 2 Active
NCT03315091 – S 1 Complete
NCT02659241 – S 1 Active
NCT03333824 – S 1 Active
NCT02207010 – S 0 Complete
NCT04439227 – S/H 2 Active
NCT02593019 – S 2 Complete
NCT04590248 – S 2 Active
NCT03385655 – S 2 Active
Adavosertib in combination with other cytotoxic therapies
NCT02666950 Cytarabine H 2 Complete
NCT01164995 Carboplatin S 2 Active
NCT03012477 Cisplatin S 2 Complete
NCT02101775 Gemcitabine S 2 Active
NCT02906059 Irinotecan S 1 Complete
NCT03330847 Olaparib S 2 Active
NCT02341456 Carboplatin/Paclitaxel S 1b Complete
NCT02508246 Cisplatin/Docetaxel S 1 Complete
NCT02194829 Gemcitabine/Paclitaxel S 1, 2 Active
NCT03345784 Cisplatin/RT S 1 Active
NCT02585973 Cisplatin/RT S 1 Complete
NCT03028766 Cisplatin/RT S 1 Complete
NCT02037230 Gemcitabine/RT S 1, 2 Complete
NCT01849146 Temozolomide/RT S 1 Active
Other Wee1 inhibitors in clinical testing – Zn-c3
NCT04158336 – S 1 Active
Other Wee1 inhibitors in clinical testing – IMP7068
NCT04768868 – S 1 Active
Other Wee1 inhibitors in clinical testing – Debio 0123
NCT03968653 Carboplatin S 1 Active
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Early results for ZN-c3 of the phase I dose-escalation (25 mg
to 450 mg) trial (NCT04158336) reported 300 mg as the
recommended phase II dose (81). Of the 16 patients with post-
baseline tumor assessments, 5 patients showed indications of
stable disease, and 2 patients showed partial response.
Interestingly, both the partial response patients had stage IV
metastatic disease (colorectal cancer and ovarian cancer,
respectively) and had undergone several lines of therapy (81).
Importantly, ZN-c3 was reported to have higher selectivity and
better safety profiles compared to AZD1775, making it
particularly well suited for combination therapies (82). Out of
the 39 patients involved in the trial, 30 experienced mild to
moderate symptoms like nausea, diarrhea, vomiting, and fatigue
(81). In addition to this, ZN-c3 is also undergoing clinical testing
in combination with other chemotherapeutics like carboplatin,
doxorubicin, paclitaxel, and gemcitabine in patients with
platinum-resistant ovarian cancer (NCT04516447).

Other Wee1 inhibitors in clinical trials are Debio 0123 by the
French company Debiopharm and, the most recent addition,
IMP7068, developed by Impact Therapeutiucs in China.
Schrödinger and Nuvation Bio have preclinical compounds
that might soon advance soon in the pipeline as well (SDGR2
and NUV-569, respectively).
RADIOSENSITIZATION BY WEE1
INHIBITION

The G2/M checkpoint constitutes an important safeguard for
preventing cells with damaged or under-replicated DNA to enter
mitosis, particularly in cancer cells which often have an
abrogated G1 checkpoint due to aberrations in p53 signaling,
caused e.g. by mutations in the p53 gene, viral proteins or MDM2
overexpression. It is therefore not surprising that the first
described Wee1 inhibitor, (non-selective) PD0166285, was
tested in combination with ionizing radiation and was found
to radiosensitize, i.e. to kill more efficiently, cancer cells in a p53-
dependent manner (83). Studies with AZD1775 (39), which
unlike PD0166285 does not inhibit the related kinase PKMYT1
as well, confirmed that inhibition of Wee1 leads to
radiosensitization of a variety of cancer cells and increased
radiation-induced tumor delay in mouse models (55). Since
then several studies have shown that combining ionizing
radiation with inhibition of Wee1 by AZD1775 increased cell
death or clonogenic death of cells derived from a variety of
cancers, including of the lung, breast, prostate, esophagus, cervix,
liver, brain, and pancreas (55, 84–93). Yet it is not always clear in
the mentioned studies whether the cooperativity was synergistic
or just additive. (Only in the former case it would be appropriate
to call the effect radiosensitizing.) Importantly, several preclinical
studies in mice also showed increased tumor delay when
radiation was combined with Wee1 inhibition (55, 85–87, 90–
93) and several clinical trials are currently examining the efficacy
of AZD1775 with radiation therapy (sometimes in combination
with chemotherapy). Phase I trials produced promising results
(94, 95), although the combination with cisplatin prompted the
Frontiers in Oncology | www.frontiersin.org 5
need for toxicity–related dosing adjustments (95). The initial
proposal that p53 status was an essential biomarker for the
radiosensitization by Wee1 inhibition (55) was put into doubt by
subsequent studies (89). A likely explanation is that p53 status-
independent defects of the G1 checkpoint could make cancer
cells reliant on the G2/M checkpoint. Indeed, cyclin E
overexpression renders cancer cells sensitive to Wee1
inhibition (96). Furthermore, several other mechanisms could
lead to increased replication stress in cancer cells which would
synergize with radiation and Wee1 inhibitor-mediated
replication stress to endanger the survival of cancer cells
entering mitosis. In this regard, the exact cellular mechanisms
underlying the radiosensitization by Wee1 inhibition are still to
be determined. For example, is the main reason for the
cooperativity due to Wee1 inhibition lowering the G2/M
transition threshold or increasing replication stress on top of
ionizing radiation-induced DNA damage? Wee1 inhibition also
suppresses homologous recombination (97), an important repair
pathway particularly for radiation-induced double strand breaks.
In the G2 phase homologous recombination could repair even
complex DNA damage and DNA structures resulting from
stalled or collapsed replication forks. The contribution of
inhibition of these Wee1 roles, as well as known and yet to be
identified crosstalk with other cellular pathways [e.g. autophagy
(93)], to radiosensitization is likely specific to the cell type or
even to the subpopulation (given tumor heterogenicity). Of
importance for the clinic – and unfortunately much less
characterized - is the heterogeneity in the radiosensitization of
normal cells (between cell type and between persons) by
inhibitors of cell cycle regulators. Of particular concern for
normal tissue complications are potential deleterious effects of
combining Wee1 inhibitors and radiation on stem cells, which
often rely on an intricate crosstalk between external signaling
factors and the cell cycle machinery to regulate their
differentiation potential (98). As tissue homeostasis is usually
dependent on tissue specific stem cells, the impact of Wee1
inhibition in the clinic must also be seen in the context of the
heterogeneity in the radiation response within the stem cell
compartment and plasticity (reviewed in (99)). Radiosensitizers
are only useful for cancer therapy if they improve the therapeutic
index in the current highly conformal treatment plans in
radiation oncology.
SYNTHETIC LETHALITY WITH WEE1
INHIBITION

Synthetic lethality refers to an interaction between two genes
when the perturbation of either gene alone is viable but the
simultaneous perturbation of both genes (gene functions) leads
to cell death. A well-known example is deficiency of homologous
recombination proteins BRCA1 or BRCA2 causing cancer cell
sensitivity to poly (ADP-ribose) polymerase (PARP) inhibitors
(100, 101). This distinctive synthetic lethality led to a strong
interest in therapeutic approaches targeting cancer cells with
other deficiencies in DNA damage response (DDR) pathways by
February 2022 | Volume 12 | Article 828684
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inhibition of the alternative DDR pathway. Yet as this approach
only targets cells with a specific defect in the DDR, unless loss of
gene function leads to the cell-of-origin or occurs early in
carcinogenesis, in which case the gene defect would be in all or
most tumor cells, it is bound to only affect a subset of populations
within a heterogeneous tumor. For example, the loss of Ataxia
Telangiectasia-mutated (ATM) frequently observed in a variety
of cancers (102) is likely due to a driver mutation occurring at an
early stage during lung carcinogenesis (103). It therefore is
expected that most cancer cells in those tumors will be killed
by targeted drugs showing high efficacy in the background of
defective ATM (104). Yet except for the ATM and p53 pathways
(alterations in ATM, CHEK2, p53, MDM2), the majority of
driver mutations in DNA damage response and repair genes
were found to be subclonal in non-small cell lung cancer (103). It
is to be expected that targeting an evolutionary late occurring
gene defect, even if found in the subpopulation that constitutes
the bulk of the cancer cells, would lead to the selection for the
subpopulation with the functional gene and treatment resistance
to follow. Furthermore, even in a homogenous population with a
common DDR defect resistance can arise by reactivation of the
defective pathway, as was observed in some PARP inhibitor
resistant breast cancers (105). Conditional synthetic lethality
refers to synthetic lethality observed only under certain
circumstances, such as genetic background or metabolic state
of cells or cellular environment (106). An approach to build
synthetic lethality around cancer-intrinsic characteristics has the
potential to decrease the probability for the tumors to acquire
resistance. In that regard, one of the most common features of
cancer cells is oncogene-induced DNA damage (107, 108), often
leading to levels of replication and mitotic stress not observed in
normal proliferating cells. This tumor-specific property makes it
an ideal selective condition to base a synthetic lethality on to
achieve a favorable therapeutic index.

An example of a successful attempt to establish a fateful
triangle for cancer cells in a conditional synthetic lethality
approach is the combination of inhibitors of Wee1 and of the
kinase Ataxia telangiectasia and Rad3 related (ATR). This multi-
pronged attack takes advantage of three features of cancer cells to
selectively target them: genomic instability, dysregulated cell
cycle and the reliance on particular DDR pathways for survival
(Figure 1D). In a 2008 review discussing genomic instability, a
designated hallmark of cancer (12), Halazonetis, Gourgoulis, and
Bartek pointed out that, based on their data and the literature on
observations in many cancer cell lines and precancerous and
cancerous lesions from patients, “the presence of DNA damage
was a feature that could distinguish precancerous lesions and
cancers from normal tissues, irrespective of their proliferation
rate” (108). DNA damage (genotoxic stress) is therefore a
fundamental characteristic of cancer cells, unlike some other
hallmarks of cancer which, due to tumor heterogeneity, may not
manifest in every tumor or every tumor cell.

ATR is an apical kinase in the DDR and is activated by
replication protein A (RPA)-coated single-stranded DNA,
structures that can arise from stalled replication forks or
resected DNA double-strand breaks (1). Not surprisingly, ATR
Frontiers in Oncology | www.frontiersin.org 6
plays a crucial role in the response to replication stress – likely
the reason for it being an essential gene (109, 110). As a result,
cancer cells rely on functional ATR signaling, particularly as
other DNA damage response pathways are lost (such as the p53
and/or ATM pathway). This is exemplified by the importance of
ATR signaling for the survival of cancer cells to ionizing
radiation (5). Unsurprisingly, ATR activity is often upregulated
in cancer cells (111, 112), including in cancer stem cells (113).
ATR regulates Chk1 activity by phosphorylation of Chk1 kinase
at serines 317 and 345 (1). Chk1 in turn targets Cdc25, the
phosphatase removing inhibitory phospho-groups from cyclin-
dependent kinases (CDKs), for degradation by phosphorylation-
dependent ubiquitination. Because CDKs, particularly CDK1
and CDK2, regulate entry into mitosis and replication origin
firing, Chk1 activation thereby prevents cell cycle progression
(114). Thus, ATR/Chk1 signaling initiated at structures
containing single-stranded DNA controls the S and G2 phase
cell cycle checkpoints in mammalian cells (114). Importantly, the
phosphorylation state of CDKs 1 and 2 (and thus their
inhibition) is regulated by the balance between the kinase
activity of Wee1 (and Myt1) and the phosphatase activity of
Cdc25. The observed synergistic effects of Wee1 and ATR
inhibition (71, 115) on cancer cell killing are surely in grant
part due to the lowering of the threshold for CDK activation by
combining inhibiting the constitutive phosphorylation and
preventing checkpoint activation by the ATR/CHK1/Cdc25
axis, as combined AZD1775 and AZD6738 treatment leads to
mitotic catastrophe in cancer cells (71). Yet both Wee1 and ATR
regulate other cellular aspects that will play a role, including their
activities during replication: For example, the above mentioned
role of Wee1 during S phase, including replication fork
protection, as well as reportedly in timing the entry into S
phase (116) are perturbed by AZD1775 and lead to substantial
replication stress. ATR on the other hand, besides the many
functions during unperturbed replication (117), also regulates
DNA damage repair by promoting extensive DNA end-resection
needed for homologous recombination (5, 118, 119). By utilizing
the reversibility of Wee1 and ATR inhibition, we characterized
the contributions of inactivation of each kinase and during
different phases of the cell cycle, thus studying how abrogation
of ATR and Wee1 activity cooperatively leads to cell death
caused by mitotic defects (71). The findings are compatible
with a model, where synergistic killing by ATR and Wee1
inhibitors is based on an increase in the DNA damage level
while simultaneously lowering the DNA damage response
capacity leading to mitotic catastrophe. This is achieved by
Wee1 inhibition-induced DNA damage during replication,
abrogation of ATR-mediated S phase checkpoint activation,
inhibition of ATR-dependent homologous recombination, and
amplified by increased entry into mitosis with defective genomes
due to combined inhibition of ATR and Wee1. As high
replication stress in cancer cells - due to the high level of
baseline DNA damage per se, but also to the resulting
exhaustion of factors needed for both repair and replication,
such as RPA (120) – contrasts from the stress in normal cells,
even in highly proliferative tissues, and cancer cells often have an
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increased reliance on the G2/M checkpoint, a therapeutic
window is achieved in an example of a conditional
synthetic lethality.

Several studies have also investigated whether defects in
specific pathways sensitize to Wee1 inhibition. A recent study
in basal-like breast cancer cells suggests that loss of PTEN may
be one of the strongest markers of Wee1 inhibitor sensitivity
(121). This might not come as a surprise, given the role PTEN
plays in replication progression and several studies showing
that PTEN loss increases replication stress (122–124). A recent
study also showed that HPV16 positivity sensitizes head and
neck squamous cell carcinomas to Wee1 inhibition by a
mechanism involving a circuit linking CDK1 and FOXM1
(125), a master transcriptional regulator of mitotic genes
(126). Fitting with the scheme of vulnerability to Wee1
inhibition based on an already dysregulated cell cycle, an
unbiased screen identified several S phase genes as
determinants for AZD1775 sensitivity (127). Related, another
screen identified defects in the Fanconi anemia pathway and in
homologous recombination, mechanisms needed for effective
DNA replication particularly in the background of increased
DNA damage, as sensitizing to Wee1 inhibition (128). A
strategy of releasing tumor cells from a cell cycle block into
a phase where the cells are sensitive to Wee1 inhibition was
used in a preclinical study with sarcoma. The combined
sequential treatment with the CDK4/6 inhibitor Palbociclib
and AZD1775 showed at least additive effects on tumor growth
(129). In a model for the clinical scenario of breast cancer cells
resistant to endocrine therapy and CDK4/6 inhibitors, derived
long-term estrogen deprived endocrine resistant cell lines were
found to be more resistant to CDK4/6 inhibitors, but more
sensitive to AZD1775 or Wee1 knockdown than their parental
cell lines (130). An interesting observed synergistic interaction
was found between AZD1775 and A1155463 in cancer cells
from a genetically engineered animal model for triple negative
breast cancers (131). A1155463 is an inhibitor of the anti-
apoptotic BCL-XL protein (132). The drug combination also
showed efficacy in vivo, but unfortunately the authors did not
report the effect of the individual drugs in their mouse model
(131). AZD1775 was also found to synergize with the PARP
inhibitor olaparib in a xenograft model for triple negative
breast cancer (133).
RESISTANCE MECHANISMS TO WEE1
INHIBITION

Obvious candidate resistance mechanisms to Wee1 inhibitors
include reversal of expression profiles of genes that are the base
for Wee1 inhibitor vulnerability. For example, while cyclin E
overexpression sensitizes cancer cells to AZD1775, reducing
cyclin E levels has the opposite effect (96). A mechanism of
acquired AZD1775 resistance observed both in vitro and in vivo
is via the upregulation of PKMYT1 (53). As mentioned, Wee1
and the related kinase PKMYT1 exhibit functionally redundant
roles in the inhibition of CDK1/cyclin B, the mitosis promoting
Frontiers in Oncology | www.frontiersin.org 7
complex (134–136). Yet compared to Wee1, PKMYT1 is much
less studied in the context of cancer biology. This might be due to
reports that inhibition or knockdown of Wee1 alone is sufficient
to abrogate the S- and G2/M DNA damage checkpoints and that
the loss of PKMYT1 neither affects the timing of mitosis nor
abrogates DNA damage checkpoints in the presence of Wee1
(56, 137–139). On the other hand, combined knockdown of
Wee1 and PKMYT1 causes more HeLa cells to enter mitosis with
damaged DNA compared to Wee1 knockdown alone (56),
PKMYT1 knockdown enhances AZD1775 induced cell killing
in cell lines derived from brain metastases (140), and PKMYT1 is
essential for cell survival in a subset of glioblastoma cells that
have downregulated Wee1 expression (141). The protective
mechanism by PKMYT1 upregulation leading to AZD1775
resistance was found to be due to compensatory inhibition of
ectopic CDK1 activity by PKMYT1, allowing cells to escape
mitotic catastrophe, the mode of cell death induced by Wee1
inhibition (53).

It was proposed that cancer stem cells, which often show
increased chemo- and radiation resistance compared to bulk
cancer cells and due to their cellular plasticity and tumor
initiating capability can lead to tumor relapse (142), could be
targeted by Wee1 inhibition (143). Only a few studies have
examined the efficacy of Wee1 inhibition – alone or in
combination - in the eradication of cancer stem cells. Early
findings that Wee1 inhibition by the unspecific inhibitor
PD0166285 radiosensitizes glioma stem cells (CD133 enriched
glioma neurospheres) (33) were contradicted by a study using
AZD1775 (and glioma cell lines enriched for neuronal stem cells)
(92). In contrast, another study found that glioma stem cells
(unlike neuronal progenitor cells) were sensitive to Wee1
inhibition alone (141). Our studies in breast cancer showed
that breast cancer stem cells were less sensitive to AZD1775
compared to bulk cancer cells, which could be due to reduced
drug uptake or decreased reliance on Wee1 signaling.
Interestingly, combined Wee1 and ATR inhibition was as toxic
to cancer stem cells as to bulk breast cancer cells, potentially
explaining the antimetastatic effect of the combination treatment
(71). To our knowledge, this was the first report of a higher drug
synergy observed in cancer stem cells compared to bulk cancer
cells, compensating for the reduced sensitivity of cancer stem
cells to the individual drugs. A recent study found that
trastuzumab resistant breast cancer cell lines were enriched in
cancer stem cells, but on average showed greater sensitive to
AZD1775. AZD1775 treatment disrupted stem like properties in
the tested trastuzumab resistant breast cancer cell lines (144).
These studies indicate that insights into the role of Wee1 in
cancer stem cell maintenance and the associated correlation with
drug resistance could have a significant impact in the clinic.

As the ongoing clinical trials will provide data and samples
from patients treated with AZD1775 (Adavosertib), not only will
predictive biomarkers be identified, but it will also become
clearer which are the preferred pathways for resistance
acquisition to single agent therapies. This in turn will provide
important clues for improved treatment plans with
combination therapies.
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WEE1 INHIBITION - BEYOND CELL-
INTRINSIC CYTOTOXICITY

The interaction between tumor cells and immune cells plays a
determining role not only during carcinogenesis, where the survival
of transformed cells is based on immune evasion, but also in cancer
therapy, where the immune system is a key factor in achieving local
and systemic tumor control. Several pathways involved in both DNA
damage repair/signalling and immunity indicate that the immune
system and the DNA damage response (DDR) have coevolved,
resulting in processes with overlapping enzymatic networks.
Examples range from prokaryotic defense systems, such as the
antiviral CRISPR machinery, to the complex mammalian immune
stimulation and maturation processes, such as class-switch
recombination. A classic case in point is the discovery in 1995
that the lack of DNA-PK caused both extreme radiosensitivity and
severe combined immunodeficiency (145, 146). Since then several
cellular links between proteins in the DNA damage response and
immune signalinghave beenuncovered.Of particular interest is the
stimulator of interferon genes (STING) pathway, that can be
activated by cyclic GMP-AMP synthase (cGAS) binding to DNA
fragments and the subsequent production of the allosteric
modulator of STING, the small messenger molecule cGAMP
(147). This pathway was discovered as an important defense
mechanism against DNA viruses, but was later found to get
activated by DNA damage in the nucleus or mitochondria as well
(148, 149). Besides cGAS, which binds to the DNA backbone,
STING activation by DNA fragments might also involve the
recognition of DNA ends by DNAPK (150) and/or the MRN
complex (151). Kinases downstream of STING, TANK binding
kinase 1 and IkB kinase, induce the transcription of genes involved
in the innate immune response, such as interferons, interleukins
and TNF, via the transcription factors IRF3 and NFkB (152).
Several studies have shown that exogenous and endogenous
genotoxic stress can induce the expression of interferon-
stimulated genes, including stress due the loss of genes involved
in the DNA damage response [reviewed in (153)]. Furthermore,
activation of the apicalDDRkinasesATMandATRcan also lead to
upregulation of PD-L1 (via the STAT1 and STAT3 pathway) (154)
and natural killer group 2D (NKG2D) ligands (155, 156).

Besides these DNA damage-induced changes in surviving cells,
therapy-induced cell death itself can have a big immunomodulatory
effect. The Nomenclature Committee on Cell Death defines
immunogenic cell death (ICD) as “a functionally peculiar form of
regulated cell death that is sufficient to activate an adaptive immune
response specific for endogenous (cellular) or exogenous (viral)
antigens expressed by dying cells” (45). Besides the release of
antigenic determinants, such as neoepitopes, dying tumor cells also
can lead toa local releaseofdamage-associatedmolecularpatternsand
cytokines resulting in local effects on immune cell trafficking and
activation. The observation that inhibition of Wee1 increases
replication stress as well as the likelihood of untimely entry into
mitosis, raising thepossibilityofDNAstructures activating theSTING
pathway as well as mitotic catastrophe, makeWee1 inhibition a good
candidate drug to increase the antitumor immune response. This
makes Wee1 inhibition especially attractive to be combined with
Frontiers in Oncology | www.frontiersin.org 8
radiation therapy, as the latter iswell knowntobeparticularly inducive
to ICD and Wee1 inhibitors are, as discussed previously, also
radiosensitizing (39, 89, 157). Indeed preclinical studies have shown
immune stimulating effects of Wee1 inhibition in combination with
irradiation (158, 159). The exact mechanisms underlying the
increased anti-tumor immunity, including the extent interferon
signaling is involved, are still unclear. Of note, a recent study
showed that inhibition of Wee1 alone failed to induce a type I
interferon response, despite increasing DNA double strand breaks,
cytosolic DNA, and micronuclei – all cellular phenotypes previously
correlated with STING pathway activation (160).
CONCLUSION

In conclusion, Wee1 inhibitors show great potential to make an
impact in the clinic for the therapy of several cancer types.While some
concerns have arisen from phase I/II clinical trials regarding potential
side effects, it remains to be seen whether newer Wee1 inhibitors with
supposedly higher kinase selectivity show an improved safety profile.
Yet themost promising path are combination therapies allowing lower
dosing of the Wee1 inhibitor than in monotherapy. Furthermore,
optimization of the treatment plans, such as intermittent dosing of the
Wee1 inhibitor, might improve the drug tolerance.

Regarding the kinase itself, still many questions remain to be
elucidated on the biological role of Wee1, which revealed itself to be a
multifaceted player during several phases of the cell cycle. Of special
interest are the redundant and divergent roles ofWee1 and the related
kinase PKMYT1, in normal tissues and in various cancer types.
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