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Abstract: Understanding how rising temperatures, ocean acidification, and hypoxia affect the
performance of coastal fishes is essential to predicting species-specific responses to climate change.
Although a population’s habitat influences physiological performance, little work has explicitly
examined the multi-stressor responses of species from habitats differing in natural variability. Here,
clearnose skate (Rostaraja eglanteria) and summer flounder (Paralichthys dentatus) from mid-Atlantic
estuaries, and thorny skate (Amblyraja radiata) from the Gulf of Maine, were acutely exposed to
current and projected temperatures (20, 24, or 28 ◦C; 22 or 30 ◦C; and 9, 13, or 15 ◦C, respectively)
and acidification conditions (pH 7.8 or 7.4). We tested metabolic rates and hypoxia tolerance using
intermittent-flow respirometry. All three species exhibited increases in standard metabolic rate under
an 8 ◦C temperature increase (Q10 of 1.71, 1.07, and 2.56, respectively), although this was most
pronounced in the thorny skate. At the lowest test temperature and under the low pH treatment,
all three species exhibited significant increases in standard metabolic rate (44–105%; p < 0.05) and
decreases in hypoxia tolerance (60–84% increases in critical oxygen pressure; p < 0.05). This study
demonstrates the interactive effects of increasing temperature and changing ocean carbonate chemistry
are species-specific, the implications of which should be considered within the context of habitat.
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1. Introduction

Marine climate change is multidimensional and includes (but is not limited to) rising temperatures,
increasing severity and frequency of hypoxic events, and ocean acidification (OA) [1–4]. These three
environmental changes result in interactive, yet poorly understood impacts on both individuals and
populations [5,6]. Increases in temperature alone are associated with reduced aerobic scope, and thereby
reduced fitness [7,8]. Hypoxia likewise reduces fitness and can cause mortality events [9], while OA
can impact various aspects of a species’ biology from behavior to growth rates [10]. A comprehensive
understanding of the impacts of climate change on species and populations is, therefore, required both to
manage fisheries effectively and to conserve ecologically and economically important resources [11–13].
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Because it is impossible to fully incorporate the complexity of ecological interactions (e.g.,
interspecific interactions, regional population distributions, seasonal variability) in models designed to
predict the effects of climate change, researchers have attempted to assess vulnerability or resilience
using other methods. Testing environmental tolerances, and thus potential for resilience in the face
of climate change, is commonly done using aerobic metabolic rate as a proxy for fitness [2,7,14].
Intermittent-flow respirometry measures rates of oxygen consumption that can be used to calculate a
range of metabolic parameters including standard metabolic rate (SMR), maximum metabolic rate
(MMR), absolute aerobic scope (ASa), factorial aerobic scope (ASf), and critical oxygen level [15].
Critical oxygen level (Scrit) is the lowest oxygen level at which SMR remains stable, and below
which metabolic rate declines in step with decreases in ambient oxygen [16]. The critical oxygen
level can be measured in terms of percent saturation, oxygen content, or partial pressure and is
denoted Scrit, Ccrit, or Pcrit respectively depending on the units used [17]. Combined, metabolic
parameters can assess species- or population-specific tolerances to environmental perturbations,
such as those associated with climate change [11,18–20]. According to the theory of oxygen- and
capacity-limited thermal tolerance (OCLTT) [21], for example, aerobic scope will decline at sub-optimal
temperatures because the ability of the cardio-respiratory system to supply oxygen to tissues is
reduced. The applicability of this theory is still debated [22], measuring aerobic scope likely can
provide information on species-specific physiological abilities and tolerances necessary to predict the
effects of shifting environmental conditions [23,24].

Most research concerning the effects of environmental stressors on marine organisms has focused
on temperature or pH changes projected to occur over the next 50–100 years in the open ocean [25].
Such studies must, however, reconcile the uncertainty in environmental forecasting with the difficulty
of accounting for transgenerational effects [26], the ability of species to alter their distributions [27],
and localized adaptation [5]. Additionally, while many perturbation experiments have focused on
the specifics of various laboratory treatments, less attention has been given to the natural short-term
fluctuations in environmental conditions encountered by coastal species throughout their range or
over ontogeny [12,28,29].

Estuarine environments exhibit regular, acute hypoxia and pH variability [30,31], and species
inhabiting these environments likely possess the physiological abilities necessary to withstand a
broad range of environmental conditions [32], potentially providing some degree of resiliency to the
environmental shifts associated with climate change. While there is evidence that species living in
variable habitats (such as rocky intertidal pools) are already living near the limits of their physiological
capabilities [33], little research has been done to explicitly compare the tolerances of fishes from variable
estuarine environments to those from more stable habitats (e.g., higher latitudes or deeper waters) [28].
Species (or populations) inhabiting variable temperate environments tend to be eurythermal, whereas
species (or populations) occupying high latitudes tend to be stenothermal [34,35], likely because of the
relatively narrow range of temperatures encountered by any given individual [36]. As temperature has
a large impact on the metabolism of ectotherms [37–39], a comparison between the thermal tolerances
of species inhabiting variable and stable habitats may provide insight into species-specific physiological
abilities [6,28].

The east coast of the United States includes habitats that differ greatly with respect to their
environmental variability [29,31,40,41]. In the mid-Atlantic, inshore species often utilize salt marsh
lagoons during the summer, where daily oscillations of ±5 ◦C are frequently accompanied by
fluctuations in pH (±0.5 pH units) and dissolved oxygen (±4.5 mg L−1) [31,42]. As climate change
effects continue to manifest, these environments are likely to experience even greater swings in
temperature, pH, and dissolved oxygen (DO) [43–45], which are likely to affect fish species such as
the clearnose skate (Rostaraja eglanteria) and summer flounder (Paralichthys dentatus). Clearnose skate
range from the Gulf of Mexico to Cape Cod, USA [46], and are common in the tidal lagoons along
the mid-Atlantic. They occur over a temperature range from ~9–30 ◦C, but prefer ~9–21 ◦C [47,48].
Summer flounder utilize near-shore regions during the summer, but migrate offshore to spawn in the
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fall and prefer temperatures between 9 and 24 ◦C [49,50]. In contrast, the Gulf of Maine is a more stable
environment [40], with benthic temperature fluctuations limited to ~3 ◦C over the entire year [51].
Thorny skate (Amblyraja radiata) inhabit the Gulf of Maine and are most abundant between 1 and
5 ◦C [52], thus occupying a habitat that is very different from that (at least during the summer months)
of clearnose skate or summer flounder.

We thus sought to quantify the effects of acute temperature change and elevated pCO2 levels on
the aerobic metabolic rates and hypoxia tolerances of clearnose skate, summer flounder, and thorny
skate. This approach allowed us to compare the physiological abilities of sympatric elasmobranch and
teleost species (clearnose skate and summer flounder, respectively), as well as allopatric elasmobranch
species (clearnose and thorny skates).

2. Materials and Methods

All capture, handling, and experimental protocols were approved by the College of William
and Mary and University of New England Institutional Animal Care and Use Committee
(IACUC-2017-03-14-11935-rwbril and IACUC-012418-003, respectively). Clearnose skate and summer
flounder were collected from the Eastern Shore of Virginia using rod and reel during the summers
of 2016 and 2017, and maintained in recirculating systems at the Virginia Institute of Marine Science
(VIMS) Eastern Shore Laboratory at 20–22 ◦C. Thorny skate were collected from the Gulf of Maine
using a commercial otter trawl [53] in February 2018, and maintained in flow through systems at the
seawater laboratory at the University of New England at 5, 9, or 13 ◦C. All individuals were given
at least two weeks to acclimate to captivity before use in experimental trials and were fed ad libitum
every 2–3 days. Individuals were fasted for 48 h prior to use in an experiment to ensure they were in a
post-absorptive state [54].

A total of 24 clearnose skates and 17 thorny skates were subjected to three to four trials each,
resulting in eight trials at each of the three temperatures representing the mid- to upper-range of
thermal tolerances (20, 24, 28 ◦C for clearnose skate; 5, 9, 13 ◦C for thorny skate), under two CO2

conditions representing the present day and that predicted to occur by the end of the century (pH of
7.8 and 7.4, respectively) [55,56]. A total of eight summer flounder were subjected to two trials each at
22 and 30 ◦C under elevated pCO2 conditions (pH 7.4). Because the most extreme treatment (28 ◦C and
elevated pCO2) resulted in 40% mortality in preliminary trials on clearnose skate, this treatment was
discontinued. The equivalent treatment (13 ◦C and elevated pCO2) of thorny skate experiments was
likewise excluded.

Clearnose and thorny skates were acclimated to trial conditions for 48 h and one week, respectively.
For clearnose skate, MMR was obtained using an established chase protocol involving enforced exercise
(i.e., chasing and turning individuals over to induce swimming until they no longer responded to
tactile stimulus) followed by one minute of air exposure [5]. Thorny skate respond to being handled by
curling into a ball, and thus could not be chased. Instead, this species was air exposed for eight minutes.
Respirometry protocols used with summer flounder were modified from those of Capossela et al. [54],
in that fish were not fitted with additional sensors to measure exhalent oxygen. As Capossela et al. [54]
only measured SMR and Pcrit, those were the only variables measured from the summer flounder here.
These were calculated as described below. We thus re-analyzed the data from Capossela et al. [54]
along with the elevated pCO2 data we collected for this study.

Following the chase and/or air exposure protocols, individuals were placed in custom-built
Plexiglas respirometers constructed to ensure that the volume to animal mass ratio fell between 30:1
and 50:1. The chambers were equipped with fiber optic oxygen sensors and a recirculating pump, as
recommended by Rogers et al. [57]. The respirometry chambers were placed in an outer water bath
from which water was used to flush the respirometer. A computer program (developed in Dasylab
13.1; National Instruments, www.ni.com) logged data and continuously controlled temperature and
oxygen levels for 36 h. Each measurement cycle lasted 10 min and began with a 5 min flush cycle,
which was terminated when the flush pump was turned off. After allowing 2 min for the water in the

www.ni.com
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measurement system to mix, the decline in oxygen over a 5 min period was recorded before the flush
pump was turned on again. At no time during normoxic trials was the chamber oxygen level allowed
to fall below 80%. At the end of each data recording interval, the Dasylab software executed a call
to an Excel macro routine that calculated the rate of change of O2 content (converted from percent
saturation) with time (∆[O2] × t−1) based on a linear regression of the recorded oxygen levels against
elapsed time (t). The Excel macro routine subsequently calculated MO2 as follows:

MO2 = (∆ [O2] × t−1) × V ×W−1 (1)

where V—respirometer volume (l) corrected for fish volume and W—fish mass (kg). To estimate
microbial oxygen consumption, rates of O2 depletion were measured both before and after the trial
(i.e., when the fish was not in the chamber). We used linear regression to estimate rates of oxygen
depletion due to microbial respiration occurring over the time course of an experiment. These values
were then subtracted from the measured rates of oxygen decline.

MMR was taken as the single highest metabolic rate measured during the first 12 h following the
chase and/or air exposure protocols. For all three species, SMR was taken as the mean of the lowest
10 metabolic rates during the middle 12 h of the trial. Aerobic scope was calculated in two ways
(ASa = MMR − SMR; ASf = MMR × SMR−1). Following SMR measurements, oxygen was reduced
in a step-wise fashion, with three measurements taken at 80, 60, 40, 30, 20, and 10% O2 saturation.
Trials were terminated when MO2 dropped to zero and individuals were then allowed to recover in
fully oxygenated seawater for 1 h before being returned to holding tanks. Scrit was defined as the
point at which an individual could no longer maintain SMR. This was done following Schurmann and
Steffensen [58], where metabolic rate measurements below SMR were evaluated to determine if all
subsequent values were also below SMR. When this was true, this subset of points was fit with a linear
regression. The oxygen saturation where this regression line and SMR intersected was defined as
Scrit (Figure 1). From these, we calculated the critical oxygen content (Ccrit) by converting the percent
saturation to mg L−1 using known temperature and salinity values. We also calculated critical oxygen
partial pressure (Pcrit) by determining the partial pressure of oxygen at 1 atmosphere on the day of the
start of the trial, calculating the percent saturation of seawater, and multiplying that by the temperature-
and salinity-specific oxygen content of seawater at full saturation.

To better compare across different temperature ranges, we calculated Q10 values for SMR as follows:

Q10 = (R2 ÷R1)
10
÷ (T1 − T2) (2)

where Q10 is the temperature coefficient for SMR, R1 is the SMR at T1, and R2 is the SMR at T2.
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Figure 1. Data from a single respirometry trial. Scrit is the intersection of the two linear regression lines.
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To increase pCO2, and thus reduce pH, we used the standard method of bubbling CO2 gas [59].
A stand-alone system (TUNZE 7074; Penzberg, Germany), connected to a laboratory-grade glass pH
probe in the outer water bath, controlled an electronic solenoid valve connected to a cylinder of CO2.
The system injected a slow stream of CO2 into the outer water bath whenever pH of the seawater
rose above the set point. Using this method, it was possible to maintain pH within ±0.05 units of the
desired level, and it was unlikely that there was a biologically significant gradient in seawater pH
within the tanks, as the outer water bath was continuously mixed by a submersible pump.

The pH of each outer water bath in the low pH treatment was independently validated at the start
and end of each trial using a SDL100 pH meter (Extech Instruments, Nashua, NH, USA) calibrated
daily with fresh pH buffers (Tunze, Penzberg, Germany). Additionally, water samples were taken at
the start and end of each trial for dissolved inorganic carbon (DIC) and total alkalinity (TA) Automated
InfraRed Inorganic Carbon Analyzer (AIRICA) and Metrohm analyses, or for spectrophotometric
determination of pH and TA Metrohm analysis [60]. All pH values were subsequently calculated
from these additional measurements using the CO2SYS software [61] with the constants K1 from
Mehrbach et al. [62] (refit by Dickson and Millero [63]), and KHSO4 from Dickson et al. [60]. Data on
the seawater chemistry of present day pCO2 trials were obtained from 10 samples taken from the water
inflow to the seawater labs in Virginia and Maine (Table 1). Equivalent seawater chemistry data for the
summer flounder experiments performed by Capossela et al. [54] were not available.

Table 1. The carbonate chemistry parameters during the high and low pH (i.e., present day and elevated
pCO2) experiments. Values are averaged across all temperature treatments. All values represent
mean ± SD.

Species pCO2
Treatment

Salinity
(ppm) pH Alkalinity

(µmol kg−1) pCO2 (µatm)

Clearnose skate
Present day 30 ± 0.3 7.84 ± 0.02 * 2317 ± 17 703 ± 33 *

Elevated 30 ± 0.6 7.44 ± 0.04 * 2285 ± 14 2290 ± 262 *
Summer
flounder

Present day 31 ± 0.5 Unknown Unknown Unknown
Elevated 29 ± 0.4 7.46 ± 0.06 * 2258 ± 11 2204 ± 301 *

Thorny skate Present day 33 ± 0.7 7.87 ± 0.04 2151 ± 17 569 ± 57 *
Elevated 33 ± 0.3 7.45 ± 0.05 2155 ± 10 2111 ± 204 *

* Values were calculated using CO2SYS, rather than being measured directly.

All statistical analyses were conducted using SAS 9.4 (SAS Institute, Cary, NC, USA). Data were
analyzed using a multivariate repeated measures analysis of variance (ANOVA) using the MIXED
procedure to account for the correlation between metabolic indices, with individual being the random
factor upon which multiple measures were made [64]. SMR, MMR, ASa, and Pcrit were considered
response variables, and temperature, pCO2 level, and a dummy variable representing the number
of repetitions being measured on a single individual were considered factors. We modeled the
heterogeneity in responses among temperature treatments and specified the Kenward–Roger method
for calculating the degrees of freedom [65]. Model selection between different variance/covariance
structures was performed using Bayesian information criterion (BIC,) and significant differences were
determined using 95% confidence intervals derived using the least squares means (LSM) estimate
statement in SAS. Model data are presented from model structures using compound symmetry
correlation structures. All statistics were evaluated with a significance level of α = 0.05.

3. Results

Our water chemistry values (Table 1) were largely consistent with published values for both
the Chesapeake Bay [66,67] and the Gulf of Maine [68,69]. The elevated pCO2 treatment had higher
calculated pCO2 values than expected [66,69].

We collected data from 24 clearnose skate (1.3 ± 0.06 kg; mean mass ± standard error, 17 thorny
skate (1.4 ± 0.2 kg), and 9 summer flounder (0.36 ± 0.01 kg), and re-analyzed data from 9 summer
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flounder reported by Capossela, et al. [53]. Despite high variability within any given parameter, our
models revealed differences among the metabolic response to changing environmental parameters.
Model-derived estimates for all parameters can be found in Table S1.

3.1. SMR and Q10

We observed an increase in SMR with increasing temperature in both skate species during the
present day pCO2 (i.e., at high pH) experiments (Figure 2A,C; Table 1). In clearnose skate, SMR was
significantly higher under the elevated pCO2 at 20 ◦C and 24 ◦C (Figure 2A). SMR of summer flounder
significantly increased between 22 ◦C and 30 ◦C (Figure 2B; p < 0.01), and elevated pCO2 caused SMR
to increase at 22 ◦C (p < 0.01). There was no significant effect of temperature on SMR under elevated
pCO2 (Figure 2B). In contrast, thorny skate did not demonstrate any significant differences in SMR
elevated pCO2 at either test temperature (Figure 2C).
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Figure 2. Standard metabolic rate (SMR) data from (A) clearnose skate, (B) summer flounder, and
(C) thorny skate. Box and whisker plots represent raw data, with whiskers representing maximum
and minimum points within 1.5 times the interquartile range above the upper quartile and below
the lower quartile. Open circles denote points outside of this range, while the filled circles and lines
indicate the model-derived estimates and standard errors for each treatment condition. The asterisks
above the boxplots represent significant differences between pH treatments within a given temperature.
The letters below the boxes represent significant differences among temperatures within a given
pH level.
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To facilitate comparisons across species, we compiled Q10 values for SMR for all three species
(Table 2). Clearnose skate and summer flounder had relatively low Q10 values at the present day
pCO2 treatment, while thorny skate Q10 was more similar to the expected value between 2 and 3 [8,14].
Under elevated pCO2, we observed that clearnose skate and summer flounder Q10 values more than
doubled, while thorny skate Q10 increased to a lesser degree.

Table 2. The effects of temperature on standard metabolic rate measured as Q10 values. For both
skate species, the values are reported for two different temperature ranges because of the small or
non-existent sample size at the highest temperatures and lowered pH level.

Q10

Species Temperature Present Day pCO2 Elevated pCO2

Clearnose Skate 20–28 ◦C 1.71
20–24 ◦C 1.62 0.78

Summer Flounder 22–30 ◦C 2.45* 1.07
Thorny Skate 5–13 ◦C 2.56

5–9 ◦C 3.87 2.34

* Values were not explicitly measured or controlled by Capossela et al. [54].

3.2. Maximum Metabolic Rate and Aerobic Scope

The differences in mean MMR at 20 ◦C in clearnose skate were nearly significant between the two
pCO2 conditions (Figure 3A; p = 0.051). Thorny skate showed an increasing trend in MMR within a
given temperature (at 9 ◦C) at the elevated pCO2 (Figure 3B; p = 0.07).
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Figure 3. Maximum metabolic rate (MMR) of (A) clearnose skate and (B) thorny skate. Box and whisker
plots represent raw data, with whiskers representing maximum and minimum points within 1.5 times
the interquartile range above the upper quartile and below the lower quartile. Open circles denote
points outside of this range, while the filled circles and lines indicate the model-derived estimates
and standard errors for each treatment condition. There were no significant differences in any of the
pairwise comparisons, but the “‡” symbol denotes near significance (p = 0.051 in clearnose skate, and
p = 0.07 in thorny skate).

The ASa of clearnose skate did not vary significantly under any of the treatment conditions.
The ASa of thorny skate was significantly higher at 5 ◦C under elevated pCO2. To compare results
between species, and following the recommendations of Clark et al. [7] and Lapointe et al. [64], we
have included plots for ASa and ASf in Figure 4. Trends between the two different metrics are similar,
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although no statistical analysis was performed on ASf, as the two metrics were too similar to be fitted
by the model.
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Figure 4. Aerobic scope (AS) of clearnose skate (panels (A,C) and thorny skate (panels (B,D). ASa is
presented in panels (A,B), and ASf in panels (C,D)). Box and whisker plots represent raw data, with
whiskers representing maximum and minimum points within 1.5 times the interquartile range above
the upper quartile and below the lower quartile. Open circles denote points outside of this range, while
the filled circles and lines indicate the model-derived estimates and standard errors for each treatment
condition. ASa was analyzed for model analysis, but ASf was not.

3.3. Hypoxia Tolerance

The hypoxia tolerance of clearnose skate under present day pCO2 (i.e., high pH) was reduced at
increased temperature, as shown by a significantly higher Pcrit at 28 ◦C compared with 20 ◦C and 24 ◦C
(p < 0.01 for both). Under elevated pCO2, we observed a significant increase in Pcrit between 20 ◦C and
24 ◦C (p = 0.04). Clearnose skate exhibited marked reductions in hypoxia tolerance under elevated
pCO2 (Figure 5A), with significant elevations in Pcrit at 20 ◦C and 24 ◦C (p < 0.01 for both). Summer
flounder showed the expected significant increase in Pcrit under elevated temperatures at present day
pCO2 (p < 0.01), as well as a significant increase under elevated pCO2 at 22 ◦C (p < 0.01; Figure 5B).
The Pcrit of thorny skate at 13 ◦C was significantly higher compared with that measured at 5 ◦C under
present day pCO2 (p = 0.04); and Pcrit at 5 ◦C was significantly higher at elevated pCO2 than under
present day pCO2 (p < 0.01; Figure 5C).
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Figure 5. Critical oxygen partial pressure (Pcrit) and critical oxygen content (Ccrit) of clearnose skate
(panels (A,D)), summer flounder (panels (B,E)), and thorny skate (panels (C,F)). Box and whisker
plots represent raw data with whiskers representing maximum and minimum points within 1.5 times
the interquartile range above the upper quartile and below the lower quartile. Open circles denote
points outside of this range, while the filled circles and lines indicate the model-derived estimates and
standard errors for each treatment condition. Asterisks above the boxes indicate significant differences
between the pH treatments within a given temperature, while asterisks and letters below the boxes
indicate significance across temperatures within a pH treatment. No statistical analyses were run on
Ccrit and these graphs are included only as an aid for comparison to other studies.

4. Discussion

Our study compares the environmental tolerances of species in two disparate environments under
projected conditions (elevated temperature and elevated pCO2), focusing on how observed tolerances
are impacted by multiple, concurrent stressors. In general, the physiological abilities to withstand
acute exposure to environmental stress were more similar between the sympatric species (clearnose
skate and summer flounder) than the abilities of the allopatric species (thorny skate).

Although the pCO2 values used for the elevated pCO2 treatment were somewhat variable, targeted
pH values were maintained. For the purposes of interspecific comparison, moreover, the difference
between the present day and elevated pCO2 treatments is likely more important than the actual values.
The variability observed in the present-day conditions is likely a result of the natural conditions in
near-shore water pumped in the seawater facilities; additional manipulation of the carbonate chemistry
of the seawater was deemed cost-prohibitive, and likely unwarranted as the modified seawater would
not mimic estuarine conditions.

The SMR values measured at present-day pCO2 levels (38.8 ± 4.2 mg O2 kg−1 h−1 at 20 ◦C for
clearnose skate; 45.3 ± 3.4 mg O2 kg−1 h−1 at 22 ◦C for summer flounder; 15.9 ± 2.8 mg O2 kg−1

h−1 at 5 ◦C for thorny skate; Figure 2) were lower than other studies at similar temperatures (e.g.,
100–150 mg O2 kg−1 h−1 at 20 ◦C [70]; 68–84 mg O2 kg−1 h−1 at 10 ◦C [71]), although this could be
attributed to the demersal nature of these study species. The increase in SMR under elevated pCO2
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within the lowest test temperatures for all three species (105%, 64%, and 43% increase for clearnose
skate, summer flounder, and thorny skate, respectively), and the declining difference in SMR between
pCO2 treatments at elevated temperatures (down to 10%, −16%, and 17% for clearnose skate, summer
flounder, and thorny skate, respectively; Figure 2) matches trends from little skate (Leucoraja erinacea)
exposed to elevated temperatures and pCO2 [5], but differs from similar studies on other species [72–75].
This suggests there may be conserved physiological mechanisms driving this response, but much is
still unknown regarding the mechanisms underpinning the observed patterns. The results presented
here may be due to bradycardia, increased ventilatory rates, and increased blood pressure [76,77],
or to the increased metabolic cost of buffering against plasma pH changes [14,78] and increased ion
transport [24]. These known physiological stresses are unlikely, however, to increase the metabolic rate
to the extent we observed in this study. An alternative explanation is that individuals are more active
under elevated pCO2 (i.e., low pH) conditions [79].

The effect of elevated pCO2 on SMR masks the temperature effect observed under present-day
conditions, indicating that the responses to these stressors are not additive. This may be the result of
an alternative version of the OCLTT hypothesis, where the physiological consequences of elevated
pCO2 (rather than temperature) are predicted to limit oxygen delivery [21,80]. Different responses to
temperature under present-day conditions compared to under elevated pCO2 suggest that there are
interactive mechanisms regulating oxygen delivery in fishes [8,10,24,81]. Elevated plasma levels of
CO2 (with concomitant reductions in plasma pH) reduce hemoglobin oxygen affinity (Bohr effect) and
maximum blood oxygen content (Root effect); although the extent of these is unknown in the study
species. Alternatively, the effects of one stressor could be compensating the effects of the other [24],
resulting in the masking effects. For example, increased metabolic costs of acid-base regulation under
ocean acidification could be offset by reduced energetic demand elsewhere. This phenomenon has
been demonstrated with low pH-induced metabolic depression in isolated gill cells [82]. Given the
large knowledge gaps concerning the mechanisms underpinning our results, we argue—as have
others—that more multi-stressor studies are needed [12,13,83–85].

Clearnose skate and summer flounder exhibited lower Q10 values (Q10 = 1.62 and 1.07, respectively)
at present day pCO2 than the thorny skate (Q10 = 3.87). While Q10 values lower than 2 have been
associated with a decreasing ability to function [86], for the two Mid-Atlantic estuarine species studied
here (i.e., clearnose skate and summer flounder), the low Q10 values are rather indicative of the
ability to maintain a consistent level of aerobic ATP production over a relatively broad range of
temperatures [37,87], potentially signifying resilience to the coastal warming predicted under climate
change [23]. High Q10 values, in contrast, have been attributed to species from stable environments [88].
The thorny skate, therefore, may not possess isozymes (or the genetic plasticity to produce isozymes)
that reduce the effects of temperature on metabolic rate over a broad range of temperatures [32,86,89],
and may thus be more sensitive to temperature increases than the other two study species. The idea
that the effects of temperature on metabolic rate are closely associated with native thermal range [37],
has received mixed support from other studies looking specifically at different populations or species.
For example, Di Santo [5] found increased sensitivity to temperature in more northern populations
of little skate. According to the evolutionary trade-off hypothesis [90], the resting metabolic rate of a
species (or population) at over its normal environmental temperature range represents an evolutionary
optimization. In other words, species- or population-specific optimization of metabolic rates to a given
temperature (or range of temperatures) might not be explained purely through the kinetic energy
of sub-cellular constituents, but may rather be a suite of complex tradeoffs [86,90,91]. This becomes
evident as all three species exhibited a decrease in Q10 under elevated pCO2, driven by increases in
SMR and emphasizing the masking impact of this additional stressor. Under projected climate change
scenarios, elevated temperatures and ocean acidification are likely to have interactive effects on cellular
processes [37,39,92,93]. While the Q10 values presented here offer some insight into species-specific
sensitivity, more research on the interactive effects of multiple, concurrent stressors on metabolism
is needed.
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We did not observe any significant trends in MMR between the two skate species with either
temperature or pCO2 (Figure 3). This may be attributable to an insufficient stressor prior to the
respirometry trial. Although the values presented here are lower than published values for other fish
species measured at similar temperatures [20,70,94], this could also be attributed to the more sedentary
life style of our study species. Alternatively, the Fry paradigm [38] for diminishing MMR values above
an optimal temperature may not hold in these species [14]. There is widespread dissent in the literature
regarding the appropriate methods to obtain MMR [14,95] and whether the standard Fry paradigm is
valid, which make us hesitant to draw more definitive conclusions.

The aerobic scope data do not support the existence of a bell-shaped curve centered on a single
optimal temperature (Topt), but rather AS being relatively temperature-independent. These results
may be driven by multiple Topt values for different physiological processes [7,36], and are consistent
with other studies [14,26,74,96–98]. The lack of significant reduction in aerobic scope under high
stress conditions suggests that clearnose and thorny skates, may exhibit resilience to climate change
in their respective environments. Given that there have been conflicting reports on the capacity of
elasmobranch species to acclimate to climate change conditions [99,100], the findings of this study
represent an important step in understanding the physiological tolerances of this understudied
group [101]. An important caveat is that because we used wild-caught adults, any early life history
detriments to condition and survival [100,102,103] remain unmeasured.

Our most significant finding, however, may be that clearnose skate (Pcrit 32 ± 2 mmHg at 20 ◦C;
mean ± SE) are as hypoxia tolerant as epaulette shark (Pcrit 38 mmHg at 28 ◦C); and the latter have
been deemed to have exceptional hypoxia tolerance [104,105]. While the physiological mechanisms
underlying the hypoxia tolerance of epaulette shark have received considerable attention [73,106–110],
there are no equivalent data for clearnose skate, and we encourage studies in this area. Our Pcrit

data show, however, that summer flounder are also tolerant to hypoxia (Pcrit = 42 mmHg at 22 ◦C).
Considering the correlations between hypoxia tolerance and the environmental variability of a species’
native habitat, we note that epaulette sharks live in reef and tidal environments that experience large
diel and tidal cycle fluctuations in temperature, oxygen, and pH, similar to the changes occurring in
estuaries along the U.S. mid-Atlantic [29,30,111]. Other species from variable environments are also
hypoxia tolerant, including blue crabs (Calinectus sapidus) [112] and crucian carp (Carassius carassius),
as well as many rocky tidepool fishes [33]. These results, however, are not ubiquitous. Sandbar
shark (Carcharhinus plumbeus) have a markedly higher Pcrit value than clearnose skate or summer
flounder [17], despite being a sympatric species. As sandbar shark are an obligate ram-ventilating
species [39], this difference is unsurprising and is supported by findings on bonnethead shark (Sphyrna
tiburo), which live in seagrass meadows likely to experience large diel cycles in dissolved oxygen.
In contrast to clearnose skate and summer flounder, thorny skate are relatively intolerant to hypoxia
(Pcrit = 75 mmHg at 9 ◦C), most likely because this species occupies the Gulf of Maine, an environment
that does not exhibit wide swings in temperature and oxygen levels [40,51]. Similarly, the shovelnose
ray (Aptychotrema rostrata) that occupies an environment where it rarely encounters hypoxia [113] has a
Pcrit = 54 mmHg at 28 ◦C [104].

The increases in Pcrit under elevated pCO2 (84%, 69%, and 60% increases in Pcrit for clearnose
skate, summer flounder, and thorny skate, respectively) may be the result of the inability of the
non-bicarbonate blood buffering capacity of all three study species to limit reductions in plasma pH
(and subsequently the intracellular environment) under elevated pCO2. To the best of our knowledge,
there is no information regarding intracellular pH (pHi) of elasmobranch red blood cells following
exposure to simulated OA. Studies on brain, white muscle, and liver tissue isolated from teleost
fishes and exposed to elevated pCO2 have, however, found either no change or an increases in
pHi [24,72,81,114], suggesting OA may not have a negative impact blood oxygen transport. This is
supported by a lack of increase in hematocrit following exposure to elevated pCO2 [74,114,115]. As the
differences in Pcrit were most apparent in the mid-Atlantic species, further work on in vivo blood
pH levels under changing pCO2 conditions, as well as quantification of the changes in blood oxygen
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affinity (Bohr shift) and maximum oxygen carrying capacity (Root effect), in these species would help
elucidate the mechanisms underpinning our observed reductions in hypoxia tolerance. Because of
the high hypoxia tolerance of clearnose skate, we predict that this species may also demonstrate a
high blood oxygen affinity and a large Bohr effect, similar to that seen in the hypoxia tolerant bat ray
(Myliobatis californica) [104,116]. We also expect summer founder blood to have similar physiological
characteristics to those of blood from European flounder (Platichthys flesus) [117].

These mechanisms are largely speculative, however, as there are conflicting reports of the effects
of elevated pCO2 on hypoxia tolerance. For example, epaulette sharks do not exhibit decreases
in hypoxia tolerance under elevated pCO2 conditions [73]. This may be attributed to the chronic
(60-day) exposure of epaulette shark to elevated pCO2 conditions, compared with the acute exposures
we employed. Other studies have reported increases in Pcrit under elevated pCO2 in European
eel (Anguilla Anguilla) [118] and European flounder [119]; and in acidified water for rainbow trout
(Salmo gairdneri) and carp (Cyprinus carpio) [120]. These results are, however, not universal [57], as
croaker (Leiostomus xanthurus) and mummichog (Fundulus heteroclitus) exhibit no change in Pcrit under
elevated pCO2 [43,57]. We note, however, these two species are common occupants of mid-Atlantic
estuaries, and thus regularly experience elevated pCO2 conditions [43].

From an ecological perspective, the observed effect of elevated pCO2 on hypoxia tolerance is
concerning. Currently, clearnose skate and summer flounder are unlikely to encounter waters below
their Pcrit, assuming the water is at a pH of 7.8 [12,28,30]. Because of the effects of climate change,
however, individuals in coastal waters are more likely to experience concurrent hypoxia and elevated
pCO2 [31,56,121,122]. While estuarine and coastal species may be able to tolerate current conditions,
further extremes of these parameters may force populations to move to alternative habitats. While at
present, it is unlikely that thorny skate regularly encounter hypoxia, warming shelf waters could
induce changes in dissolved oxygen distribution, resulting in unfavorable habitats in areas such as
the Gulf of Maine [40,51,123]. Activity patterns observed in dogfish (Scyliorhinus canicula) suggest
that sluggish benthic elasmobranch species do not increase activity under hypoxic conditions [124],
although the more active bonnethead shark does [125]. The sedentary strategy of non-obligate ram
ventilating species could, therefore, limit their ability to exploit novel habitats under unfavorable
environmental conditions.

Recently, Wood [126] argued that Pcrit as a metric of hypoxia tolerance is of limited utility owing
to numerous factors including the lack of repeatability and consistency and an insufficient theoretical
underpinning. He proposed several alternative metrics that could be used in place of Pcrit, including
loss of equilibrium or measurements of ventilation. While we agree that alternative measure of hypoxia
tolerance can provide useful information, for the purposes of our study of benthic flatfishes, the
loss of equilibrium is not a useful metric. Further, because the calculation of Pcrit was standardized
across all three species, concerns regarding different methodology were alleviated. We agree with
Regan et al. [127], that “Pcrit contributes to a more complete picture of an animal’s total hypoxic
response by capturing the suite of aerobic contributions to hypoxic survival in a single value”, and
hope the data presented here can help further our understanding of hypoxia tolerance in a range of
coastal species.

5. Conclusions

Understanding the species- and population-specific response to the multiple environmental
stressors associated with climate change is essential for managing marine sources in a changing
environment. The results presented here quantify the physiological limits of clearnose skate, summer
flounder, and thorny skate with respect to acute changes in temperature and elevated pCO2. All three
species exhibited increases in SMR (105%, 42%, and 22% for clearnose skate, summer flounder, and
thorny skate, respectively) at the lowest test temperature under elevated pCO2, and this increases
masked increases in SMR at the high test temperatures. All three species also showed decreased
hypoxia tolerance (150%, 85%, and 113% increases in Pcrit) under the most extreme combined stressors.
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While the clearnose skate did exhibit remarkable hypoxia tolerance under the least stressful treatment,
as climate change impacts continue to increase in severity, even this species may be pushed towards
or past the limits of their physiological capabilities. Incorporating multi-stressor studies into future
climate change research is essential to predicting how species will respond to changing environmental
conditions. If conditions are near the limits of physiological abilities, individuals may choose to seek
out more favorable habitats, resulting in shifting distributions, fecundities, and food web dynamics
with cascading ecological and economic implications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-7737/8/3/56/s1,
Table S1: The estimated values ± standard error based on model output.
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