

http://pubs.acs.org/journal/acsodf

Review

MoS₂-Based Nanocomposites for Photocatalytic Hydrogen Evolution and Carbon Dioxide Reduction

Bhagyalakshmi Balan, Marilyn Mary Xavier, and Suresh Mathew*

ACCESS

III Metrics & More

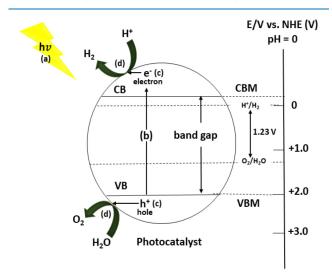
ABSTRACT: Photocatalysis is a facile and sustainable approach for energy conversion and environmental remediation by generating solar fuels from water splitting. Due to their two-dimensional (2D) layered structure and excellent physicochemical properties, molybdenum disulfide (MoS₂) has been effectively utilized in photocatalytic H₂ evolution reaction (HER) and CO₂ reduction. The photocatalytic efficiency of MoS₂ greatly depends on the active edge sites present in their layered structure. Modifications like reducing the layer numbers, creating defective structures, and adopting different morphologies produce more unsaturated S atoms as active edge sites. Hence, MoS₂ acts as a cocatalyst in nanocomposites/heterojunctions to facilitate the photogenerated electron transfer. This review highlights the role of MoS₂ as a cocatalyst for nanocomposites in H₂ evolution reaction and

 CO_2 reduction. The H₂ evolution activity has been described comprehensively as binary (with metal oxide, carbonaceous materials, metal sulfides, and metal–organic frameworks) and ternary composites of MoS₂. Photocatalytic CO_2 reduction is a more complex and challenging process that demands an efficient light-responsive semiconductor catalyst to tackle the thermodynamic and kinetic factors. Photocatalytic reduction of CO_2 using MoS₂ is an emerging topic and would be a cost-effective substitute for noble catalysts. Herein, we also exclusively envisioned the possibility of layered MoS₂ and its composites in this area. This review is expected to furnish an understanding of the diverse roles of MoS₂ in solar fuel generation, thus endorsing an interest in utilizing this unique layered structure to create nanostructures for future energy applications.

1. INTRODUCTION

Overusing fossil fuels, growing environmental pollution, and global climate change are the most significant challenges in this century. This crisis has emphasized developing renewable and clean energy sources for future purposes. One of the potential alternatives for this dilemma is solar energy. Semiconductor photocatalysis is a process that effectively converts solar energy to chemical energy. It is considered one of the most widely explored solar-fuel strategies for the photocatalytic splitting of water into H_2 and O_2 and the photocatalytic reduction of CO_2 into hydrocarbon fuels.¹⁻⁴ So far, noble metals, viz., Au, Pd, and Pt, are the most efficient catalysts for either H₂ evolution or CO₂ reduction reactions. However, over the past two decades, significant progress has been achieved in creating an efficient catalyst for H₂ evolution and CO₂ reduction utilizing non-noble metals, including metal oxides,⁵⁻¹⁰ metal sulfides,^{11,12} chalcogenides,^{13,14} carbonaceous materials,^{15,16} and carbides.^{17–19} Among these, the discovery of materials having two-dimensional (2D) structures has been a significant triumph in developing and expanding the energy industry. Primarily, such a journey started with the invention of graphene in 2004 by Andre Geim and Kostya Novoselov.^{20,21} Their outstanding properties significantly influence energyrelated fields, such as solar cells, photo and electrocatalysis, light-emitting diodes (LEDs), transistors, and photodetectors.^{22–27} Like graphene, layered transition metal dichalcogenides (TMDCs) were introduced as another class of 2D materials with intriguing properties that could potentially replace noble metals in catalytic applications. Molybdenum disulfide (MoS₂) mainly shows wide applications in various energy-related fields.^{28–30} Most importantly, MoS₂-based nanocomposites have developed significantly in photocatalysis, such as pollutant degradation,^{31,32} H₂ production,^{33,34} and CO₂ reduction.^{35,36} Therefore, we explore the advancement of nanocomposites based on MoS₂ in photocatalytic H₂ evolution and CO₂ reduction.

 Received:
 March 29, 2023


 Accepted:
 June 27, 2023

 Published:
 July 12, 2023

2. PHOTOCATALYTIC HYDROGEN EVOLUTION REACTION (HER)

2.1. Basic Principles of HER. The overall photocatalytic splitting of H_2O to produce H_2 follows three basic steps. The first step is the electron-hole pair generation through photon absorption, which occurs inside the photocatalyst. Second-step involves the separation of charge carriers and their transport to the surface of the photocatalyst, and the third step constitutes the subsequent surface reduction of photoexcited electrons to produce hydrogen (Figure 1). Water splitting to produce H_2 is

Figure 1. Schematic illustration of the sequences of photocatalytic H_2O splitting in a photocatalyst: (a) irradiation of light and photon absorption, (b) generation and separation of charge carriers, (c) migration of electron and hole to the surface of the photocatalyst, and (d) oxidation–reduction reactions on the surface to produce H_2 and O_2 .

a thermodynamically uphill reaction, and the free energy associated with this process is 237.2 kJ mol⁻¹, corresponding to 1.23 eV. Therefore, the photocatalyst has a minimum band gap energy of 1.23 eV for water splitting, and the band gap should be lower than 3 eV for maximum solar energy utilization. Another criterion is related to the positions of the valence band (VB) and conduction band (CB) of the photocatalyst; the conduction band minimum (CBM) of the photocatalyst should be above the water reduction potential, and the valence band minimum (VBM) should be below the water oxidation potential.³⁷ Thus, this limitation of band gap is a significant problem associated with the low yield of H₂ production in most photocatalysts.

2.2. Structure and Properties of MoS₂. Hydrogen (H₂), having an energy density of 140 MJ kg⁻¹, is an ideal solution for future energy and environmental crises.³⁸⁻⁴⁰ Since the pioneering discovery by Fujishima and Honda in 1972 through the photoelectrochemical splitting of H₂O, H₂ production via solar energy using semiconductor photocatalysts has received greater attention from researchers.^{41,42} Further research is ongoing to produce highly active photocatalysts for photocatalytic H₂ evolution with high catalytic activity and lower overpotential. The development of nanocomposites of MoS₂ for photocatalytic H₂ generation is of great interest due to its excellent chemical stability, low cost, nontoxicity, and 2D-layered structure.⁴³⁻⁴⁵

It is well-known that bulk MoS_2 has a bandgap of 1.2 eV and has interestingly been explored as a lubricant, 2D transistor, and hydrodesulfurization catalyst. As shown in Figure 2a, it is composed of vertically stacked, weakly interacting layers held together by van der Waals interactions. In monolayer MoS_2 , the Mo atoms are sandwiched between two layers of sulfur atoms with a thickness of 0.65 nm. On the basis of the atomic stacking order, MoS_2 has three structural polymorphs: 2H (two layers per repeat unit, hexagonal symmetry), 3R (three layers per repeat unit, tetragonal symmetry)^{46,47} (Figure 2b).

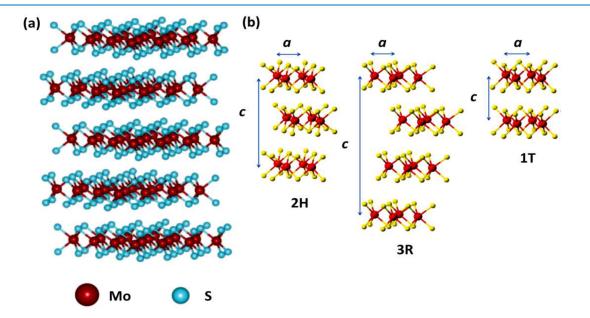


Figure 2. (a) Three-dimensional representation of the structure of a MoS_2 monolayer. Reproduced from ref 46. Copyright 2014 American Chemical Society (b) Schematic structural polytypes: including 2H, 3R, and 1T MoS_2 polytypes. Reproduced with permission from ref 44. Copyright 2016 Elsevier.

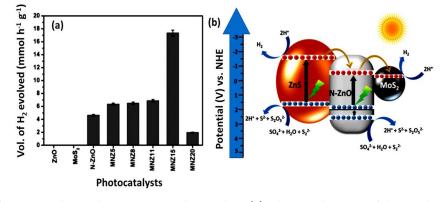


Figure 3. (a) Volume of H_2 generated using the N-ZnO-MoS₂ photocatalysts. (b) Schematic illustration of photocatalytic H_2 generation on the N-ZnO-MoS₂ heterostructure under natural sun light. Reproduced from ref 63. Copyright 2019 American Chemical Society.

MoS₂ has numerous intriguing properties due to its unique layered structure. Because of the antibonding state created by the interaction between molybdenum dz^2 and sulfur p_z orbital at the top of the valence band, MoS₂ exhibits excellent stability versus photocorrosion in solution. Previous research on bulk MoS₂ revealed that it would not be an effective HER catalyst during light illumination.48,49 However, studies have demonstrated that the fabrication of nanostructured MoS₂ materials can considerably enhance HER activity, which is driven by several factors. For bulk MoS2, the CB edge potential is positioned at -0.16 V, more than the H⁺/H₂ redox couple (-0.41 V vs SHE, pH 7). As a result, it fails to satisfy the condition of water splitting. Alternatively, the CB edge potential tends to be -0.53 eV in monolayers, indicating the ability to reduce protons to generate H₂.^{50,51} This kind of indirect-to-direct bandgap transition of MoS2 was accomplished by decreasing the layer numbers, which resulted in an increase in bandgap from 1.2 eV (bulk MoS₂) to 1.9 eV (monolayer MoS_2), eliminating the potential barrier, and MoS_2 could be used as appropriate material for the water-splitting reaction.^{47,52} Hinnemann et al. employed DFT calculations to determine the free energy of hydrogen adsorption (GH* on the MoS_2 edge) to find out the active edge sites of MoS_2 for the H₂ evolution reaction. The results demonstrated that GH* is significantly close to thermoneutrality, suggesting that MoS₂ could be an effective HER catalyst. This result was also confirmed experimentally by the electrochemical measurements of MoS₂ particles grown on graphite.⁵³ Bonde et al. made similar calculations and determined the free energy of adsorption on MoS₂ edges.⁵⁴ Nørskov's group has recently modified these values. On the basis of their findings, the suitable edge configurations correspond to Mo edges covered with 50% S having $GH^* = 0.06$ eV instead of S being covered with 100% S having GH* = -0.45 eV.⁵⁵ Meanwhile, Jaramillo et al. provided experimental evidence for the role of MoS₂ edges in the HER reaction. They systematically produced different sizes of MoS₂ nanoclusters and correlated the electrochemical behavior and edge length of MoS2 nanoclusters by STM analysis. The results show that the HER activity was associated linearly with many edge sites on the MoS_2 catalyst. Thus, the edge sites of MoS_2 were identified as active sites for the HER reaction.⁵⁶ Hence, the first part of this review focuses on 2D layered MoS₂-based nanocomposites as photocatalysts for H₂ evolution reactions. It envisages the unique role of MoS₂ in increasing the photocatalytic activity of different composites for future energy applications.

2.3. MoS₂-Based Composites for Photocatalytic Hydrogen Evolution Reaction. 2.3.1. MoS₂/Metal Oxide Composites. The fundamental issues associated with metal oxide as photocatalysts are the ultrafast charge recombination and photocorrosion within the photocatalysts. Various heterostructures have been developed to overcome these issues by combining metal oxides with MoS₂ and providing promising, low-cost, efficient catalysts.^{57,58} The edges of 2D MoS₂ nanosheets have more catalytically active sites that show superior photocatalytic activity. This edge site activity can be further enhanced efficiently by suppressing the stacking of MoS₂ flakes. This modified edge-enriched ultrathin MoS₂ nanosheets uniformly embedded into yolk-shell structured TiO₂ exhibited excellent photocatalytic H₂ evolution. The composite shows an H₂-evolution rate of 2443 μ mol g⁻¹ h⁻¹ than pure TiO₂ (247 μ mol g⁻¹ h⁻¹) with a PL lifetime of 5.17 ns. Since the energy differences between the CB of TiO₂ and MoS₂ are comparable, the electrons are more easily transferred from the excited TiO₂ to MoS₂ nanosheets. Because of their higher active sites and enriched edges, ultrathin MoS₂ nanoflakes potentially act as an electron acceptor rather than bulk MoS₂.⁵⁹ Using a plasma sputtering method, a thin layer $(0.5 \text{ to } 10 \text{ nm}) \text{ of } MoS_2$ is selectively deposited on the top of anodic anatase TiO₂ nanotubes (TiNTs). It has been tested in an open-circuit for photocatalytic H₂ evolution reaction. Using solar simulator (100 mW/cm²), a significant increase in H_2 evolution can be observed using a nominal 1 nm thick MoS₂ on the top of a 6 μ m thick TiNTs layer. The band gap positions of the TiNTs/MoS₂ structure were tuned from 1.2, 1.3, and 1.8 eV for the deposition of 10, 3, and 1 nm MoS_{2} respectively. Here, MoS₂ serves as a photosensitizer and as an H₂ evolution cocatalyst.⁶⁰

Several studies have shown that engineered defects at the 2D MoS_2 nanosheet edges can enhance the photocatalytic H_2 evolution efficiency. Metal oxides can be combined with this defect-rich ultrathin form of MoS_2 nanosheets to improve light-harvesting efficiency and increase the photocatalytic H_2 evolution rate.⁶¹ Zhu et al., for example, developed a series of MoS_2 -TiO₂ catalysts for photocatalytic H_2 -evolution via a simple ball-milling process using MoS_2 as a precursor. The recombination of photogenerated charge carriers decreased the photocatalytic performance of pure TiO₂. The H_2 evolution activity increases considerably with MoS_2 loading, reaching a maximum photocatalytic activity of 150.7 μ mol h⁻¹ for the optimum 4.0 wt % MoS_2 -TiO₂ catalyst. The too-quick ball-milling process significantly more defective MoS_2

Table 1. Summarized List of Photocatalytic Hydrogen Evolution of MoS₂ with Metal Oxides and Carbonaceous Materials

photocatalyst	synthesis method	light source	amount of catalyst	sacrificial reagent	H_2 evolution activity	ref
yolk shell TiO ₂ / ultrathin MoS ₂	hydrothermal	300 W Xe lamp	50 mg	80 mL aqueous solution contains 20 mL methanol	2443 μmol g ⁻¹ h ⁻¹	59
TiO_2/MoS_2	ball-milling	300 W Xe lamp	0.2 g	100 mL of 15% mixed methanol- H_2O solution	150.7 μ mol h ⁻¹	62
N-ZnO/defect rich MoS ₂	hydrothermal	natural sunlight	10 mg	50 mL aqueous solution contains 0.3 M $\rm Na_2S$ and $\rm Na_2SO_4$	17.3 mmol g ⁻¹ h ⁻¹	63
ZnO/MoS_2	hydrothermal	300 W Xe lamp	100 mg	100 mL aqueous solution contains 0.1 M $\rm Na_2S$ and 0.1 M $\rm Na_2SO_3$	768 μmol g ⁻¹ h ⁻¹	64
Zn-porphyrin MoS ₂ /ZnO	hydrothermal	300 W LED lamp	100 mg	100 mL aqueous solution of 0.02 M TEOA	75 μ mol g ⁻¹ h ⁻¹	65
Bi_2O_3/MoS_2	hydrothermal	300 W Xe lamp	25 mg	50 mL aqueous solution contains 0.02 mol $\rm L^{-1}$ TEOA	3075.21 µmol g ⁻¹ h ⁻¹	67
CeO ₂ /MoS ₂	hydrothermal	150 W Xe lamp	20 mg	20 mL aqueous solution of methanol	508.44 μ mol h ⁻¹	70
activated carbon/ MoS_2	liquid phase reaction	30 W white light LED lamp	0.1 g	200 mL 10 vol % TEOA aqueous solution	872.3 μ mol h ⁻¹	72
$g-C_3N_4/MoS_2$	hydrothermal	300 W Xe lamp	20 mg	20 mL of $\rm H_2O\text{-}methanol$ (4:1 v/v) solution	1497 μmol g ⁻¹ h ⁻¹	73
hollow $g-C_3N_4/MoS_2$	impregnation and sulfidation	300 W Xe lamp	20 mg	100 mL aqueous solution contains 10 vol % lactic acid	26.8 μ mol h ⁻¹	75
$g-C_3N_4/MoS_2$	impregnation method	300 W Xe lamp	0.1 g	120 mL of aqueous solution contains 25% methanol	23.10 μ mol h ⁻¹	76
$g-C_3N_4/MoS_2$	hydrothermal	300 W Xe lamp	50 mg	120 mL of aqueous solution contains 25% methanol	867.6 μmol g ⁻¹ h ⁻¹	77
$g-C_3N_4/MoS_2$	hydrothermal	300 W Xe lamp	50 mg	250 mL 0.1 M TEOA aqueous solution	${}^{1155}_{\mu\rm mol~g^{-1}~h^{-1}}$	78

structures, which is essential to the practical application of this simple, cost-effective, and sustainable method.⁶² In addition to TiO_2 , the coupling of MoS_2 with other metal oxide photocatalysts has also been investigated. Defect-rich MoS2nanosheets combined with nitrogen-doped ZnO nanorod composites has recently been developed.⁶³ Under solar light irradiation, an optimized heterostructure consisting of 15 wt % defect-rich MoS₂ nanosheets coated on N-ZnO (N-ZnO- MoS_2) exhibited the maximum H_2 evolution, 17.3 mmol h^{-1} g^{-1} (Figure 3a). The effective encapsulation of defect-rich MoS₂ nanosheets over N-ZnO nanorods resulted in a defectinduced interfacial contact region, contributing to increased photocatalytic activity. Figure 3b illustrates the pathway of enhanced photocatalytic H₂ evolution reaction. Under sunlight irradiation, the electron transfer occurs from the in situ generated ZnS to the conduction band of N-ZnO, followed by the defect-rich MoS₂ nanosheets. The defect-rich structure has several active edge sites with many exposed unsaturated "S" atoms that show a significant affinity for H^+ ions to produce H_2 during this reaction and boost visible light absorption. Using a simple hydrothermal approach, Yuan et al. investigated the effect of the interaction of MoS2-nanosheet with ZnO nanoparticles.⁶⁴ Noble metals have replaced MoS₂ as a cocatalyst for many photocatalytic H₂ evolution reactions. For comparison, composites of ZnO with noble metals were also made.

Among these, Rh exhibited the maximum photocatalytic H_2 evolution rate of 153 μ mol h⁻¹ g⁻¹, around one-fifth of the 1 wt % MoS₂-ZnO composite photocatalyst (768 μ mol g⁻¹ h⁻¹). Hence, layered MoS₂ could be used as a substitute for noble metals in photocatalytic H₂ evolution reactions. Similarly, a noble metal-free visible light H₂ evolution was achieved through Zn-5, 10, 15, 20-tetrakis (4-carboxyphenyl)-porphyrin dye (Zn TCPP) sensitized MoS₂/ZnO heterostructures as a photocatalyst. The effect of MoS₂ loading on the photocatalytic activities of the Zn TCPP-MoS₂/ZnO hybrid system was investigated using triethanolamine (TEOA) aqueous

solution as a sacrificial agent. The results suggested that, even without any noble metals, the as-prepared composite loaded with 0.5 wt % MoS₂ delivered an H₂ evolution rate of 75 μ mol h⁻¹ g⁻¹. The amount of MoS₂ loaded on the ZnO surface plays an essential role in trapping the conduction band electrons injected by the zinc porphyrin dye (ZnTCPP*), thereby suppressing the recombination of photogenerated charge carriers. This study provides insight into developing noble metal-free visible-light responsive ZnO-based photocatalysts using zinc porphyrin dyes as a light-harvesting material and MoS₂ as a cocatalyst.⁶⁵

A photocatalytic H₂ evolution of β-Tm³⁺, Yb³⁺: NaYF₄/ MoS₂-Ta₂O₅ photocatalyst was reported by Shu et al. MoS₂ was deposited onto the surface of ß-Tm³⁺, Yb³⁺: NaYF₄/Ta₂O₅ nanocomposite as a cocatalyst. The presence of an upconversion luminescence agent and MoS₂ cocatalyst could significantly increase the photocatalytic H_2 evolution rate of the Ta2O5 catalyst. Because of its outstanding electronic properties, MoS₂ provides more active sites to accept photogenerated electrons from the conduction band (CB) of Ta₂O₅ for H₂ evolution, reducing electron-hole recombination and increasing photocatalytic H₂ evolution activity of β- Tm^{3+} , Yb^{3+} : NaYF₄/MoS₂-Ta₂O₅ catalysts.⁶⁶ A MoS₂/Bi₂O₃ Zscheme heterojunction catalyst with rich oxygen vacancies was prepared in another study. The superior photocatalytic activity stemmed from oxygen vacancies that enhance the interfacial interaction between MoS₂ and Bi₂O₃.⁶⁷ Monolayer metal sulfides are promising for photocatalysis due to their excellent activity and high surface area. Especially their excellent charge carrier mobility shows high promise in photocatalysis.⁶⁸

For the first time, catalytic H_2 production and pollutant degradation catalyzed by MoS_2 monolayers loaded on the m-BiVO₄ surface were studied using hybrid density functional calculations and long-range dispersion correction methods. Interfacial adhesion energy, binding energy, and equilibrium distance indicate that the association of MoS_2 monolayer with m-BiVO₄ (010) is a van der Waals interaction, resulting in a

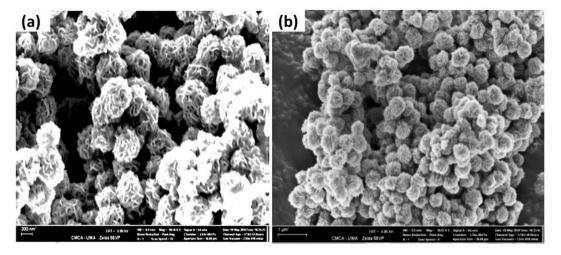


Figure 4. (a) SEM images of MoS₂. (b) 0.5% of MoS₂/gC₃N₄ photocatalyst. Reproduced with permission from ref 77. Copyright 2018 Elsevier.

high reduction capacity toward H₂ generation. With a high optical absorption coefficient, the monolayer of MoS₂ serves as a suitable electron acceptor, and more active sites can accept reactive species during the photocatalytic process.⁶⁹ Semiconductor photocatalysis through p-n heterojunctions is essential for improving future hydrogen storage. Swain et al. discovered a p-n heterojunction between p-type MoS₂ and n-type CeO₂ in a p-n heterojunction. The suggested p-n heterojunction method provides photoinduced charge transfer and separation. Following optimization of the overall experiment, it was discovered that the 2 wt % MoS₂/CeO₂ heterojunction nanocomposite has the most remarkable rate of H₂ evolution of 508.44 μ mol h^{-1.70} Table 1 summarizes the different MoS₂/metal oxide composites, the synthesis method, and photocatalytic parameters to produce H₂ from the photocatalytic H₂O splitting.

2.3.2. MoS₂/Carbonaceous Materials. To enhance the catalytic efficiency of MoS2 nanosheets, different layered carbon-based materials, including graphene, activated carbon, carbon nanofibers, and carbon nanotubes, have been incorporated. The resulting 2D/2D heterostructures with large contact areas will significantly benefit catalysis. Interfacial engineering between the layered heterojunctions as interface electron channels increases the HER performance.⁷¹ Recently, Yin et al. reported an activated carbon/MoS₂ composite via a facile one-pot liquid phase reaction. The activity was mainly attributed to the in situ incorporation of activated carbon, resulting in an increased electrical conductivity due to the formation of thinner and smaller MoS₂ nanosheets.⁷² A hydrothermal sulfurization and liquid phase exfoliation method was used to synthesize the modified gC₃N₄-MoS₂ heterojunction for the first time. An excellent system for exposing active edge sites to photochemical processes was obtained by adjusting the lateral diameters of MoS₂ nanosheets from 18 to 52 nm. The optimized structure with 20 wt % MoS₂ loading and a lateral size of 39 nm had the maximum photocatalytic H_2 activity of 1497 μ mol h⁻¹ g⁻¹ and a quantum efficiency of 3.3% at 410 nm.

The density of MoS_2 edge sites created at the interface of the MoS_2/gC_3N_4 heterojunction is responsible for this increased HER activity. The MoS_2 nanosheets with a large fraction of surface edge sites enhance the electron transfer.⁷³ Inorganic molten salts offer a suitable platform for high 2D/2D heterostructures. A 2D/2D gC₃N₄-MoS₂ visible-light-driven

photocatalyst is developed via simple pyrolysis of melamine and $(NH_4)_2MoS_4$ in a ternary molten LiCl-NaCl-KCl solution at 550 °C. The surface area of the composite was about 57 cm² g^{-1} , more than that of pure gC_3N_4 . MoS₂ assembly suppresses the overgrowth of gC_3N_4 -nuclei and enhances the synthesis of a hybrid structure with a greater porosity and H₂ evolution efficiency.⁷⁴

A highly stable hollow carbon nitride nanosheet (HCNS) integrated MoS₂ was recently constructed by Zheng et al. for an H₂ evolution reaction. Applying lactic acid as a hole acceptor, the photocatalytic performance of MoS₂/HCNS nanocomposites for H₂ evolution was investigated. Upon 0.5 wt % MoS₂ loading, HCNS indicated an increase in the H₂ evolution rate of 26.8 μ mol h⁻¹. The improved photocatalytic efficiency was ascribed to developing surface heterostructures across MoS₂ and HCNS, facilitating charge carrier separation and migration.⁷⁵ Ge et al. used a simple impregnation technique to produce MoS₂-gC₃N₄ composite photocatalysts. The maximum H₂ evolution rate of 23.10 μ mol h⁻¹ was obtained for the 0.5 wt % MoS_2 -g C_3N_4 composite.⁷⁶ Using a simple hydrothermal process, a unique 3D flowerlike hexagonal 2H-MoS₂ was produced as thin stacked nanosheets, which were then combined with gC3N4 nanosheets of the same layered structure. The synthesized samples exhibited excellent photocatalytic and electrocatalytic activity with lower overpotential and substantial current densities. The SEM micrographs of pristine MoS₂ demonstrated 3D flowerlike nanostructures having a diameter of 400-600 nm and thicknesses of 10 nm. Remarkably, the nano platelike subunits are linked with one another to develop 3D flowerlike networks. It overcomes disordered stacking of MoS₂ layers by disclosing many active edge sites and increasing the specific surface area to decrease the diffusion pathway for both reactants and surface charges. The MoS₂/gC₃N₄ composites have a thinner and fluffier microstructure than pure gC3N4, showing the introduction and deposition of MoS2 nanoflowers within the framework of gC_3N_4 nanosheets (Figure 4a,b). The 0.5% composition has the maximum photocatalytic activity of 867.6 $\mu mol h^{-1} g^{-1}$.

The photocatalytic activity was elevated to 2.8 times higher than pure gC_3N_4 . Introducing a unique flowerlike MoS_2 structure boosted more increased and stable H_2 evolution activity. Several H^+ ions in the solution effectively bond to unsaturated active "S" atoms along the edges, converting them into H_2 .⁷⁷ Yuan et al. recently reported a 2D-2D MoS₂/gC₃N₄ photocatalyst having an H₂ evolution rate of 1155 μ mol g⁻ h^{-1} . The photoluminescence lifetime (PL) decreased as the concentration of MoS₂ increased, confirming that MoS₂ plays a crucial role in the effective separation of charge carriers.⁷⁸ The chemical vapor deposition (CVD) process was used to synthesize 3D edge-oriented graphene with an edge-rich MoS_2 nanoarray corresponding to gC_3N_4 . The high conductivity and transparency of the 3D graphene layer provide a large exposed surface area for incorporating many photocatalysts, and developed 3D graphene/E-MoS₂ structures exhibit superior optical and electrical characteristics. The maximum H₂ evolution activity of 2232.7 μ mol g⁻¹ h⁻¹ was achieved under white light irradiation.⁷⁹ Binary composites of MoS₂-carbon nitride (MoS₂-CN) have recently been found as a substrate for piezo-photocatalytic hydrogen evolution reactions. The structure of the MoS₂ on CN significantly impacts the piezoelectric activity of the binary composites. The MoS₂ nanosheet acts as a piezo potential generator to induce an electric field on CN; thus, the recombination of the charge carriers is inhibited under low-frequency vortex vibration.⁸ Table 1 outlines the various MoS₂/carbonaceous composites and the synthesis methods and photocatalytic parameters used to produce H_2 by photocatalytic water splitting.

2.3.3. $MoS_2/Metal$ Sulfides. Many metal chalcogenides, such as CdS, In_2S_3 , Bi_2S_3 , and CuS, have narrow band gaps and excellent absorption in the visible light range, making them suitable candidates for photocatalytic H_2O splitting to release hydrogen.^{81–83} However, metal sulfides also had significant drawbacks, such as fast electron—hole pair recombination and serious photocorrosion in photocatalysis. MoS_2 , as a catalyst in association with typical metal chalcogenides, can increase solar energy absorption in the visible range. For example, Li et al. demonstrated cost-effective and efficient photocatalysis based on MoS_2 and CdS nanospheres.⁸⁴ MoS_2 is intimately formed on CdS and has an unusually high H_2 -evolution activity of 37.31 mmol g⁻¹ h⁻¹.

The agglomeration-resistant structure, low overpotential, and the large number of active sites of MoS₂ contribute to the exceptional photocatalytic efficiency of these heterostructures.⁸⁴ The HER activity of MoS₂ nanosheets is linked to the active "S" atoms on the exposed edges rather than the S atoms presented on the basal planes, and this can be increased further by reducing the layer numbers of MoS₂.⁸⁵ In particular, CdS-MoS₂ hybrids have attracted more attention, and several heterogeneous photocatalysts have been generated from CdS nanocrystals by integrating with MoS₂ cocatalysts. For example, few-layered MoS₂ nanosheets loaded with CdS nanorods produce a high H_2 evolution rate (1009 mmol h^{-1} g^{-1}) with an apparent quantum efficiency (AQE) of 71% at 420 nm. The few-layer MoS₂ edges attached to CdS contain the more active sites, minimizing the distance and resistance of the transfer of electrons from the basal plane for the H_2 evolution process.86

Ma et al. also developed a 2D-2D CdS/MoS₂ heterojunction for photocatalytic H₂ evolution reaction. Under visible light, the heterojunctions could attain hydrogen evolution activity of 1.75 mmol g⁻¹ h⁻¹, using an aqueous solution of sulfide and sulfate, and this became 2.03 times greater than pure CdS NSs. The increased activity can be due to the loading of MoS₂ NSs, which effectively promotes the separation of charge carriers.⁸⁷ A possibility of photocatalytic H₂ evolution using biomassderived sacrificial reagents such as glucose has been applied to

a series of flowerlike CdS/MoS₂ binary heterostructure composites. After 900 min of continuous testing, the 40% CdS/MoS₂ catalyst achieved the maximum H₂ evolution rate (55.0 mmol g^{-1} h^{-1}) and maintained high stability. The synergistic interaction of CdS and MoS₂ facilitates effective charge carrier separation. Furthermore, glucose performed as a better sacrificial agent, creating more protons during photocatalysis.⁸⁸ Doping of MoS₂ with heteroatoms is a simple and effective approach for producing an excellent catalyst for H₂ production from water splitting. A Zn-doped few-layered MoS₂ on the surface of CdS was reported. The doped MoS₂ material was demonstrated to be a good cocatalyst for enhancing the photocatalytic activity of CdS. It also facilitates photoinduced charge transfer by providing many active edge sites for catalytic reactions and increasing long-term stability for useful applications. The optimized structure (6 wt % Zn-MoS₂) shows the maximum catalytic activity of 241 mmol h^{-1} g⁻¹, which is ~75 times more than pure CdS.⁸⁹

Similarly, Guo et al. synthesized the nickel subsulfide Ni₃S₂/ MoS₂ heterostructure. The Ni₃S₂ nanostructures were developed on Ni foam via a sulfuration approach by the CVD method, and MoS₂ was formed along with the Ni₃S₂ nanostructures via a hydrothermal process. After synthesizing, the MoS_2 achieved direct interaction with the Ni_3S_2 structure, resulting in effective interfacial interaction. The hybrid enhances broadband absorption covering 300 to 800 nm, yielding a significant increase in hydrogen evolution (540.75 μ mol g⁻¹ h⁻¹).⁹⁰ Zhao et al. synthesized CdS nanorods with MoS_2 nanosheets, and the composite achieved an H_2 production rate of 63.71 and 71.24 mmol g^{-1} h⁻¹ in visible light and stimulated sunlight irradiation, respectively. The resulting heterojunction effectively separates photogenerated holes and electrons. Decorating CdS and MoS₂ helped to reduce the photocorrosion of CdS nanorods by stabilizing the sulphions.⁹¹ Similar results were obtained in another CdS/ MoS₂ heterojunction.⁹²

Multicomponent sulfides form heterostructures with MoS_2 received considerable attention for applications in photocatalytic hydrogen production.^{93,94} By adding a transition metal into the CdS solid solution, photocorrosion of CdS can be eliminated and transition metal doped CdS can be formed. Among these, $Cd_xZn_{1-x}S$ takes more attention due to its excellent photocatalytic activity.

By combining with MoS₂, a new $Cd_xZn_{1-x}S/MoS_2$ heterojunction was synthesized by an electrostatic selfassembly method.⁹⁵ Similar results were also obtained for a 2D/2D ZnIn₂S₄/MoS₂ composite, achieving a H₂ evolution rate of 221.71 μ mol h⁻¹ was achieved under visible light irradiation. The close contact of ZnIn₂S₄ with MoS₂ offers several channels for carrier migration. Furthermore, the active S atoms at exposed edges of MoS₂ give more active sites for proton reduction.⁹⁶ Whereas Chand et al. adopted a two-step process including hydrothermal and simple chemical methods to fabricate MoS₂-ZnIn₂S₄ composites. The H₂ production rate was also increased by adding MoS₂ as a cocatalyst. MoS₂ is used as an oxidation catalyst to strengthen the oxidation halfcell reaction; thus, the overall photocatalytic H₂ evolution is enhanced.⁹⁷

Many other reports have been published incorporating layered MoS_2 with ternary chalcogenides. Hexagonal $ZnIn_2S_4$ has received more attention due to its structural similarity with MoS_2 . It is facile to develop an intimate $2D/2D ZnIn_2S_4/MoS_2$.

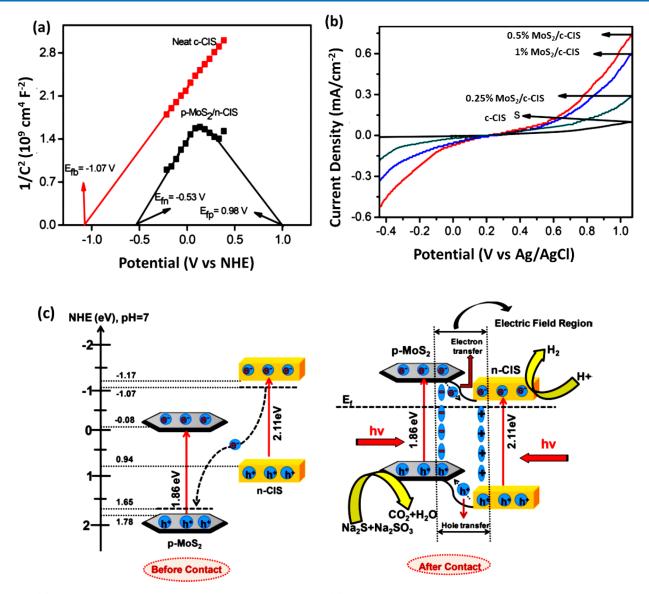


Figure 5. (a) Mott–Schottky plots of pure c-CIS and 0.5% MoS₂/c-CIS. (b) LSV curves of pure c-CIS and different MoS₂/c-CIS composites. (c) Possible charge transfer pathway for H₂ evolution by p–n junction mechanism. Reproduced from ref 105. Copyright 2018 American Chemical Society.

heterojunction by growing a layer of MoS_2 on the hexagonal $ZnInS_4$ surface. The CB position of MoS_2 was less negative than that of $ZnIn_2S_4$, resulting from the direct migration of photogenerated electrons possible through $ZnIn_2S_4$ to MoS_2 .

The optimized 5% $MoS_2/ZnIn_2S_4$ composition exhibits a hydrogen production rate of 3891.6 μ mol g⁻¹ h⁻¹.⁹⁸ Huang et al. adopted a two-step hydrothermal method to construct the $ZnIn_2S_4/MoS_2$ composite. The interaction of MoS_2 can effectively promote electron—hole separation and extends the photocatalytic lifetime.⁹⁹ For the first time, a solvothermal process was adopted for the controlled growth of $ZnIn_2S_4$ nanosheets on few-layered MoS_2 slices to construct the $MoS_2/ZnIn_2S_4$ hybrid. The exfoliated 2D platform framework of MoS_2 slices can be an excellent supporting medium for the in situ growth of $ZnIn_2S_4$ nanosheets, enhancing interfacial charge transfer and minimizing self-agglomeration.¹⁰⁰ Other reports also showed the highly enhanced photocatalytic performance for the H₂-evolution of $ZnIn_2S_4/MoS_2$ composites.^{101,102}

The $ZnIn_2S_4/MoS_2$ composite was synthesized using an environmentally friendly biomolecule-assisted microwave heating method. Using visible light irradiation, a $ZnIn_2S_4/MoS_2$ composite having an optimized weight percentage of MoS_2 was used to reduce harmful Cr (VI) ion to Cr (III) ion.

Furthermore, even following three cyclic tests, this catalyst demonstrated high stability. The $ZnIn_2S_4$ and MoS_2 combine to produce a type II heterostructure responsible for the increased activity.¹⁰³ Similarly, flowerlike p-MoS₂/n-MgIn₂S₄ hybrids were synthesized and studied for photocatalytic efficiency in H₂-evolution and N₂-reduction. By inducing an internal electric current at the interface of two photocatalysts, the p-n heterojunction provides an excellent potential for separating photogenerated charge carriers. MoS₂ nanosheets provide many exposed active sites through S–S bonding on the edges and offer efficient excitons separation.¹⁰⁴ Swain et al. developed another type II heterostructure with excellent charge separation efficiency. A set of roselike p-MoS₂ nanoflowers are decorated with n-type cubic CaIn₂S₄ (c-CIS)

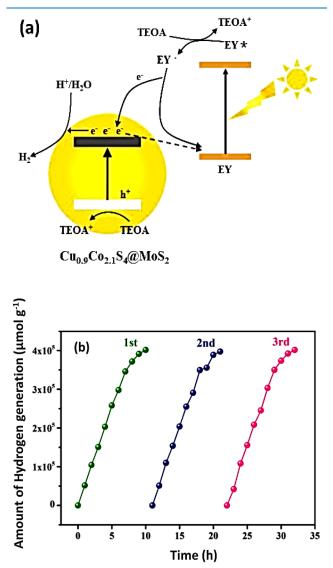

photocatalyst	synthesis method	light source	amount of catalyst	sacrificial reagent	H_2 evolution activity	ref
CdS/MoS ₂	hydrothermal	300 W Xe lamp	20 mg	80 mL aqueous solution contains 8 mL lactic acid	37.31 mmol g ⁻¹ h ⁻¹	84
CdS/MoS ₂	hydrothermal	300 W Xe lamp	20 mg	100 mL aqueous solution contains lactic acid	1009 mmol g ⁻¹ h ⁻¹	86
CdS/MoS ₂	hydrothermal	300 W Xe lamp	50 mg	80 mL aqueous solution contains 0.5 mol $L^{-1}\ Na_2S$ and 0.5 mol $L^{-1}\ Na_2SO_3$	1.75 mmol g ⁻¹ h ⁻¹	87
CdS/MoS ₂	hydrothermal	300 W Xe lamp	0.1 g	100 mL aqueous solution contains 0.1 M glucose	$55 \text{ mmol g}^{-1} \text{ h}^{-1}$	88
Ni_3S_2/MoS_2	CVD and hydrothermal	150 W Xe lamp	0.05 g	40 mL distilled H2O contains 0.1 mol L^{-1} Na2S and 0.1 mol L^{-1} Na2SO3	540.75 μmol g ⁻¹ h ⁻¹	90
$ZnIn_2S_4/MoS_2$	electrostatic self- assembly	visible light	-	36 mL deionized H_2O + 4 mL lactic acid	4.97 mmol g ⁻¹ h ⁻¹	93
$ZnIn_2S_4/MoS_2$	wet chemical method	300 W Xe lamp	25 mg	90 mL DIW H_2O + 10 mL TEA	8898 μmol g ⁻¹ h ⁻¹	94
$ZnIn_2S_4/MoS_2$	solvothermal	300 W Xe lamp	80 mg	100 mL aqueous solution contains 0.35 M $\rm Na_2S$ and 0.25 M $\rm Na_2SO_3$	3891.6 μmol g ⁻¹ h ⁻¹	98
$p\text{-}MoS_2/n\text{-}ZnIn_2S_4$	hydrothermal	150 W Xe lamp	20 mg	100 mL aqueous solution contains 0.35 M $\rm Na_2S$ and 0.25 M $\rm Na_2SO_3$	320.2 μ mol h ⁻¹	102
$ZnIn_2S_4/MoS_2$	hydrothermal	150 W Xe lamp	0.1 g	100 mL aqueous solution contains 0.35 M $\rm Na_2S$ and 0.25 M $\rm Na_2SO_3$	200.1 $\mu mol g^{-1} h^{-1}$	103
$MgIn_2S_4/MoS_2$	hydrothermal	150 W Xe lamp	20 mg	20 mL aqueous solution contains 0.35 M $\rm Na_2S$ and 0.25 M $\rm Na_2SO_3$	570.8 μ mol h ⁻¹	104
$CaIn_2S_4/MoS_2$	hydrothermal	150 W Xe lamp	20 mg	20 mL aqueous solution contains 0.025 M Na ₂ S and 0.025 M Na ₂ SO ₃	602.35 μ mol h ⁻¹	105
MoS ₂ -MOF/Co ₃ O ₄	hydrothermal	300 W Xe lamp	10 mg	15% (v/v) TEOA (30 mL) aqueous solution	629.75 <i>µ</i> mol	106
MoS ₂ @Cd-MOF	solvothermal	300 W Xe lamp	30 mg	150 mL aqueous solution contains 35 mM $\rm Na_2S$ and 18 M $\rm Na_2SO_3$	5587 μmol g ⁻¹ h ⁻¹	108
$\mathrm{Cu}_{0.9}\mathrm{Co}_{2.1}\mathrm{S}_4 @\mathrm{MoS}_2$	hydrothermal	300 W Xe lamp	_	aqueous solution contains TEOA	40156 µmol g ⁻¹ h ⁻¹	110

Table 2. Summarized List of Photocatalytic Hydrogen Evolution of $MoS_2/Metal$ Sulfide Composites and $MoS_2/MOFs$ Composites

micro flowers incorporating different amounts of MoS₂. Highly dispersed MoS₂ nanoflowers with more active edge sites provided the platform for growing CaIn₂S₄, resulting in a hierarchical network $(MoS_2/c-CIS)$ with intimate contact. The p-n heterojunction character of the composite is revealed by electrochemical studies such as Mott-Schottky analysis and LSV curves. The lower slope of 0.5 wt % p-MoS₂/n-CaIn₂S₄ compared to pure $CaIn_2S_4$ indicated the increased donor density capacity, which was the primary source of the photocatalytic performance (Figure 5a). When the potential was applied, pure c-CIS showed a very low photocurrent, i.e., 0.09 mA, although all composites showed a significant photocurrent. The plot is asymmetrical in forward and reversed biasing (Figure 5b). The modified photocatalysts comprising 0.5 wt % p-MoS₂/n-CaIn₂S₄ had a higher H₂ generation rate of 602.35 μ mol h⁻¹, having photocurrent densities of 0.743 mA cm^{-2} . The type II heterojunction photocatalyst was developed to improve charge separation effectiveness by shifting electrons from the upper Fermi level of n-type c-CIS to the lower Fermi level p-type MoS₂ (Figure 5c).¹⁰⁵ Table 2 outlines the various MoS₂/metal sulfides composites and the synthesis methods and photocatalytic parameters used to produce H₂ by photocatalytic water splitting.

2.3.4. $MOS_2/Metal-Organic$ Frameworks (MOFs). Metalorganic frameworks (MOFs), a new class of porous and crystalline materials exhibiting massive coordination centers, have found significant applications in photocatalysis.^{106,107} The photocatalytic activity of MOS_2 in water splitting for H_2 evolution can be enhanced by constructing heterogeneous interfaces with MOFs or MOF-derived metal oxides or sulfides. The sulfurization of the core-shell $MOS_2@Cd-MOF$ constructed a new CdS/MoS₂ heterojunction. The CdS/MoS₂ presents uniform loading of CdS nanoparticles on the MoS₂ flowers. The composite exhibited a higher specific surface area of 78 m² g⁻¹, and the optimized CdS/MoS₂ heterojunction showed an average H₂ evolution rate of 5587 μ mol g⁻¹ h⁻¹. In the heterojunction, the conduction band minimum of MoS₂ is lower than that of CdS, so the photoexcited electrons transferring from CdS to MoS₂ become possible. The MoS₂ was a cocatalyst to trap photoexcited electrons and holes and improve photocatalytic activity.¹⁰⁸

MoS₂ combined with terephthalic acid to form MoS₂-MOF and Co₃O₄ was deposited on these catalytic surfaces in methanol solution under light irradiation to form a MoS2-MOF/Co₃O₄ photocatalyst. MoS₂-MOF constitutes a new type of catalyst that could provide a large specific surface area, pore size, and active sites to improve electron transport efficiency. The deposition of Co₃O₄ further accelerates the charge separation. The MoS₂-MOF structure appears as a leaf, and Co₃O₄ is structured into this system as a venation. This catalytic system has an excellent fluorescence quenching rate and lifetime, and photocatalytic hydrogen evolution reached 629.75 μ mol using an eosin Y-sensitized system; this is a successful example of preparing an organic framework composed of metal sulfides as an H₂ evolution photocatalyst.¹⁰⁶ A simple hydrothermal approach developed a unique 3D nanofibrous aerogel-based MoS2@Co3S4 composites. The heterojunction showed an exceptional H₂-evolution activity of 228.2 μ mol g⁻¹ h⁻¹ and delivered excellent photocatalytic dye degradation toward Cr (VI), sulfamethoxazole, and bacteria.¹⁰⁹ A bimetallic metal–organic frameworks catalyst was coupled with MoS₂ forming a heterojunction of the composition $Cu_xCo_{3-x}S_4@MoS_2$. After optimization, the flowerlike $Cu_{0.9}Co_{2.1}S_4@MoS_2$ catalyst delivered 40156 μ mol g^{-1} h⁻¹ of visible light H₂ production. These structures of $Cu_{0.9}Co_{2.1}S_4@MoS_2$ hybrid can fully expose the catalytic sites and maintain structural stability over a long period. The photocatalytic mechanism sensitized by eosin Y (EY) proceeds via a reductive electron transfer process. TEOA reductively quenches the excited EY molecules to produce EY*. Subsequently, electrons were transferred from the EY* molecule to the conduction band of $Cu_{0.9}Co_{2.1}S_4@MoS_2$, where the protons are reduced to form molecular H₂ (Figure 6a). The stability of the photocatalyst was retained steadily

Figure 6. (a) Photocatalytic process for H_2 production on $Cu_{0.9}Co_{2.1}S_4@MoS_2$ photocatalyst using visible-light irradiation. (b) Stability tests of $Cu_{0.9}Co_{2.1}S_4@MoS_2$ in hydrogen evolution for three cycles under visible irradiation. Reproduced from ref 110. Copyright 2019 American Chemical Society.

after three consecutive cycles with an apparent quantum efficiency of about 3.2% (Figure 6b)¹¹⁰ (Table 2). A MOF-199 modified MoS₂ heterojunction was reported by Qiao et al. to achieve high H₂ evolution via water splitting (626.3 μ mol g⁻¹ h⁻¹). The synthesized MOF/MoS₂ composites show the combined properties of MoS₂ and MOF; thus, the active

sites can be significantly enhanced. Here the MOF-199 acts as a photosensitizer to assist MoS_2 in harvesting visible light by transferring photoexcited electrons to MoS_2 .¹¹¹

2.3.5. Ternary Composites of MoS₂. For photocatalytic H₂ evolution processes, MoS2-based ternary materials have received considerable interest. Because of its numerous active sites and efficient separation of charge carriers, the MoS₂ ternary systems produce more H_2 than binary composites.^{112,113} Zhu et al. has synthesized a ternary CeO₂@ MoS₂/gC₃N₄ catalyst with excellent photocatalytic performance for H₂ production. The optimized 0D/2D composite produced a short and efficient multielectron transfer mechanism. The H₂ evolution rate achieved 65.4 μ mol/h, roughly 8.3 and 17.5-fold higher than pure gC_3N_4 and CeO_2 . The composite also exhibited an extended quantum efficiency of 10.35% at a wavelength of 420 nm.¹¹⁴ Transition metal doping (Co) of MoS₂ effectively tunes the geometry and electronic structure for enhancing HER activity. A ternary CoMoS₂/rGO/gC₃N₄ was constructed by a solvothermal method. The synergistic effect between the nanosheets of gC₃N₄, rGO, and Co-doped MoS₂ enhances the HER activity rate to 684 μ mol g⁻¹ h⁻¹. The enriched electrons on CoMoS₂ with abundant active sites and lower atomic hydrogen absorption energy demonstrated high charge separation efficiency for reducing the protons to H2.115 In another study, a multifunctional ternary photocatalyst of MoS2 was introduced by Kumar et al. They developed a photocatalytic and electrocatalytic H₂ production reaction for the ternary ZnO/MoS₂/RGO heterojunction. As shown in Figure 7a, H₂ evolution increases with increasing the MoS₂-RGO content. The optimized composition achieved the highest H₂ evolution (28.616 mmol g^{-1} h⁻¹). Because it comprises a layered structure containing exposed S atoms at its edge sites with a high affinity toward H^+ ions, the nanosized MoS₂ facilitates H_2 evolution (Figure 7b). During HER reaction, ZnO dissolves in an alkaline sulfide solution and the in situ-generated ZnS enhances interfacial charge transport to MoS₂ and RGO. The photocatalytic process also indicates that the synergistic effect of RGO-MoS₂ nanosheets and in situ formed ZnS efficiently reduce charge recombination in ZnO and significantly accelerates the H_2 evolution reaction (Figure 7c).¹¹⁶ In another system, a noble metal-free heterostructured WS₂-MoS₂ integrated on CdS nanorods served as active sites for H₂ production. By accelerating the photoinduced charge transfer and reducing electron-hole recombination, the WS₂-MoS₂ heterostructure ultrathin nanosheets became an efficient cocatalyst for enhancing the photocatalytic hydrogen evolution rate.¹¹⁷ CdS nanospheres with MoS₂ and NiP ternary nanohybrids were synthesized for the first time by using a hydrothermal process and a MOF-templated approach. The composite has a high photocatalytic H₂ evolution capacity of 72.76 mmol $h^{-1} g^{-1}$ under optimum conditions.¹¹⁸

Yu et al. described a biomolecule-assisted synthesis of CdS/ $MoS_2/graphene$ hollow spheres. L-Cysteine worked as a sulfur source and was important for the self-assembly of the graphene structure to produce the ternary heterostructure. The CdS/ MoS_2 heterojunction developed by in situ MoS_2 growth offers better contact. It allows more photogenerated electrons in CdS to move to the MoS_2 layer and combine with H⁺ to produce H₂ at considerably lower overpotentials.¹¹⁹ Similar results were obtained when MoS_2 was modified with CdS and PANI.¹²⁰ A ternary structure recently comprised of $MoS_2/SiO_2/GO$ was reported as a photocatalytic degradation and H₂ evolution

Review

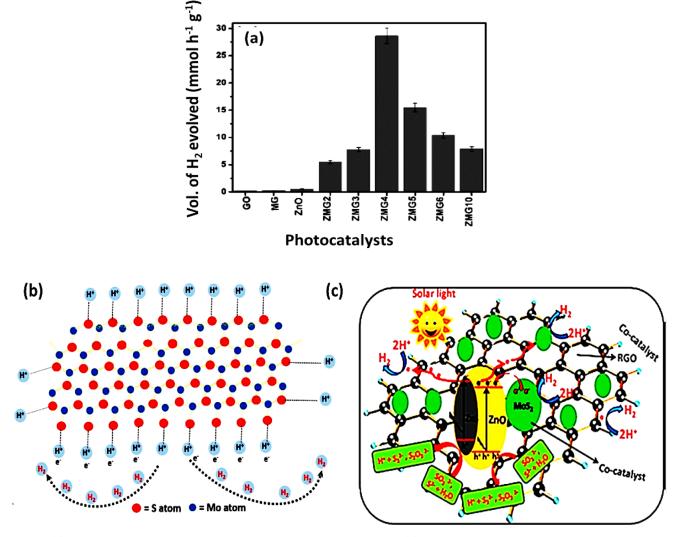
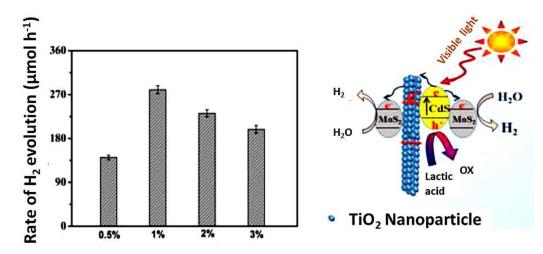



Figure 7. (a) H_2 volume evolved in various ternary ZnO/MoS₂/RGO photocatalysts. (b) Layered structure of nanosized MoS₂ showing exposed edges of sulfur atoms for H⁺ ions in aqueous solution for HER performance. (c) A plausible mechanism for enhanced electron transfer across the ZnO-MoS₂-RGO heterojunction under solar irradiation using Na₂S-Na₂SO₃ as a sacrificial reagent. Reproduced with permission from ref 116. Copyright 2017 Wiley.

catalyst. The as-synthesized lotuslike ternary photocatalyst has a suitable energy band structure for removing cotton pulp black liquor (CPBL) and simultaneously produces H₂ (233.4 μ mol). The loading of MoS₂ onto this SiO₂/GO structure dramatically improves the dispersion and specific surface area of MoS₂, endowing its superior photocatalytic activity.¹²¹ As an excellent noble metal-free photocatalyst for H₂ generation, ternary MoS₂/ZnCdS/ZnS dual nanocomposites were fabricated. The material produces H_2 at a 79.3 mmol g^{-1} h⁻¹ rate and an apparent quantum yield of 47.9 at 420 nm. MoS₂ has a higher specific perimeter and many active sites and easily separates and transports electron-hole pairs with enhanced photocatalytic performance.¹²² A chemical vapor deposition (CVD) method was adopted to construct a novel MoO₂/ MoS₂/TiO₂ ternary structure. Here few-layered MoS₂ nanoflakes were deposited on TiO₂ nanotubes, enabling the directional transfer of photogenerated charge carriers and showing nearly full spectrum absorption with excellent photocatalytic activity for H₂ evolution.¹²³ Feng et al. described a binary Mn_{0.2}Cd_{0.8}S/Co₃O₄ transformed to ternary Mn_{0.2}Cd_{0.8}S/MoS₂/Co₃O₄. By producing a type-II heterojunction, the synergistic interaction of the $Mn_{0.2}Cd_{0.8}S/Co_3O_4$ p-n junction and MoS_2 enhance photocatalytic H₂ production. The few-layered MoS_2 served as a cocatalyst with a low CB position, providing electron transport from the CB of $Mn_{0.2}Cd_{0.8}S$ to the CB of MoS_2 and Co_3O_4 , respectively.¹²⁴


Systematic incorporation of the different constituents in a ternary composite was essential for increasing solar absorption and H₂ evolution reactions. Liu et al. constructed an Au-Cu nanoalloy/TiO₂/MoS₂ ternary composite by combining the Au-Cu nanoalloy and TiO₂/MoS₂ nanosheets. The high surface area of the TiO₂/MoS₂ hybrid improves sunlight absorption, and the Au-Cu nanoparticles serve as a bridge to connect the MoS₂ and TiO₂ via the surface plasmon resonance phenomenon.¹²⁵ Chen et al. synthesized a CdS/MoS₂/Mxenes ternary hybrid for the first time. When irradiated to visible light, the compound exhibits remarkable photocatalytic activity, with an H₂ production rate of 9679 μ mol g⁻¹ h⁻¹.¹²⁶ Another MoS₂/CQDs/ZnIn₂S₄ nanocomposites exhibit enhanced H₂ evolution activity with an apparent quantum efficiency of 25.6%.¹²⁷ The separation of photogenerated charge carriers and the resulting photocatalytic activity was

Figure 8. (Left) Photocatalytic H₂ evolution rate on MoS₂/CdS-TiO₂ nanofibers. (Right) Schematic representation of MoS₂/CdS-TiO₂ nanofibers for photocatalytic H₂ evolution in the presence of visible light irradiation ($\lambda \ge 420$ nm). Reproduced with permission from ref 132. Copyright 2017 Elsevier.

considerably enhanced by the fabrication of 0D/2D heterostructures. Guan et al. developed a ZnIn₂S₄/MoS₂-RGO nanosheets 0D/2D nanocomposite through a fast, lowtemperature hydrothermal process. The MoS₂/RGO nanosheets support inhibiting 0D ZnIn₂S₄ nanoparticles from aggregation in the ternary heterostructure, resulting in a significantly higher H₂ generation than pure ZnIn₂S₄. The ZnIn₂S₄/MoS₂-RGO composite benefited from the superior visible light absorption characteristics of MoS₂ and RGO.¹²⁸ The sheetlike MoS₂/CdS/TiO₂ ternary structure exhibited exceptional stability and a high H_2 evolution rate of 4146 μ mol $g^{-1} h^{-1}$ under visible light. In this case, the conduction band of MoS₂ enhances the transfer of photoexcited electrons from sunlight on CdS to porous TiO₂ for photocatalytic H₂ generation. Conducting MoS₂ can increase the conductivity of the photocatalyst and reduce the photocorrosion of CdS as a hole collector.¹²⁹ Another ternary composite with similar results includes $CuInS_2QDs/TiO_2/MoS_2$ and gC_3N_4/red phosphorus/MoS₂. The H₂ evolution activity in these structures was 1034 μ mol g⁻¹ h⁻¹ and 257.9 μ mol g⁻¹ h⁻¹, respectively.^{130,131} The effective electrospinning and photodeposition process developed a unique ternary structure, MoS₂/CdS-TiO₂ nanofiber. The electro-spun TiO₂ nanofibers have the advantages of improved CdS and MoS₂ dispersion. The influence of MoS₂ deposition on H₂ production was investigated. When the concentration of MoS₂ increases from 0.5 to 1%, the H_2 evolution rate also increases. The photocatalytic performance for $\rm H_2$ evolution in the 1% MoS_2/CdS -TiO₂ sample is significantly higher (280.0 μ mol h^{-1}) than others (Figure 8a). The active hydrogen sites of MoS_2 can minimize the overpotential and enhance photocatalytic H_2 evolution. On the basis of the process (Figure 8b), photoexcited electrons can instantly be transported to the H₂ evolution active sites of MoS₂ and indirectly migrated to MoS₂ through TiO_2 as a bridge, enhancing the H₂ evolution rate. The unique structure of the heterojunction accomplished this and close intrafacial contact.¹³² Ternary composites of CdS/ MoS₂/MWCNTs composite photocatalyst were reported by Jo et al. The few-layered MoS₂ nanosheets exhibit high absorption and photoluminescence. A transient photocurrent density of 11.12 mA cm² illustrates the charge separation ability of the hybrid, confirming the transport of electrons from photoexcited CdS to MoS₂ edges along MWCNTs.¹³³ Similar results were obtained for the bifunctional ternary heterostructure In₂S₃/MoS₂/CdS composite.¹³⁴ The defect-rich MoS₂ in Cd_{1-x}Zn_xS/MoS₂/graphene hollow spheres performs as a low-cost cocatalyst to accelerate the photocatalytic H₂ evolution reaction. Few-layered MoS₂ having exposed active edges can take electrons directly from CdS or as an electron transfer medium via graphene. This heterostructure obtained an optimal H₂ production activity of 2.97 mmol $h^{-1} g^{-1}$ (Table 2).¹³⁵ Furthermore, photocatalysts for HER over $ZnIn_2S_4$ were synthesized using MoS₂ nanosheets on the surface of hollow carbon spheres (C/MoS_2) and Co_3O_4 nanoparticles. The optimized C/MoS₂@ZnIn₂S₄/Co₃O₄ composite shows a photocatalytic H_2 evolution rate of 6.7 mmol g⁻¹ h⁻¹. The enhanced photocatalytic activity is due to a dual photo generated process in which C/MoS₂ produces a Schottky heterojunction involving ZnIn₂S₄ and ZnIn₂S₄ which makes an S-scheme heterojunction with Co₂O₄. Additionally, the coreshell structure of the composite encourages intimate contact between constituents, enabling the separation of charge carriers.¹³⁶ Similar observations were reported in another ZnIn₂S₄ ternary structure containing hollow carbon spheres (HCSs) with MoS_2 . The synergistic effect of MoS_2 and HCSs effectively facilitates H₂ production.¹³⁷ Ran et al. fabricated a microporous "S" doped NH2-UiO-66 bridged ZnIn2S4/MoS2 sheet structure (MS/ZIS) photocatalyst. The synthesized MS/ ZIS photocatalyst exhibits a relatively high H₂ production rate of 5.69 mmol h^{-1} g⁻¹. The "S" doped NU66 creates a new electron transport path, which benefits electron transport to the surface and active edge sites of MoS₂.¹³⁸

A two-step solvothermal approach followed by an in situ deposition technique was used to generate the oxygenincorporated MoS_2 (O- MoS_2) coated on 1D $Cd_{1-x}Zn_xS$ with NiO_x ternary nanostructures. NiO_x nanoparticles were effectively grown on $Cd_{1-x}Zn_xS@O-MoS_2$ to construct unique $Cd_{1-x}Zn_xS@O-MoS_2/NiO_x$ composites. By exchanging the Ssites, oxygen is integrated into the MoS_2 lattice. The longitudinal dimension of 1D CdZnS nanocrystals may serve as an effective channel. If the produced O- MoS_2 contains many structural defects, the photoexcited electrons in CdZnS and O- MoS_2 may also transfer to NiO_{xy} extending the recombination procedure considerably (Figure 9).¹³⁹ For photocatalytic H₂

Figure 9. Schematic showing the photocatalytic HER over $CZ_{0.15}S@$ O-MoS₂/NiO*x*. Reproduced with permission from ref 139. Copyright 2019 Wiley.

production, a ternary heterostructure of Ti₃C₂/MoS₂/CdS was produced. In this report, MoS₂ was formed in situ on Ti₃C₂ via electrostatic self-assembly, and hydrothermal techniques exhibited a vertically aligned framework suitable for more active edge sites for H₂ production. This binary structure served as a cocatalyst for H₂ evolution. It increases electron transport and prevents the recombination of electron-hole pairs formed from CdS by availing of the synergistic interactions of the MoS₂/Ti₃C₂ structures.¹⁴⁰

Noble metals are generally recognized as excellent cocatalysts for photocatalytic H₂O splitting reactions. A substantial surface plasmon resonance (SPR) phenomenon can contribute to a greater absorption cross-section with higher energy density of trapped electrons, resulting in rapid H_2 production in photocatalytic splitting of water.^{141,142} Ternary composites of MoS₂ containing noble metals have attracted much attention due to its high H₂ evolution activity. An Au nanoparticle deposited ternary Au-MoS₂/Ti₃C₂ photocatalyst was prepared using a hydrothermal method. The synthesized composite can modify electron transport paths. Due to the surface plasmon resonance effect of Au nanoparticles, the deposited Au nanoparticles on the surface of MoS2 were excited, thereby improving the photocatalytic hydrogen evolution rate.¹⁴³ Similarly, the Pt-decorated ternary system, MoS₂/Pt-TiO₂, was efficiently developed by depositing MoS₂ nanosheets to Pt-TiO₂ frameworks. Appropriate ratios of MoS₂ and Pt inhibited the recombination of photogenerated charge carriers. The rate of H₂ evolution reaches 4.18 mmol h^{-1} g⁻¹, which is around 41.8 times higher than pure TiO_2 . This unique method provides a path for transferring excited electrons from TiO₂ particles using MoS₂ and Pt nanoparticles as a link to facilitate proton reduction into H_2 .¹⁴⁴ The sequential attachment of Au nanocrystals and CdS onto two-dimensional exfoliated MoS₂ nanosheets (e-MoS₂) was successfully fabricated by forming internally coupled plasmonic metal semiconductor hybrids. Due to their distinct band structure, the CdS and exfoliated MoS₂ will have a wide optical absorption range. Moreover, its 2D morphology allows e- MoS_2 to construct hybrids effectively with exposed surfaces.¹⁴⁵ Similar results were observed for the compound AgInZnS/ MoS₂-GO, which exhibited the maximum hydrogen evolution activity of 1302 μ mol h⁻¹. The higher H₂ evolution activity of the composite arises due to the synergetic effect of graphene

and MoS₂, where graphene facilitates the charge transfer, and MoS₂ provides more active sites for H₂ evolution.¹⁴⁶ The Au nanoparticle-incorporated ternary CdS-Au/MoS₂ core–shell hollow structure demonstrated the strongest visible-light photocatalytic H₂ evolution. Electron and hole recombination was efficiently reduced after the formation of heterostructures by CdS, MoS₂ nanosheets, and Au NPs, resulting in increased H₂ generation. Figure 10 illustrates the reaction pathway for

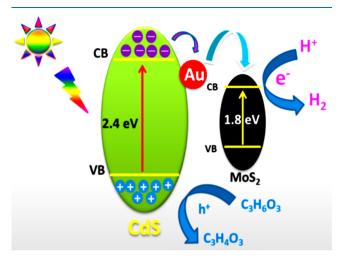


Figure 10. Schematic illustration for the charge separation and enhanced H_2 evolution activity in CdS-Au/MoS₂ composites. Reproduced from ref 147. Copyright 2018 American Chemical Society

 H_2 evolution. The SPR effects of Au NPs stimulate photon absorption and accelerate electron transport, acting as an electron mediator from CdS to MoS₂. During visible light excitation, the electrons produced by CdS are transported into the CB of MoS₂ nanosheets via the Au NPs. MoS₂ nanosheets are electronic sinks and provide active sites for the photocatalytic H₂ evolution reaction.¹⁴⁷

In another study, AuNPs@MoS₂/ZnO nanorod hybrid structure has been successfully synthesized and shows excellent stability for H₂ production. The MoS₂ seemed like a monodispersed sphere with a diameter of ~400 nm and composed of tangled MoS₂ nanosheets. Introducing Au NPs into MoS₂ microspheres results in a core-shell hybrid with improved plasmonic absorption. Adding ZnO nanorods into this system further enhances optical absorption. Mutual interactions between Au NPs (or ZnO nanorods) and MoS₂ spheres efficiently prevent MoS₂ nanosheets from peeling off from the spheres. Thus, after a 32 h test, the hybrid exhibited promising H₂ production activity of 13.56 μ mol g⁻¹ min⁻¹ with increased stability of 91.9%. This is one of the highest photocatalytic activities among the MoS2-based photocatalysts.¹⁴⁸ Table 3 summarizes the different MoS₂/noble metal composites, the synthesis method, and the photocatalytic parameters for producing H₂ from the photocatalytic water splitting.

PHOTOCATALYTIC CARBON DIOXIDE REDUCTION REACTION (PCO₂RR)

Carbon dioxide (CO_2) , the most abundant greenhouse gas, contributed significantly to global warming. Different techniques have been developed to decrease the amount of CO_2 in the atmosphere, including absorption, bioconversion, and

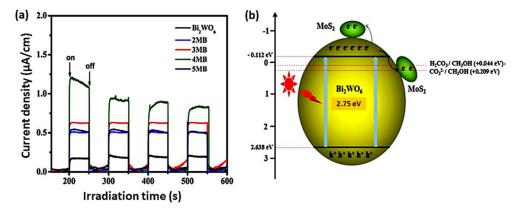
Table 3. Summarized List of Photocatalytic Hydrogen Evolution of Ternary Composites of MoS₂

		7 8		i or remary composites or mos ₂		
photocatalyst	synthesis method	light source	amount of catalyst	sacrificial reagent	H ₂ evolution activity	ref
$CeO_2/MoS_2/g\text{-}C_3N_4$	hydrothermal	3 W UV LEDs	50 mg	80 mL aqueous solution containing 0.5 M Na ₂ SO ₃ and 0.5 M Na ₂ S	65.4 μ mol h ⁻¹	114
$CoMoS_2/rGO/C_3N_4$	solvothermal	300 W Xe lamp	100 mg	mixed solution of TEOA and H_2O (volume ratio equal to $1/5$)	684 μ mol g ⁻¹ h ⁻¹	115
ZnO/MoS ₂ /RGO	hydrothermal	natural sunlight	5.0 mg	45 mL aqueous solution contains 0.1 M $\rm Na_2S$ and 0.1 M $\rm Na_2SO_3$	28.61 mmol g ⁻¹ h ⁻¹	116
CdS/WS ₂ /MoS ₂	hydrothermal	150 W Xe lamp	1.0 mg	20 vol % lactic acid	209.79 mmol $g^{-1} h^{-1}$	117
CdS/Ni ₂ P/MoS ₂	hydrothermal	150 W Xe lamp	1.0 mg	15 mL aqueous solution containing 3 mL lactic acid	72.76 mmol g ⁻¹ h ⁻¹	118
CdS/MoS ₂ /graphene	hydrothermal	300 W Xe lamp	30 mg	45 mL aqueous solution + 5 mL lactic acid	1913 $\mu mol g^{-1} h^{-1}$	119
$MoO_2/MoS_2/TiO_2$	CVD	300 W Xe lamp	-	100 mL aqueous solution contains 0.5 M ethylene glycol and 0.5 M Na ₂ SO ₄	110 $\mu mol h^{-1} cm^{-2}$	123
$Mn_{0.2}Cd_{0.8}S/MoS_2/CoO_4$	solvothermal	300 W Xe lamp	0.05 g	100 mL aqueous solution contains 0.5 mol L^{-1} Na ₂ S and 0.5 mol L^{-1} Na ₂ SO ₃	16.45 mmol g ⁻¹ h ⁻¹	124
Au-Cu nanoalloy-TiO $_2/MoS_2$	hydrothermal and annealing	300 W Xe lamp	5 mg	aqueous solution contains 0.35 M Na ₂ S and 0.25 M Na ₂ SO ₃	$0.75 \text{ mmol g}^{-1} \text{ h}^{-1}$	125
MXene/CdS/MoS ₂	hydrothermal	300 W Xe lamp	5 mg	50 mL aqueous solution contains 0.25 M Na ₂ S and 0.35 M Na ₂ SO ₃	9679 $\mu mol g^{-1} h^{-1}$	126
$ZnIn_2S_4/CQDs/MoS_2$	hydrothermal	300 W Xe lamp	50 mg	100 mL aqueous solution contains 10 mL TEOA	133 μ mol h ⁻¹	127
$ZnIn_2S_4/MoS_2/RGO$	hydrothermal	300 W Xe lamp	50 mg	100 mL 20% ν/ν lactic acid solution	425.1 μmol g ⁻¹ h ⁻¹	128
$CuInS_2\ QDs/TiO_2/MoS_2$	ultrasonic dispersion and annealing	300 W Xe lamp	50 mg	250 mL aqueous solution contains 0.1 M Na ₂ S and 0.1 M Na ₂ SO ₃	1034 μmol g ⁻¹ h ⁻¹	130
g-C ₃ N ₄ /red phosphorus/ MoS ₂	in situ photodeposition	300 W Xe lamp	10 mg	9 mL aqueous solution contains 1 mL TEOA	257.9 μmol g ⁻¹ h ⁻¹	131
$CdS/TiO_2/MoS_2$	electrospinning andphotodeposition	300 W Xe lamp	20 mg	80 mL aqueous solution contains 10 vol % lactic acid	280 μ mol h ⁻¹	132
CdS/MoS ₂ /MWCNTs	hydrothermal	300 W Xe lamp	20 mg	45 mL H_2O + 5 mL lactic acid	676.0 μmol g ⁻¹ h ⁻¹	133
$Cd_{0.8}Zn_{0.2}S/MoS_2/graphene$	hydrothermal	300 W Xe lamp	50 mg	96 mL H_2O + 4 mL lactic acid	2.97 mmol g ⁻¹ h ⁻¹	135
NH2-UiO-66 bridged ZnIn2S4/MoS2	hydrothermal	300 W Xe lamp	40 mg	80 mL aqueous solution contains 10% TEOA	5.69 mmol g ⁻¹ h ⁻¹	138
$Cd_{1-x}Zn_xS@OMoS_2/NiO_x$	hydrothermal	300 W Xe lamp	10 mg	100 mL aqueous solution contains 0.35 M Na ₂ S and 0.25 M Na ₂ SO ₃	66.08 mmol g ⁻¹ h ⁻¹	139
Au-MoS ₂ /Ti ₃ C ₂	hydrothermal	300 W Xe lamp	30 mg	50 mL methanol solution (deionized H ₂ O: 70%, methanol: 30%)	$12000 \ \mu mol g^{-1} h^{-1}$	143
Pt-TiO ₂ /MoS ₂	hydrothermal	300 W Xe lamp	20 mg	100 mL solution contains 0.25 M Na ₂ S and 0.5 M Na ₂ SO ₃	4.18 mmol $g^{-1} h^{-1}$	144
CdS-Au/MoS ₂	hydrothermal	300 W Xe lamp	10 mg	50 mL aqueous solution contains 10% lactic acid		147
Au-ZnO/MoS ₂	hydrothermal	300 W Xe lamp	0.05 g	50 mL deionized $\rm H_2O$ contains 0.3 M $\rm Na_2S$ and 0.3 M $\rm Na_2SO_3$	13.56 $\mu \text{mol g}^{-1} \text{min}^{-1}$	148

photocatalytic reduction.¹⁴⁹⁻¹⁵¹ Compared to photocatalytic H₂ evolution, CO₂ reduction by photocatalysis is a more complicated and challenging photochemical process. The products of photocatalytic CO2 reduction are selective and depend on several conditions. To address the significant issues of the preliminary modification processes, it must tackle both the challenges of thermodynamic and kinetic factors. Being a stable linear molecule, CO₂ has a high bond energy of 750 kJ mol^{-1} . The thermodynamic aspect of photocatalytic CO₂ reduction requires an efficient light-responsive semiconductor that can capture enough external energy to break the C=Obond, essential for producing the C-H bond and synthesizing hydrocarbons.^{152,153} The interactions of intermediates with the surface of the catalyst determine product selectivity in CO₂ reduction. Therefore, to attain maximum output during photocatalytic CO2 reduction, the photocatalyst should first satisfy the fundamental criteria: interact with the substrate molecules to start the transition process on the catalyst's surface (CO_2 or H_2O). Another governing factor is photon

absorption for exciting electrons from the catalyst's valence band (VB) to the conduction band (CB). After excitation, the higher energy electrons in the CB showed higher potentials for CO2 reduction. As a result, catalysts with suitable band gaps (1.4-3 eV) are necessary to attain the maximum CO_2 reduction.^{154,155} Since the first report by Inoue and co-workers on the photocatalytic reduction of $\dot{CO_2}$ to formaldehyde and methanol,¹⁵⁶ various photocatalytic materials have been developed for photocatalytic CO₂ reduction, including metal oxides,^{157,158} sulfides,¹⁵⁹ perovskite-like materials,¹⁶⁰ double-layered hydroxides,¹⁶¹ and layered materials.^{162,163} Among them, the transition metal dichalcogenides (TMD) find their application for CO₂ transformation through electrocatalytic, thermochemical, and photocatalytic ways. Even though photocatalytic H₂ evolution using TMD is well-known, their use in photocatalytic CO2 reduction has been recently reported. Mainly, photocatalytic CO2 reduction using MoS2 is an emerging area that is considered a future photocatalyst for CO_2 reduction and a favorable, cost-effective alternative for

noble metal catalysts, exhibiting remarkable CO_2 electrochemical reduction activity with a high current density and low overpotential. The 2D layered nanostructures enable the modification and tunability of other TMDs. The atomic thickness allows for excellent optical transparency and mechanical flexibility, possibly allowing more surface-active sites over MOS_2 . The small diffusion path length and presence of terminated edges of MOS_2 act as an active center for the CO_2 reduction reaction, facilitating multiple electron transfers.^{164–166}


Interestingly, MoS_2 -based catalysts exhibit superior electrochemical selectivity over alcohols than other catalysts. In particular, alcohol synthesis from syngas has also been evaluated.^{167,168} Asadi et al. in 2014 reported that a layerstacked bulk MoS_2 containing molybdenum (Mo)-terminated edges showed superior CO_2 reduction activity. The metallic nature of MoS_2 , the large d-electron density, and the availability of molybdenum-terminated edges are the primary reasons for the catalytic activity, which facilitates multiple electron transfer processes in the CO_2 reduction pathway.¹⁶⁹ Recently, researchers have focused on photocatalytic CO_2 reduction using MoS_2 -based photocatalysts. Xie et al., for example, showed that the catalytic process over MoS_2 proceeds via a carboxylate pathway, viz., $CO_2 \rightarrow COOH^* \rightarrow CO^* \rightarrow$ CO to produce CO as the final product.

Due to the low energy barrier of CO, the method suggests more excellent selectivity toward CO than other products like HCOOH and CH₃OH. Theoretical calculations indicate that the center of the d band at Mo exposed atoms at the edges is much closer than the metallic catalysts (e.g., Pt); thus, close interactions occurred with the adsorbed species. Meanwhile, the partial density of states (PDOS) of the activated CO_2^* and the exposed Mo atoms shows the strong interactions of Mo and O compared to the Mo-C interactions, which initiates the cleavage of the C=O bond to activate CO_2^* . The exposed edges are responsible for adsorbing the CO₂ molecule and activating the two neighboring Mo atoms. The first transfer of e^- or h^+ across the MoS₂ edges is thought to be a hydrogenation step that controls the reduction pathway. It forms the unstable intermediate HO-CO*, which quickly decomposes to OH* and CO*. The hydrogenation of COOH* controls the product selectivity for CO and other hydrocarbons.¹⁷⁰ Due to the low band gap potential, the charge recombination occurring over the surface of MoS₂ is becoming a significant challenge. Forming products like CH₃OH and CH₄ is also difficult because this involves 6 e⁻ and 8 e⁻ processes, respectively, compared to products like CO, which require only two e⁻ that can be directly used as fuels and transformed into other powers through energyintensive processes.¹⁷¹ Therefore, effective doping and heterojunction formations are required to get a more significant number of electrons available for reducing CO_{2} thereby increasing the efficiency of the MoS₂-based photocatalysts for CO2 reduction. The remaining sections will focus on the roles of MoS₂ and the various transformations that occurred as a transpire photocatalyst in CO₂ reduction reactions.

3.1. MoS_2 Nanostructures for Photocatalytic CO₂ Reduction. The MoS_2 nanoflower-like morphology with dangling bonds at the stacked sheet edge makes it ideal for photocatalytic CO₂ reduction. Meier et al. reported a controllable edge-rich nanoflower morphology with abundant edge sites through a chemical vapor deposition (CVD) method. Photocatalytic activity increases with increasing edge plane density of nanoflower due to unsaturated and dangling bonds. During CVD synthesis, the energy gap (Eg) was separately varied from 1.38 to 1.83 eV. Carbon monoxide (CO) was the most prominent product of CO_2 photoreduction in the presence of H_2O . The production rates of CO nearly doubled after a post-treatment reduction step. This reliable CVD technique contributes to developing efficient and stable 2D-MoS₂ nanoflower materials for CO₂ reduction.¹⁷² MoS₂ nanosheets combined with metal oxides were identified as a cost-effective substitute for noble metal cocatalyst for photocatalytic reduction of CO2. Tu et al. reported the formation of a 2D-MoS₂ nanosheet on TiO₂ nanosheets. To reduce CO_2 by UV-vis light irradiation, pure TiO₂ nanosheets and MoS₂/ TiO₂ hybrid nanosheets were placed in a CO₂-saturated 1 M NaHCO₃ aqueous solution. The CH₃OH production of 0.5 wt % MoS₂/TiO₂ reached to 10.6 μ mol g⁻¹ h⁻¹, which was 2.9 times that of pure TiO₂ (3.7 μ mol g⁻¹ h⁻¹). The fast electron transport from TiO₂ to MoS₂ is indicated by the PL decay lifetime of 0.51 ns. The weak van der Waals interactions in the S-Mo-S layers result in Mo-terminated edges containing high d-electron density, which contributes to excellent and selective photocatalytic CO₂ reduction.¹⁷³ Similarly, few-layered MoS₂ with uniformly formed mesoporous TiO₂ on the surface of 3D graphene showed higher photocatalytic CO₂ reduction. The MoS₂ layers in the 3D aerogel perform as a cocatalyst to minimize the backward charge transfer through graphene to TiO2. The few-layered MoS2 with unsaturated S atoms on exposed edges improved its activity and generated a high electron concentration in the composite between the MoS₂ and graphene layers. The yield of CO formation was up to 92.33 $\mu mol~g^{-1}~h^{-1}.^{174}$

Jia et al. recently synthesized a MoS₂/TiO₂ heterojunction photocatalyst for CO₂ reduction. The ultrathin MoS₂ nanosheets were equally combined with the TiO_2 nanoparticles. The conduction band (CB) edge potential of MoS_2 (-0.93 V) was more negative than that of TiO_2 (-0.55 V), so the photogenerated electrons on the surface of MoS₂ sheets could easily migrate to TiO₂. CO and CH₄ were the major products in the experimental process, and the 10% MoS₂/TiO₂ composite gave the maximum yield. It is about 268.97 μ mol g^{-1} and 49.93 μ mol g^{-1} , respectively.¹⁷⁵ Xu et al. constructed a $1D/2D TiO_2/MoS_2$ nanostructure composite. Here, the MoS₂ sheet arrays with lateral dimensions of 80 nm with thicknesses of up to 2 nm were firmly connected to the surface of TiO_2 nanofiber. The CO₂ adsorption and surface area of the produced samples increase as the MoS₂ loading increases. With increasing CO₂ loading, the CH₄ and CH₃OH synthesis rates increase, reaching a maximum of 2.86 and 2.55 μ mol g⁻¹ h⁻¹, respectively, with a quantum yield of 0.16% for the best $TiO_2/$ MoS_2 sample (TM10). The DFT calculations further demonstrate that MoS₂ has a higher work function than TiO₂, resulting in electron transfer from MoS₂ to TiO₂ upon photoexcitation.176

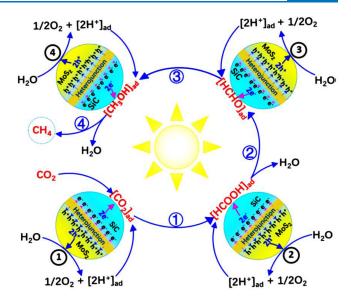
A type II p-n heterojunction charge transfer model was formed by coupling the α -Fe₂O₃ and MoS₂ composite. The loading of α -Fe₂O₃ promoted 2H to 1T MoS₂ phase conversion and increased charge carrier migration. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis revealed a deoxygenation pathway for CO₂ conversion. Several intermediate species are formed upon the adsorption of CO₂, which ultimately results from excellent CO₂ reduction performance to CH₄ and CH₃OH.¹⁷⁷ In

Figure 11. (a) Transient photocurrent response of Bi_2WO_6 and MoS_2/Bi_2WO_6 nanocomposites under visible light irradiation. (b) Proposed CO_2 photoreduction and charge transfer mechanism in the MoS_2/Bi_2WO_6 nanocomposite. Reproduced with permission from ref 178. Copyright 2017 Elsevier.

another system, a few-layered MoS₂-loaded flowerlike Bi₂WO₆ nanocomposite was reported by Dai et al.¹⁷⁸ The as-prepared composites showed an excellent photoreduction of CO₂ into hydrocarbons compared to pure Bi₂WO₆. The intimate interfacial contact between MoS₂ and Bi₂WO₆ significantly influenced the transfer of photogenerated charge carriers. The composite also showed much stronger absorption within the visible region than pure Bi₂WO₆. The photocurrent response of the composites (Figure 11a) provided information about the higher separation efficiency of photogenerated charge carriers. The methanol and ethanol obtained from the optimized sample (0.4 wt % MoS₂) after 4 h of visible light irradiation were 36.7 and 36.6 μ mol g⁻¹, respectively, 1.94 times higher than pure Bi₂WO₆.

A possible photocatalytic mechanism (Figure 11b) was also proposed. It indicated that the CO₃²⁻, HCO₃⁻, and H₂CO₃ formed in the aqueous solutions might serve as reactive carbon sources during the photoreduction process. The $2D-\pi$ conjugated structure could serve as an electron-accepting material and contribute to separating e⁻-h⁺ pairs for CO₂ reduction.¹⁷⁸ A flowerlike MoS₂/Ag/SnO₂ ternary composite that serves as a bifunctional catalyst for photocatalytic CO₂ reduction and degradation of pollutants was recently produced using a simple hydrothermal process. Because of the high specific surface area, several folded edges, and ultrathin nature, Ag nanoparticles and SnO₂ NSs were distributed uniformly on the MoS₂ surface, enhancing photoexcited charge transport. The modified MoS₂/Ag/SnO₂ nanocomposites exhibit outstanding visible-light photocatalytic activity for converting CO₂ to methane (CH₄). The quantum efficiency calculated at λ = 420 nm was found to be 2.38% which substantiates the high CO₂ conversion efficiency of the catalyst. SnO₂ accepts the photogenerated electron of MoS₂ through Ag in the heterojunction, which directly reduces CO2 and produces CH_4 as the final product. Besides CO_2 reduction, the composite also shows high activities for pollutant degradation.¹⁷⁹ Another binary composite using 2D MoS₂ nanosheets with a metal sulfide has been reported. The p-n heterostructure Bi_2S_3 -MoS₂ nanocomposite revealed improved sunlight absorbance and photocatalytic reduction of CO₂. The high catalytic performance was due to the increased S-defects on the MoS₂ surface, hence increasing interfacial interaction between MoS₂ and Bi₂S₃.¹⁸⁰ As mentioned in the first section, graphitic carbon nitride (gC_3N_4) can be an efficient photocatalyst to construct the heterojunction with layered MoS₂. Studies have

been reported regarding the applications of $MoS_2/g-C_3N_4$ nanocomposites for photocatalytic reactions to convert CO_2 to hydrocarbons. Recently, Qin et al. mentioned the synthesis of MoS_2/gC_3N_4 nanocomposites to convert CO_2 into fuels by a simple hydrothermal followed by a calcination process. The synthesized 10% $MoS_2/g-C_3N_4$ heterojunction exhibited the highest conversion efficiency in reducing CO_2 to CO up to 58.59 μ mol g⁻¹ and showed significant stability after a sevenhour reaction. Z-Scheme charge transfer was constructed by correctly coupling the two semiconductor photocatalysts for CO_2 reduction.¹⁸¹


Combining semiconductors with noble metal NPs (Ag, Au, or Pt) caused localized surface plasmon resonance (LSPR) to show great potential in photocatalytic CO₂ reactions. Interestingly, studies have confirmed that the generation of LSPR can optimize the structure of MoS_2 . Sun et al. demonstrated the Au nanoparticle decorated ultrathin MoS₂ nanosheet acts as an excellent heterogeneous catalyst for photocatalytic CO₂ reduction. The DFT calculations also endorse the experimental data. DRIFTS spectrum proposed a reaction pathway for the formation of CH_4 , $CO_2 \rightarrow COO \rightarrow$ $-COOH \rightarrow -HCO \rightarrow -HCOH \rightarrow -CH_2OH \rightarrow -CH_3 \rightarrow$ CH₄ via the hydrogenation process. For the Au-MoS₂ sample, the reaction barrier for forming a COOH intermediate decreases from 2.17 to 1.82 eV, suggesting faster CO₂ reduction.¹⁸² Similarly, a DFT study on Ag-loaded 2H-MoS₂ was stimulated by Ouyang et al. for the photocatalytic reduction of CO₂. From the series of Ag loading on the 2H-MoS₂ nanosheet, the 20 wt % Ag/MoS₂ is most suitable for converting CO2 to CH4. The Gibbs free energy was reduced from 2.830 to 0.925 eV for the 20 wt % Ag/2H-MoS₂ nanocomposite.183

For adjusting the band gap of MoS_2 , phase conversion via chemical exfoliation was used. In a recent study, Zheng et al. reported the synthesis of Ag/2H-MoS₂ composites and their photocatalytic activity in reducing CO₂ to methanol. A wet chemical process was invented to exfoliate MoS_2 nanosheets and transform them from the 1T phase to the 2H phase. This composite obtained a larger specific surface area through Liion intercalation and exfoliation than the hydrothermally synthesized MoS_2 . The Ag nanoparticles can act as a pool for collecting the photogenerated electrons of MoS_2 nanosheets and suppress the recombination of charge carriers. The maximum yield of methanol obtained after 10 h irradiation at 20 wt % Ag/2H-MoS₂ was about 365.08 μ mol g⁻¹ h^{-1.184} A study by Lu et al. demonstrated the use of a noble metal-free catalyst ($Mn_{0.2}Cd_{0.8}S$) wrapped in a series of MoS_2 ultrathin nanosheets for photocatalytic energy conversion. The optimal loading of MoS_2 content was 3%, giving an H₂ production rate of 335.02 μ mol h⁻¹ and a CH₃OH production rate of 2.13 μ mol h⁻¹. The production of methanol increases with increasing the MoS_2 content. The improved photocatalytic efficiency benefits from the intimate interfacial contact between $Mn_{0.2}Cd_{0.8}S$ and MoS_2 , which effectively promotes the separation and transportation of photogenerated charge carriers.¹⁸⁵

Recently, a composite comprising MoS₂ and a halide perovskite material, CsPbBr₃, formed a stable heterojunction. The heterojunction contacts between the two components increased the lifetime confirmed by the PL, surface, and transient photovoltage (SPV, TPV) and DFT studies. The temperature-programmed CO₂ desorption (TPD) analyses showed that introducing MoS₂ increased the ability of the CO₂ uptake of the composite.¹⁸⁶ CO_2 photoreduction and simultaneous H₂ production were achieved by a ternary nanocomposite of MoS₂ and N-containing polymer polypyrrole (PPy) on reduced graphene oxide (rGO). The resulting rGO-MoS₂/PPy nanocomposites reveal that rGO-MoS₂ acts as a rigid template, ensuring consistent growth and heterogeneous nucleation of PPY, thereby increasing their photocatalytic reduction of CO₂ into CH₄, CO, and H₂. Composites containing optimal amounts of PPy (rGO-MoS₂/ PPy-150) exhibited the highest photocatalytic activity to CO (3.95 μ mol g⁻¹ h⁻¹), CH₄ (1.50 μ mol g⁻¹ h⁻¹), and H₂ (4.19 μ mol g⁻¹ h⁻¹), with a quantum yield of 0.30%.¹⁸⁷ Similarly, a simple solvothermal method constructed a novel S-C-S heterojunction by Yin et al. The MoS₂ was assembled into 3Duniform nanoflower balls after a simultaneous coupling connection with rGO and SnS₂. The valence band (VB) positions of pure MoS_2 (1.61 eV) and SnS_2 (1.50 eV) indicate that they can form an effective Z-type heterojunction so that the electrons can quickly be excited from the MoS₂ CB to VB in SnS₂ and thereby to rGO to reduce CO₂ to CO and CH₄.

The multilevel electron transport produces CO and CH₄ up to 68.53 and 50.55 μ mol g⁻¹ h⁻¹, respectively.¹⁸⁸ A binary photocatalyst composed of the SiC@MoS₂ nanoflower was reported by Wang et al. for simultaneous photocatalytic CO₂ reduction and H₂O oxidation under visible light. All the SiC@ MoS₂ samples show much higher CH₄ evolution than the individual components. The optimized samples show the CH₄ evolution up to 323 μ L g⁻¹ h⁻¹ and O₂ evolution of about 620 μ L g⁻¹ h⁻¹ with high photocatalyst stability. The photocatalytic reduction of CO₂ follows the hydrogenation pathway (Figure 12). One CO₂ molecule is converted into one CH₄ by four sequential hydrogenation half-cell reactions. This pathway takes advantage of the photoreduction potential of SiC and the powerful photoreduction ability of MoS₂ nanosheets.¹⁸⁹

Layered double hydroxides (LDH) are a new materials class that has recently attracted much interest. A study by Zhao et al. demonstrated that the heterojunction of MoS₂ with Co-Al-LDH through an electrostatic interaction facilitates the charge transfer and syngas production by controlling the heterojunction concentration. Photogenerated electrons spontaneously transfer from LDH CB to MoS₂, and the syngas ratio (H₂:CO) was precisely turned from 1.3:1 to 15:1 by altering only the catalyst concentration in the photocatalytic CO₂ reduction under visible light.¹⁹⁰

Figure 12. Reaction pathway for photocatalytic CO_2 reduction by H_2O on SiC@MoS₂. Reproduced from ref 189. Copyright 2018 American Chemical Society.

A multidimensional ternary heterojunction of Bi₂S₃/TiO₂/ MoS₂ was reported by Alkanad et al. for the photocatalytic CO₂ reduction reaction where Bi₂S₃ and TiO₂ were embedded and wrapped within the MoS₂ nanosheet. The in situ irradiated photoelectron spectroscopy (ISI-XPS) reveals the switchable feature of the heterostructure. Electron flow follows the Sscheme approach in UV-vis-NIR (CH₃OH and C_2H_5OH as the major products), whereas, in vis-NIR, it forms a type II heterojunction (CH₄ and CO), thus exhibiting a selective photocatalytic CO₂ reduction reaction. Moreover, the quantum efficiency of the system reaches 4.23% at 600 nm wavelength.¹⁹¹ Another higher CO₂ reduction capacity was observed in a ZnO/MoS₂ nanosheet composite where the hollow structure of MoS₂ encapsulates the ZnO nanoparticles and enables multiple refractions of photons in the cell. MoS_2 as a 2D sheet would enhance electron mobility, so the photogenerated electrons and holes are accumulated on the surface of MoS₂. Therefore, CB and VB of MoS₂ simultaneously reduce CO₂ and oxidize H₂O.¹⁹² Metallic or nonmetallic doping creates defects in the MoS₂ lattice and facilitates charge transfer at the interface to facilitate CO₂ reduction. Such a ternary system in which In₂S₃ was decorated with MoO₃@MoS₂ was fabricated for visible light photoreduction of CO_2 to CH_4 and CO. The presence of In_2S_4 induces S-rich sites and O vacancies in the composite for CO₂ reduction, and a maximum yield of CH₄ (29.4 μ mol g⁻¹ h⁻¹) and CO (35.6 μ mol g⁻¹ h⁻¹) was obtained.¹⁹³ Similarly, duel In₂S₄-NiS decorated MoO₃@MoS₂ was reported by Zheng et al. through an in situ sulfurized approach of nonthermal plasma. Increasing the In₂S₄-NiS content into the MoO₃@ MoS_2 system increased the CH₄ yield of 49.11 μ mol g⁻¹ h^{-1.194} Metal–organic frameworks (MOFs) were an excellent platform for developing heterogeneous catalysts for CO₂ reduction. By integrating MoS₂ nanosheets into hierarchically porous defective UiO-66 (d-UiO-66), a composite of d-UiO-66/MoS₂ was prepared for the selective photocatalytic reduction of CO2 to CH3COOH. The unsaturated Mo atoms on the MoS₂ nanosheet would contact d-UiO-66 to form Mo–O–Zr bimetallic sites for selective CO_2 reduction.

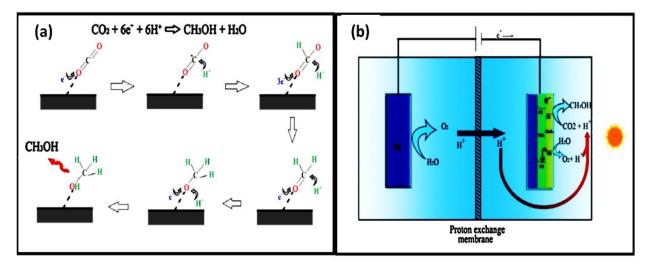


Figure 13. (a) Probable speculation reaction pathway for the reduction of CO_2 to CH_3OH . (b) Mechanism of the PEEC reducing CO_2 process at MoS_2 -rods/TiO₂NTs electrode. Reproduced with permission from ref 198. Copyright 2014 Elsevier.

photocatalyst	synthesis method	light source	amount of catalyst	major products	ref
MoS ₂ nanoflower	CVD	solar simulator	150 mg	СО	172
MoS ₂ /TiO ₂	hydrothermal	300 W Xe lamp	0.1 g	$CH_4 (10.6 \ \mu mol \ g^{-1} \ h^{-1})$	173
TiO ₂ /MoS ₂ /graphene	hydrothermal	300 W Xe lamp	_	CO (92.33 μ mol g ⁻¹ h ⁻¹)	174
MoS ₂ /TiO ₂	hydrothermal	300 W Xe lamp	50 mg	CO (268.97 μ mol g ⁻¹)	175
			C C	CH_4 (49.93 μ mol g ⁻¹)	
TiO ₂ /MoS ₂	hydrothermal	350 W Xe lamp	50 mg	CH_4 (2.86 μ mol g ⁻¹ h ⁻¹)	176
			-	CH ₃ OH (2.55 μ mol g ⁻¹ h ⁻¹)	
α -Fe ₂ O ₃ /MoS ₂	hydrothermal	300 W Xe lamp	50 mg	$CH_4 (121 \ \mu mol \ g^{-1} \ h^{-1})$	177
			-	CH ₃ OH (41 μ mol g ⁻¹ h ⁻¹)	
MoS ₂ /Bi ₂ WO ₆	hydrothermal	300 W Xe lamp	50 mg	CH ₃ OH (36.7 μ mol g ⁻¹)	178
			C C	C_2H_5OH (36.6 μ mol g ⁻¹)	
SnO ₂ /Ag/MoS ₂	hydrothermal	300 W Xe lamp	_	CH_4 (20 μ mol)	179
· · ·				CO (9 μmol)	
Bi ₂ S ₃ /MoS ₂	hydrothermal	150 mW cm ⁻² Xe lamp	0.2 g	CO (40 μ mol g ⁻¹)	180
			-	CH_4 (2.5 $\mu mol g^{-1}$)	
$MoS_2/g-C_3N_4$	hydrothermal	300 W Xe lamp	50 mg	CO (58.59 μ mol g ⁻¹)	181
Au/MoS ₂	hydrothermal and ultrasonic dispersion	300 W Xe lamp	0.025 g	CH_4 (19.38 μ mol g ⁻¹ h ⁻¹)	182
Ag/MoS ₂	hydrothermal, calcination and reduction	200 W Hg lamp	20 mg	CH ₃ OH (365.08 μ mol g ⁻¹ h ⁻¹)	184
MoS ₂ /Mn _{0.2} Cd _{0.8} S	hydrothermal	300 W Xe lamp	50 mg	CH ₃ OH (2.13 μ mol h ⁻¹)	185
polypyrrole/rGO/MoS ₂	hydrothermal and ultrasonication	300 W Xe lamp	50 mg	CO (3.95 μ mol g ⁻¹ h ⁻¹)	187
			-	$CH_4 (1.50 \ \mu mol g^{-1} h^{-1})$	
MoS ₂ /SnS ₂ /rGO	solvothermal	8 W Hg lamp	20 mg	CO (68.53 μ mol g ⁻¹ h ⁻¹)	188
		•	C C	CH_4 (50.55 μ mol g ⁻¹ h ⁻¹)	
SiC/MoS ₂	self-assembly	300 W Xe lamp	10 mg	$CH_4 (323 \ \mu L \ g^{-1} \ h^{-1})$	189
Bi ₂ S ₃ /TiO ₂ /MoS ₂	microwave synthesis	300 W Xe lamp	50 mg	CH ₃ OH (119 μ mol g ⁻¹)	191
				$C_2H_5OH (102.7 \ \mu mol \ g^{-1})$	
MoS ₂ @ZnO	calcination	150 W Hg lamp	0.1 g	CH ₃ OH (170.5 μ mol g ⁻¹)	192
In ₂ S ₃ /MoO ₃ @MoS ₂	in situ sulfurization	200 mW cm ⁻² Xe lamp	10 mg	CH_4 (29.4 μ mol g ⁻¹ h ⁻¹)	193
			-	CO (35.6 μ mol g ⁻¹ h ⁻¹)	
In ₂ S ₃ /NiS/MoO ₃ @MoS ₂	in situ sulfurization	300 W Xe lamp	10 mg	CH_4 (49.11 μ mol g ⁻¹ h ⁻¹)	194
			-	CO (6.19 μ mol g ⁻¹ h ⁻¹)	
ZnO/In ₂ O ₃ /MoS ₂	hydrothermal and ultrasonication	300 W Hg lamp	100 mg	CO $(5.628 \ \mu \text{mol g}^{-1} \text{ h}^{-1})$	196
		~ -	-	CH_4 (3.048 μ mol g ⁻¹ h ⁻¹)	
				-	

Table 4. Summarized List of Phototocatalytic Carbon Dioxide Reduction Using MoS ₂ Compounds
--

By loading the composite on a nylon 66 microfiltration membrane, CH₃COOH was formed with a rate of 39.0 μ mol g⁻¹ h⁻¹ without any sacrificial reagent.¹⁹⁵ Similarly, a new In₂O₃/MoS₂ comodified ZnO nanorods also showed CO₂ photoreduction to CO and CH₄. Surface modification of the

 In_2O_3 and MoS_2 species would create transfer channels for holes and electrons on the photocatalyst's surface and improve the photocatalytic activity.¹⁹⁶

3.2. MoS_2 -Based Photoelectrocatalytic CO_2 Reduction. Cu_2O is a promising low-cost photocatalyst for CO_2

reduction, which showed higher selectivity for methanol formation. But their poor conductivity and charge recombination render their application. To overcome these drawbacks of Cu₂O, heterojunctions with suitable components have been formed. Among these structures, a new MoS2-Cu2O heterostructure was fabricated by Singh et al. Here two types of MoS_2 , p-MoS₂ and n-MoS₂, were used to form heterostructures with CuO: Cu₂O-c (cubic morphology) and Cu₂O-co (cuboctahedron morphology). This new system exhibited both CO₂ reduction and water oxidation capacity. Among these structures, the p-MoS₂/Cu₂O-c type system showed higher activity, following a Z-scheme charge transfer to yield CH₃OH, and DFT calculations further confirm it.¹⁹⁷ Recently, MoS₂-rods/TiO₂ nanotubes (NTs) heterojunction was introduced for exploiting photoenhanced electrocatalytic reduction (PEEC) of CO_2 to methanol.

The resulting composite exhibited excellent optical performance but had an unmatched conduction band minimum (CBM) of -0.15 eV with low Faradaic efficiency. Therefore, developed a new PEEC to reduce CO2 to methanol on MoS2rods/TiO₂ NTs. Adding illumination to the electrocatalytic system improved the Faradaic efficiency to 111.58% more than the same electrocatalytic (EC) system. They introduced a unique mechanism for the PEEC reduction of CO₂ to methanol. The reduction of CO₂ to CH₃OH consists of six electronic reactions, as shown in Figure 13a. On one side, when applying -1.3 V potential on the cathode, the anode potential is 1.82 V versus SCE and can oxidize H₂O to O₂ and protons. Then the protons will reach the cathode for CO_2 EC reduction. Moreover, the catalyst has a valence band (VB) suitable for in situ PC oxidation of H₂O to generate protons. So, it provides more protons for EC reduction of CO₂ to methanol with high efficiency (Figure 13b).¹⁹⁸ Table 4 summarizes the recent progress in photocatalytic CO_2 reduction using MoS₂ nanocomposites.

4. CONCLUSIONS AND PERSPECTIVES

This review focused on 2D layered MoS_2 -based nanostructures for photocatalytic H_2 evolution and CO_2 reduction to hydrocarbon fuels, which have been discussed in the literature over the past several years.

The layered structure of MoS₂ with more active edge sites mainly contributed to its photocatalytic activity. The first part of this review illustrates the H₂ evolution reactions of binary and ternary composites of MoS₂. Binary composites cover the composites of MoS₂ with metal oxides, carbonaceous materials, metal sulfides, and metal-organic frameworks, and ternary heterosystems comprise the combinations of different binary structures with MoS₂. Many studies have shown that combining MoS₂ as a cocatalyst can overcome the barriers to H₂ evolution in many systems. The recombination of charge carriers in several metal oxides is reduced by forming binary structures with MoS_2 , where the tuning of the band gap of metal oxide was achieved.⁶⁰ The 2D/2D binary heterostructures formed with MoS₂ and carbonaceous materials provide a high surface area that significantly benefits higher H₂ evolution activity. Especially the H₂ production was increased to a large extent by introducing thinner and fluffier flowerlike MoS_2 structures in the framework of gC_3N_4 nanosheets.^{76,77} The significant drawbacks like photocorrosion and fast electron-hole recombination of metal sulfides can be effectively eliminated by forming binary structures with MoS_2 . Binary heterostructures formed with multimetal sulfides

like ZnIn₂S₄, CuInS₂, and MgIn₂S₄ with MoS₂ are also widely used as a photocatalyst for H₂ production. The flowerlike morphology of MoS_2 provides an excellent platform for catalytic activity.^{104,105} The peculiar porous structure of MOFs exhibits many coordination centers for H₂ evolution activity, and the association of MoS₂ further increases its activity. Apart from these binary combinations, MoS₂-based ternary composites have much interest due to their efficient multielectron transport mechanism for H₂ production. In these systems, MoS₂ acts as a channel to accept more photogenerated electrons for combining H⁺ to produce H₂ at lower overpotentials.^{131,132} Ternary composites of MoS₂ containing noble metals always show a high H₂ evolution rate with excellent stability. Such plasmonic metal hybrid systems with MoS₂ contributed much better photocatalytic activity than others. For example, an Au-deposited MoS₂/ZnO system exhibited the highest H₂ evolution rate with good stability.¹⁴⁸

Though encouraging progress has been achieved toward photocatalytic H₂ evolution using MoS₂-based nanocomposites, some problems and challenges still exist. One of the crucial difficulties is that MoS₂ alone has negligible photocatalytic activity, and its bulk form is an indirect-band gap semiconductor. The band structure of MoS₂ varies with the number of layers. When it became a monolayer, it gave a high optical absorption coefficient and showed better HER performance. Therefore, more research is needed to explore single-layer MoS₂ as a hydrogen evolution catalyst. The combinations of MoS₂ with other transition metal dichalcogenides (TMDs) such as WS₂, MoSe₂, and WSe₂ would give much better activity. For example, the WS2-MoS2 binary structure with CdS was an efficient noble-metal-free catalyst with high durability. So, the development of such type of hybrid metal sulfide combinations would be more acceptable.199

Furthermore, a few reports are available using MoS_2 with inorganic compounds like Mxenes, giving the highest H_2 evolution rate.¹²⁶ Similar results were obtained for the 3D structure of graphene containing MoS_2 . In this context, efforts for efficient photocatalysts are also to be developed with different compositions for enhanced H_2 evolution performance.⁷⁹ In most cases, H_2 evolution occurs in aqueous solutions using diverse sacrificial reagents like triethanolamine, lactic acid, $Na_2S-Na_2SO_3$ pair, and methanol as electron donors. The use of such sacrificial reagents in MoS_2 -based nanocomposites for H_2 evolution implied a higher cost for future applications on a large scale. So, it is essential to develop MoS_2 -based photocatalysts for H_2 production without using additional sacrificial reagents.

Photocatalytic CO_2 reduction to hydrocarbon fuels mainly involves multielectron transfer mechanisms and includes a variety of redox potentials. As a result, several products can be generated during the photocatalytic CO_2 reduction process, and the product selectivity is related to the chemical pathways of the reaction. Thus, the role of MoS_2 in photocatalytic CO_2 reduction must be better understood to improve selectivity for a particular fuel. Layered MoS_2 has been widely employed to improve photocatalytic H_2 -production performance. However, research on MoS_2 -based photocatalysts for CO_2 reduction is still in the early stages. Efforts in developing layered MoS_2 based photocatalysts capable of simultaneous H_2 evolution and CO_2 conversion are an area of current interest.^{185,187} Besides the photochemical conversion of CO_2 , MoS_2 -based systems for CO_2 reduction using photoelectrochemical splitting are highly required due to their high Faradaic efficiency. Theoretical studies stimulate the electronic properties of MoS_2 -nanocomposites, which will help one to understand the efficiency of the catalyst in photoelectrochemical studies.^{197,198} In short, developing 2D layered MoS_2 -based nanocomposites is a substantial breakthrough in photocatalytic H_2 evolution and CO_2 reduction.

AUTHOR INFORMATION

Corresponding Author

Suresh Mathew – School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India; Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, Kerala 686 560, India; orcid.org/0000-0002-7461-3438; Email: sureshmathewmgu@gmail.com

Authors

- Bhagyalakshmi Balan School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
- Marilyn Mary Xavier School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India; Present Address: Assistant Professor, Department of Chemistry, Morning Star Home Science College, Angamali South, Kerala 683573, India

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.3c02084

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful for the financial support of the University Grants Commission (UGC), India. We also thank Gladiya Mani, Sreerenjini C. R., Sithara Gopinath, and Aswathy V. Kumar for fruitful discussions (Mahatma Gandhi University, Kottayam, Kerala).

REFERENCES

(1) Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Semiconductor Based Photocatalytic Hydrogen Generation. *Chem. Rev.* **2010**, *110*, 6503–6570.

(2) Fan, W.; Zhang, Q.; Wang, Y. Semiconductor-Based Nanocomposites for Photocatalytic H₂ Production and CO₂ Conversion. *Phys. Chem. Chem. Phys.* **2013**, *15*, 2632–2649.

(3) Kamat, P. V.; Bisquert, J. Solar Fuels. Photocatalytic Hydrogen Generation. J. Phys. Chem. C 2013, 117, 14873–14875.

(4) Xiang, Q.; Cheng, B.; Yu, J. Graphene-Based Photocatalysts for Solar-Fuel Generation. *Angew. Chem.* 2015, 54, 11350–11366.

(5) Tahir, M. Photocatalytic Carbon Dioxide Reduction to Fuels in Continuous Flow Monolith Photoreactor using Montmorillonite Dispersed Fe/TiO₂Nanocatalyst. J. Clean. Prod. **2018**, 170, 242–250.

(6) Chen, X.; Jin, F. Photocatalytic Reduction of Carbon Dioxide by Titanium Based Semiconductors to Produce Fuels. *Front. Energy Res.* **2019**, *13*, 207–220.

(7) Kumar, S.; Kumar, A.; Kumar, A.; Krishnan, V. Nanoscale Zinc Oxide Based Heterojunctions as Visible Light Active Photocatalysts for Hydrogen Energy and Environmental Remediation. *Catal. Rev. Sci. Eng.* **2020**, *62*, 346–405.

(8) Yadav, A. A.; Hunge, Y. M.; Kang, S. W. Spongy Ball-Like Copper Oxide Nanostructure Modified by Reduced Graphene Oxide for Enhanced Photocatalytic Hydrogen Production. *Mater. Res. Bull.* **2021**, *133*, 111026. (9) Zhang, Z.; Bian, L.; Tian, H.; Liu, Y.; Bando, Y.; Yamauchi, Y.; Wang, Z. L. Tailoring the Surface and Interface Structures of Copper-Based Catalysts for Electrochemical Reduction of CO_2 to Ethylene and Ethanol. *Small.* **2022**, *18*, 2107450.

(10) Luo, M.; Yang, J.; Li, X.; Eguchi, M.; Yamauchi, Y.; Wang, Z. L. (2023). Insights into Alloy/Oxide or Hydroxide Interfaces in Ni-Mo-Based Electrocatalysts for Hydrogen Evolution Under Alkaline Conditions. *Chem. Sci.* **2023**, *14*, 3400–3414.

(11) Guo, C.; Tian, K.; Wang, L.; Liang, F.; Wang, F.; Chen, D.; Ning, J.; Zhong, Y.; Hu, Y. Approach of Fermi Level and Electron Tap-Level in Cadmium Sulfide Nanorods via Molybdenum Doping with Enhanced Carrier Separation for Boosted Photocatalytic Hydrogen Production. J. Colloid Interface Sci. 2021, 583, 661–671.

(12) Lyulyukin, M. N.; Kurenkova, A. Y.; Bukhtiyarov, A. V.; Kozlova, E. A. Carbon Dioxide Reduction Under Visible Light: A Comparison of Cadmium Sulfide and Titania Photocatalysts. *Mendeleev Commun.* **2020**, *30*, 192–194.

(13) Wang, H.; Li, S.; Wan, Q.; Su, X.; Song, T.; Wang, X.; Wang, J. Highly Efficient Solution Exfoliation of Few-layered Molybdenum Disulfide Nanosheets for Photocatalytic Hydrogen Evolution. *J. Colloid Interface Sci.* **2020**, *577*, 38–47.

(14) Sasan, K.; Lin, Q.; Mao, C.; Feng, P. Open Framework Metal Chalcogenides as Efficient Photocatalysts for Reduction of CO₂ into Renewable Hydrocarbon Fuel. *Nanoscale.* **2016**, *8*, 10913–10916.

(15) Liu, S.; Jiang, T.; Fan, M.; Tan, G.; Cui, S.; Shen, X. Nanostructure Rod-like TiO₂-Reduced Graphene Oxide Composite Aerogels for Highly Efficient Visible Light Photocatalytic CO₂ Reduction. *J. Alloys Compd.* **2021**, *861*, 158598.

(16) Jiang, L.; Li, J.; Wang, K.; Zhang, G.; Li, Y.; Wu, X. Low Boiling Point Solvent Mediated Strategy to Synthesize Functionalized Monolayer Carbon Nitride for Superior Photocatalytic Hydrogen Evolution. *Appl. Catal., B* **2020**, *260*, 118181.

(17) Tian, L.; Min, S.; Wang, F.; Zhang, Z. Enhanced Photocatalytic Hydrogen Evolution on TiO_2 Employing Vanadium Carbide as an Efficient and Stable Co-catalyst. *Int. J. Hydrog. Energy.* **2020**, *45*, 1878–1889.

(18) Wu, Z.; Li, C.; Li, Z.; Feng, K.; Cai, M.; Zhang, D.; Wang, S.; Chu, M.; Zhang, C.; Shen, J.; Huang, Z.; Xiao, Y.; Ozin, G. A.; Zhang, X.; He, L. Niobium and Titanium Carbides (MXenes) as Superior Photothermal Supports for CO₂ Photocatalysis. *ACS Nano* **2021**, *15*, 5696–5705.

(19) Wang, Z.-L.; Choi, J.; Xu, M.; Hao, X.; Zhang, H.; Jiang, Z.;
Zuo, M.; Kim, J.; Zhou, W.; Meng, X.; Yu, Q.; Sun, Z.; Wei, S.; Ye, J.;
Wallace, G. G.; Officer, D. L.; Yamauchi, Y. Optimizing Electron
Densities of Ni-N-C Complexes by Hybrid Coordination for Efficient
Electrocatalytic CO₂ Reduction. *ChemSusChem.* 2020, *13*, 929–937.
(20) Duplock, E. J.; Scheffler, M.; Lindan, P. J. Hallmark of Perfect

Graphene. *Phys. Rev. Lett.* **2004**, *92*, 225502.

(21) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Twodimensional Gas of Massless Dirac Fermions in Graphene. *Nature*. **2005**, 438, 197–200.

(22) Lou, Q.; Lou, G.; Peng, R.; Liu, Z.; Wang, W.; Ji, M.; Chen, C.; Zhang, X.; Liu, C.; Ge, Z. Synergistic Effect of Lewis Base Polymers and Graphene in Enhancing the Efficiency of Perovskite Solar Cells. *ACS Appl. Energy Mater.* **2021**, *4*, 3928–3936.

(23) Reynard, D.; Nagar, B.; Girault, H. Photonic Flash Synthesis of $Mo_2C/Graphene$ Electrocatalyst for the Hydrogen Evolution Reaction. ACS Catal. 2021, 11, 5865–5872.

(24) Wang, H.; Liu, G.; Chen, C.; Tu, W.; Lu, Y.; Wu, S.; O'Hare, D.; Xu, R. Single-Ni Sites Embedded in Multilayer Nitrogen-Doped Graphene Derived from Amino-Functionalized MOF for Highly Selective CO₂ Electroreduction. ACS Sustain. Chem. Eng. **2021**, *9*, 3792–3801.

(25) Liu, L.; Dong, R.; Ye, D.; Lu, Y.; Xia, P.; Deng, L.; Duan, Y.; Cao, K.; Chen, S. Phosphomolybdic Acid-Modified Monolayer Graphene Anode for Efficient Organic and Perovskite Light-Emitting Diodes. *ACS Appl. Mater. Interfaces.* **2021**, *13*, 12268–12277. (26) Tang, Z.; Liu, C.; Huang, X.; Zeng, S.; Liu, L.; Li, J.; Jiang, Y.-G.; Zhang, D. W.; Zhou, P. A Steep-Slope MoS₂/Graphene Dirac-Source Field-Effect Transistor with a Large Drive Current. *Nano Lett.* **2021**, *21*, 1758–1764.

(27) Wang, Y.; Ho, V. X.; Pradhan, P.; Cooney, M. P.; Vinh, N. Q. Interfacial Photogating Effect for Hybrid Graphene-Based Photodetectors. *ACS Appl. Nano Mater.* **2021**, *4*, 8539–8545.

(28) Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Zhou, J.; Lou, X. W. D.; Xie, Y. Defect-Rich MoS₂ Ultra-Thin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution. *Adv. Mater.* **2013**, *25*, 5807–5813.

(29) Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High-Performance Multilayer MoS₂Transisters with Scandium Contacts. *J. Nano Lett.* **2013**, *13*, 100–105.

(30) Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials. *ACS Catalysis.* **2014**, *4*, 3957–3971.

(31) Xing, F.; Wang, C.; Liu, S.; Jin, S.; Jin, H.; Li, J. Interfacial Chemical Bond Engineering in a Direct Z-Scheme $g-C_3N_4/MoS_2$ Heterojunction. ACS Appl. Mater. Interfaces. **2023**, 15, 11731–11740.

(32) Chen, L.; Arshad, M.; Chuang, Y.; Nguyen, T. B.; Wu, C. H.; Chen, C. W.; Dong, C. D. A Novel Nano-heterojunction MoS_2/α -Fe₂O₃ Photocatalysts with High Photocatalytic and Photoelectrochemical Performance under Visible Light Irradiation. *J. Alloys Compd.* **2023**, *947*, 169577.

(33) Wu, C.; Huang, W.; Liu, H.; Lv, K.; Li, Q. Insight into Synergistic Effect of Ti_3C_2 MXene and MoS_2 on Anti-Photocorrosion and Photocatalytic of CdS for Hydrogen Production. *Appl. Catal. B: Environ.* **2023**, 330, 122653.

(34) Wang, Y.; Yang, C.; Guo, L.; Yang, Z.; Jin, B.; Du, R.; Fu, F.; Wang, D. Plate-on-plate Structured $MoS_2/Cd_{0.6}Zn_{0.4}S$ Z-Scheme Heterostructure with Enhanced Photocatalytic Hydrogen Production Activity via Hole Sacrificial Agent Synchronously Strengthen Half-Reactions. J. Colloid Interface Sci. **2023**, 630, 341–351.

(35) Yang, X.; Lan, X.; Zhang, Y.; Li, H.; Bai, G. Rational Design of MoS₂@COF Hybrid Composites Promoting CC Coupling for Photocatalytic CO₂ Reduction to Ethane. *Appl. Catal. B: Environ.* **2023**, 325, 122393.

(36) Nair Gopalakrishnan, V.; Becerra, J.; Mohan, S.; Ahad, J. M.; Béland, F.; Do, T. O. Cobalt-Doped MoS_2 -Integrated Hollow Structured Covalent Organic Framework Nanospheres for the Effective Photoreduction of CO₂ under Visible Light. *Energy amp; Fuels* **2023**, *37*, 2329–2339.

(37) Hisatomi, T.; Kubota, J.; Domen, K. Recent Advances in Semiconductors for Photocatalytic and Photoelectrochemical Water Splitting. *Chem. Soc. Rev.* **2014**, *43*, 7520–7535.

(38) Tollefson, J. Hydrogen Vehicles: Fuel of the Future? *Nature News.* **2010**, *464*, 1262–1264.

(39) Yuan, Y. J.; Lu, H. W.; Yu, Z. T.; Zou, Z. G. Noble-Metal-Free Molybdenum Disulfide Cocatalyst for Photocatalytic Hydrogen Production. *ChemSusChem.* **2015**, *8*, 4113–4127.

(40) Corredor, J.; Rivero, M. J.; Rangel, C. M.; Gloaguen, F.; Ortiz, I. Comprehensive Review and Future Perspectives on the Photocatalytic Hydrogen Production. *J. Chem. Technol. Biotechnol.* **2019**, *94*, 3049–3063.

(41) Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. *Nature*. **1972**, 238, 37–38.

(42) Sharma, R.; Almasi, M.; Nehra, S. P.; Rao, V. S.; Panchal, P.; Paul, D. R.; Jain, I. P.; Sharma, A. Photocatalytic Hydrogen Production using Graphitic Carbon Nitride (GCN): A Precise Review. *Renew. Sust. Energy Rev.* **2022**, *168*, 112776.

(43) Han, B.; Hu, Y. H. MoS_2 as a Co-catalyst for Photocatalytic Hydrogen Production from Water. *Energy Sci. Eng.* **2016**, *4*, 285–304.

(44) Ding, Q.; Song, B.; Xu, P.; Jin, S. Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using MoS_2 and Related Compounds. *Chem.* **2016**, *1*, 699–726.

(45) Xu, J.; Shao, G.; Tang, X.; Lv, F.; Xiang, H.; Jing, C.; Zhou, Z. Frenkel-Defected Monolayer MoS₂ Catalysts for Efficient Hydrogen Evolution. *Nat. Commun.* **2022**, *1*, 1–8.

(46) Eknapakul, T.; King, P. D. C.; Asakawa, M.; Buaphet, P.; He, R.-H.; Mo, S.-K.; Takagi, H.; Shen, K. M.; Baumberger, F.; Sasagawa, T.; Jungthawan, S.; Meevasana, W. Electronic Structure of a Quasi-Freestanding MoS₂ Monolayer. *Nano Lett.* **2014**, *14*, 1312–1316.

(47) Ding, Q.; Song, B.; Xu, P.; Jin, S. Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using MoS_2 and Related Compounds. *Chem.* **2016**, *1*, 699–726.

(48) Xiang, Q.; Yu, J.; Jaroniec, M. Synergetic Effect of MOS_2 and Graphene as Co-catalysts for Enhanced Photocatalytic H₂ Production Activity of TiO₂ Nanoparticles. *J. Am. Chem. Soc.* **2012**, *134*, 6575–6578.

(49) Wang, Y.; Wang, Q.; Zhan, X.; Wang, F.; Safdar, M.; He, J. Visible Light-Driven Type II Heterostructures and their Enhanced Photocatalysis Properties: A Review. *Nanoscale*. **2013**, *5*, 8326–8339. (50) Kadantsev, E. S.; Hawrylak, P. Electronic Structure of a Single

MoS₂ Monolayer. Solid State Commun. **2012**, 152, 909–913.

(51) Wang, F.; Shifa, T. A.; Zhan, X.; Huang, Y.; Liu, K.; Cheng, Z.; Jiang, C.; He, J. Recent Advances in Transition-metal Dichalcogenide Based Nanomaterials for Water Splitting. *Nanoscale.* **2015**, *7*, 19764–19788.

(52) Kubacka, A.; Fernandez-Garcia, M.; Colon, G. Advanced Nanoarchiectures for Solar Photocatalytic Applications. *Chem. Rev.* **2012**, *112*, 1555–1614.

(53) Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic Hydrogen Evolution: MoS₂ Nanoparticles as Catalysts for Hydrogen Evolution. J. Am. Chem. Soc. **2005**, 127, 5308–5309.

(54) Bonde, J.; Moses, P. G.; Jaramillo, T. F.; Nørskov, J. K.; Chorkendorff, I. Hydrogen Evolution on Nano-particulate Transition Metal Sulfides. *Faraday Discuss.* **2009**, *140*, 219–231.

(55) Tsai, C.; Chan, K.; Abild-Pedersen, F.; Nørskov, J. K. Active Edge-Sites in MoSe₂ and WSe₂ Catalysts for Hydrogen Evolution Reaction: A Density Functional Study. *Phys. Chem. Chem. Phys.* **2014**, *16*, 13156–13164.

(56) Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of Active Edge Sites for Electrochemical H_2 Evolution from MoS₂ Nanocatalysts. *Science*. **2007**, 317, 100–102.

(57) Khalid, N. R.; Israr, Z.; Tahir, M. B.; Iqbal, T. Highly Efficient Bi_2O_3/MoS_2 on Heterojunction Photocatalysts for Hydrogen Evolution from Water Splitting. *Int. J. Hydrog. Energy.* **2020**, 45, 8479–8489.

(58) Pramoda, K.; Servottam, S.; Kaur, M.; Rao, C. N. R. Layered Nanocomposites of Polymer-Functionalized Reduced Graphene Oxide and Borocarbonitride with MoS₂ and MoSe₂ and Their Hydrogen Evolution Reaction Activity. *ACS Applied Nano Materials.* **2020**, *3*, 1792–1799.

(59) Wang, W.; Zhu, S.; Cao, Y.; Tao, Y.; Li, X.; Pan, D.; Phillips, D. L.; Zhang, D.; Chen, M.; Li, G.; Li, H. Edge Enriched Ultrathin MoS_2 Embedded Yolk-Shell TiO₂ with Boosted Charge Transfer for Superior Photocatalytic H₂ Evolution. *Adv. Funct. Mater.* **2019**, *29*, 1901958.

(60) Zhou, X.; Licklederer, M.; Schmuki, P. Thin MoS_2 on TiO_2 Nanotube Layers: An Efficient Co-catalyst/Harvesting System for Photocatalytic H₂ Evolution. *Electrochem. Commun.* **2016**, *73*, 33–37.

(61) Agrawal, A. V.; Kumar, R.; Venkatesan, S.; Zakhidov, A.; Yang, G.; Bao, J.; Kumar, M.; Kumar, M. Photoactivated Mixed In-Plane and Edge-Enriched p-Type MoS₂ Flake-Based NO₂ Sensor Working at Room Temperature. *ACS Sens.* **2018**, *3*, 998–1004.

(62) Zhu, Y.; Ling, Q.; Liu, Y.; Wang, H.; Zhu, Y. Photocatalytic H_2 Evolution on MoS_2 -TiO₂ Catalysts Synthesized via Mechanochemistry. *Phys. Chem. Chem. Phys.* **2015**, *17*, 933–940.

(63) Kumar, S.; Kumar, A.; Navakoteswara Rao, V.; Kumar, A.; Shankar, M. V.; Krishnan, V. Defect-Rich MoS₂ Ultrathin Nanosheets-Coated Nitrogen-Doped ZnO Nanorod Heterostructures: An Insight into in-situ-Generated ZnS for Enhanced Photocatalytic Hydrogen Evolution. ACS Appl. Energy Mater. 2019, 2, 5622-5634.

(64) Yuan, Y.-J.; Wang, F.; Hu, B.; Lu, H. W.; Yu, Z. T.; Zou, Z. G. Significant Enhancement in Photocatalytic Hydrogen Evolution from Water Using MoS_2 -Nanosheet-Coated ZnO Heterostructure Photocatalyst. *Dalton Trans.* **2015**, *44*, 10997–11003.

(65) Yuan, Y.-J.; Tu, J.-R.; Ye, Z.-J.; Lu, H.-W.; Ji, Z.-G.; Hu, B.; Li, Y.-H.; Cao, D.-P.; Yu, Z.-T.; Zou, Z.-G. Visible-Light-Driven Hydrogen Production from in a Noble-Metal-Free System Catalyzed by Zinc Porphyrin Sensitized MoS_2/ZnO. *Dyes Pigm.* **2015**, *123*, 285–292.

(66) Shu, X.; Zhao, C.; Zhang, X.; Liu, X.; Xing, Z.; Fang, D.; Wang, J.; Song, Y. Highly Efficient Near-Infrared Light Photocatalytic Hydrogen Evolution Over MoS_2 Supported Ta_2O_5 Combined with an Up-Conversion Luminescence Agent β -Tm³⁺, Yb³⁺: NaYF₄/MoS₂-Ta₂O₅ Nanocomposite. *New J. Chem.* **2018**, *42*, 6134–6143.

(67) Goud, B. S.; Koyyada, G.; Jung, J. H.; Reddy, G. R.; Shim, J.; Nam, N. D.; Vattikuti, S. P. Surface Oxygen Vacancy Facilitated Z-Scheme MoS_2/Bi_2O_3 Heterojunction for Enhanced Visible-Light Driven Photocatalysis-Pollutant Degradation and Hydrogen Production. *Int. J. Hydrog. Energy.* **2020**, *45*, 18961–18975.

(68) Ye, L.; Xu, H.; Zhang, D.; Chen, S. Synthesis of Bilayer MoS_2 Nanosheets by a Facile Hydrothermal Method, and their Methyl Orange Adsorption Capacity. *Mater. Res. Bull.* **2014**, *55*, 221–228.

(69) Opoku, F.; Govender, K. K.; van Sittert, C. G. C. E.; Govender, P. P. Role of MoS_2 and WS_2 Monolayers on Photocatalytic Hydrogen Production and the Pollutant Degradation of $BiVO_4$: A First-principles Study. *New J. Chem.* **2017**, *41*, 11701–11713.

(70) Swain, G.; Sultana, S.; Naik, B.; Parida, K. Coupling of Crumpled-Type Novel MoS_2 with CeO_2 Nanoparticles: A Noble-Metal-Free p-n Heterojunction Composite for Visible Light Photocatalytic H₂ Production. ACS Omega. **2017**, 2, 3745–3753.

(71) Deng, D.; Novoselov, K. S.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X. Catalysis with Two-Dimensional Materials and their Heterostructures. *Nat. Nanotechnol.* **2016**, *11*, 218–230.

(72) Yin, M.; Sun, J.; Li, Y.; Ye, Y.; Liang, K.; Fan, Y.; Li, Z. Efficient photocatalytic Hydrogen Evolution Over MoS₂/Activated Carbon Composite Sensitized by Erythrosin B Under LED Light Irradiation. *Catal. Commun.* **2020**, *142*, 106029.

(73) Koutsouroubi, E. D.; Vamvasakis, I.; Papadas, I. T.; Drivas, C.; Choulis, S. A.; Kennou, S.; Armatas, G. S. Interface Engineering of MoS₂-Modified Graphitic Carbon Nitride Nano-Photocatalysts for an Efficient Hydrogen Evolution Reaction. *ChemPlusChem.* **2020**, *85*, 1379–1388.

(74) Li, N.; Zhou, J.; Sheng, Z.; Xiao, W. Molten Salt-Mediated formation of $g-C_3N_4$ -MoS₂ for Visible-Light-Driven Photocatalytic Hydrogen Evolution. *Appl. Surf. Sci.* **2018**, 430, 218–224.

(75) Zheng, D.; Zhang, G.; Hou, Y.; Wang, X. Layering MoS_2 on Soft Hollow g- C_3N_4 Nanostructures for Photocatalytic Hydrogen Evolution. *APPL CATAL A-GEN.* **2016**, *521*, 2–8.

(76) Ge, L.; Han, C.; Xiao, X.; Guo, L. Synthesis and Characterization of Composite Visible Light Active Photocatalysts MoS_2 -g- C_3N_4 with Enhanced Hydrogen Evolution Activity. *Int. J. Hydrog. Energy.* **2013**, 38, 6960–6969.

(77) Liu, Y.; Xu, X.; Zhang, J.; Zhang, H.; Tian, W.; Li, X.; Tade, M. O.; Sun, H.; Wang, S. Flower-Like MoS₂ on Graphitic Carbon Nitride for Enhanced Photocatalytic and Electrochemical Hydrogen Evolutions. *Appl. Catal., B* **2018**, *239*, 334–344.

(78) Yuan, Y.-J.; Shen, Z.; Wu, S.; Su, Y.; Pei, L.; Ji, Z.; Ding, M.; Bai, W.; Chen, Y.; Yu, Z.-T.; Zou, Z. Liquid Exfoliation of $g-C_3N_4$ Nanosheets to Construct 2D-2D $MoS_2/g-C_3N_4$ Photocatalysts for Enhanced Photocatalytic Hydrogen Production Activity. *Appl. Catal.*, *B* **2019**, 246, 120–128.

(79) Li, X.; Guo, S.; Li, W.; Ren, X.; Su, J.; Song, Q.; Sobrido, A. J.; Wei, B. Edge-Rich MoS₂ Grown on Edge-Oriented Three-Dimensional Graphene Glass for High-Performance Hydrogen Evolution. *Nano Energy.* **2019**, *57*, 388–397.

(80) Masimukku, S.; Tsai, D. L.; Lin, Y. T.; Chang, I. L.; Wu, J. J. Low-Frequency Vibration Induced Piezoelectric Boost to Photo-

catalytic Hydrogen Evolution through 2D-2D-Stacked MoS₂-Carbon Nitride. *Appl. Surf. Sci.* **2023**, *614*, 156147.

(81) Li, Y.; Chen, G.; Zhou, C.; Sun, J. A Simple-Template-Free Synthesis of Nanoporous ZnS-In₂S₃-Ag₂S Solid Solutions for Highly Efficient Photocatalytic H₂ Evolution Under Visible Light. *Chem*-*Comm.* **2009**, *15*, 2020–2022.

(82) Kadam, S. R.; Panmand, R. P.; Sonawane, R. S.; Gosavi, S. W.; Kale, B. B. A Stable Bi_2S_3 -Quantum Dot-Glass Nanosystem: Size Tunable Photocatalytic Hydrogen Production Under Solar Light. *RSC Adv.* **2015**, *5*, 58485–58490.

(83) Wang, Q.; An, N.; Bai, Y.; Hang, H.; Li, J.; Lu, X.; Liu, Y.; Wang, F.; Li, Z.; Lei, Z. High Photocatalytic Hydrogen Production from Methanol Aqueous Solution Using the Photocatalysts CuS/TiO₂. *Int. J. Hydrog. Energy.* **2013**, *38*, 10739–10745.

(84) Li, L.-L.; Yin, X.-L.; Pang, D.-H.; Du, X.-X.; Xue, H.; Zhou, H.-W.; Yao, Q.-X.; Wang, H.-W.; Qian, J.-C.; Yang, J.; Li, D.-C.; Dou, J.-M. One-Pot Synthesis of MoS₂/CdS Nanosphere Heterostructures for Efficient H₂ Evolution Under Visible Light Irradiation. *Int. J. Hydrog. Energy.* **2019**, *44*, 31930–31939.

(85) Lv, Y.; Chen, P.; Foo, J. J.; Zhang, J.; Qian, W.; Chen, C.; Ong, W. J. Dimensionality-Dependent MoS_2 toward Efficient Photocatalytic Hydrogen Evolution: From Synthesis to Modifications in Doping, Surface, and Heterojunction Engineering. *Mater. Today Nano.* **2022**, *18*, 100191.

(86) Xu, X.; Luo, F.; Zhou, G.; Hu, J.; Zeng, H.; Zhou, Y. Self-Assembly Optimization of Cadmium/Molybdenum Sulfide by Cation Coordination Competition Toward Extraordinarily Efficient Photocatalytic Hydrogen Evolution. *J. Mater. Chem. A* **2018**, *6*, 18396–18402.

(87) Ma, S.; Xie, J.; Wen, J.; He, K.; Li, X.; Liu, W.; Zhang, X. Constructing 2D Layered Hybrid CdS Nanosheets/MoS₂ Heterojunctions for Enhanced Visible-Light Photocatalytic H₂ Generation. *Appl. Surf. Sci.* **201**7, *391*, 580–591.

(88) Li, C.; Wang, H.; Ming, J.; Liu, M.; Fang, P. Hydrogen Generation by Photocatalytic Reforming of Glucose with Heterostructured CdS/MoS₂ Composites Under Visible Light Irradiation. *Int. J. Hydrog. Energy.* **2017**, *42*, 16968–16978.

(89) Kumar, D. P.; Seo, S.; Rangappa, A. P.; Kim, S.; Joshi Reddy, K. A.; Gopannagari, M.; Bhavani, P.; Reddy, D. A.; Kim, T. K. Ultrathin layered Zn-doped MoS₂ nanosheets deposited onto CdS nanorods for spectacular photocatalytic hydrogen evolution. *J. Alloys Compd.* **2022**, 905, 164193.

(90) Guo, S.; Yang, L.; Zhang, Y.; Huang, Z.; Ren, X.; Sha, W. E. I.; Li, X. Enhanced Hydrogen Evolution via Interlaced Ni_3S_2/MoS_2 Heterojunction Photocatalysts with Efficient Interfacial Contact and Broadband Absorption. J. Alloys Compd. **2018**, 749, 473–480.

(91) Zhao, H.; Fu, H.; Yang, X.; Xiong, S.; Han, D.; An, X. MoS₂/ CdS Rod-like Nanocomposites as High-Performance Visible Light Photocatalyst for Water Splitting Photocatalytic Hydrogen Production. *Int. J. Hydrog. Energy.* **2022**, *47*, 8247–8260.

(92) Zhang, K.; Mou, Z.; Cao, S.; Meng, T.; Li, J.; Ling, G.; Zhang, X.; Zhou, Z.; Meng, W. MoS₂ Grown in-situ on CdS Nanosheets for Boosted Photocatalytic Hydrogen Evolution under Visible Light. *Int. J. Hydrog. Energy.* **2022**, *47*, 2967–2975.

(93) Huang, L.; Han, B.; Huang, X.; Liang, S.; Deng, Z.; Chen, W.; Peng, M.; Deng, H. Ultrathin 2D/2D ZnIn₂S₄/MoS₂ Hybrids for Boosted Photocatalytic Hydrogen Evolution Under Visible Light. *J. Alloys Compd.* **2019**, 798, 553–559.

(94) Li, W.; Lin, Z.; Yang, G. A 2D Self-Assembled $MoS_2/ZnIn_2S_4$ Heterostructure for Efficient Photocatalytic Hydrogen Evolution. *Nanoscale.* **2017**, *9*, 18290–18298.

(95) Wang, Y.; Yang, C.; Guo, L.; Yang, Z.; Jin, B.; Du, R.; Fu, F.; Wang, D. Plate-on-Plate Structured $MoS_2/Cd_{0.6}Zn_{0.4}S$ Z-Scheme Heterostructure with Enhanced Photocatalytic Hydrogen Production Activity via Hole Sacrificial Agent Synchronously Strengthen Half-reactions. J. Colloid Interface Sci. **2023**, 630, 341–351.

(96) Fang, H.; Cai, J.; Li, H.; Wang, J.; Li, Y.; Zhou, W.; Mao, K.; Xu, Q. Fabrication of Ultrathin Two-Dimensional/Two-Dimensional MoS₂/ZnIn₂S₄ Hybrid Nanosheets for Highly Efficient Visible-LightDriven Photocatalytic Hydrogen Evolution. ACS Appl. Energy Mater. 2022, 5, 8232–8240.

(97) Chand, M.; Rawat, A. S.; Khanuja, M.; Rawat, S. Hydrogen production activity of MoS₂-ZnIn₂S₄ Nanocomposite under Visible Light Irradiation. *Mater. Today: Proc.* **2022**, *66*, 1951–1954.

(98) Zhang, Z.; Huang, L.; Zhang, J.; Wang, F.; Xie, Y.; Shang, X.; Gu, Y.; Zhao, H.; Wang, X. In Situ Constructing Interfacial Contact MoS₂/ZnIn₂S₄ Heterostructure for Enhancing Solar Photocatalytic Hydrogen Evolution. *Appl. Catal.*, B **2018**, 233, 112–119.

(99) Huang, T.; Chen, W.; Liu, T. Y.; Hao, Q. L.; Liu, X. H. $ZnIn_2S_4$ Hybrid with MoS₂: A Non-noble Metal Photocatalyst with Efficient Photocatalytic Activity for Hydrogen Evolution. *Powder Technol.* **2017**, 315, 157–162.

(100) Tian, G.; Chen, Y.; Ren, Z.; Tian, C.; Pan, K.; Zhou, W.; Fu, H. Enhanced Photocatalytic Hydrogen Evolution over Hierarchical Composites of $ZnIn_2S_4$ Nanosheets Grown on MoS_2 Slices. *Chem.*—*Asian J.* **2014**, *9*, 1291–1297.

(101) Wei, L.; Chen, Y.; Lin, Y.; Wu, H.; Yuan, R.; Li, Z. MoS_2 as Non-Noble-Metal Co-catalyst for Photocatalytic Hydrogen Evolution over Hexagonal ZnIn₂S₄ Under Visible Light Irradiations. *Appl. Catal., B* **2014**, *144*, 521–527.

(102) Swain, G.; Parida, K. Design of a Novel p-MoS₂@n-ZnIn₂S₄ Heterojunction Based Semiconducting Photocatalyst Towards Photocatalytic HER. *Mater. Today: Proc.* **2021**, *35*, 268–274.

(103) Pudkon, W.; Bahruji, H.; Miedziak, P. J.; Davies, T. E.; Morgan, D. J.; Pattisson, S.; Kaowphong, S.; Hutchings, G. J. Enhanced Visible-Light-Driven Photocatalytic H₂ Production and Cr (VI) Reduction of a ZnI_2S_4/MoS_2 Heterojunction Synthesized by the Bio-molecule Assisted Microwave Heating Method. *Catal. Sci. Technol.* **2020**, *10*, 2838–2854.

(104) Swain, G.; Sultana, S.; Parida, K. Constructing a Novel Surfactant Free MoS_2 Nanosheet Modified $MgIn_2S_4$ Marigold Microflower: An Efficient Visible-Light-Driven 2D-2D p-n Heterojunction Photocatalyst Toward HER and pH Regulated NRR. ACS Sustain. Chem. Eng. **2020**, *8*, 4848–4862.

(105) Swain, G.; Sultana, S.; Moma, J.; Parida, K. Fabrication of Hierarchical Two-Dimensional MoS_2 Nanoflowers Decorated upon Cubic $CaIn_2S_4$ Microflowers: Facile Approach to Construct Novel Metal-Free p-n Heterojunction Semiconductors with Superior Charge Separation Efficiency. *Inorg. Chem.* **2018**, *57*, 10059–10071.

(106) Fan, K.; Jin, Z.; Wang, G.; Yang, H.; Liu, D.; Hu, H.; Lu, G.; Bi, Y. Distinctive Organized Molecular Assemble of MoS_2 , MOF, and Co_3O_4 , for Efficient Dye-Sensitized Photocatalytic H₂ Evolution. *Catal. Sci. Technol.* **2018**, *8*, 2352–2363.

(107) Jin, Z.; Wang, Z.; Yuan, H.; Han, F. Inseting MOF into flaky CdS Photocatalyst Forming Special Structure and Active Sites for Efficient Hydrogen Production. *Int. J. Hydrog. Energy.* **2019**, *44*, 19640–19649.

(108) Lin, L.; Huang, S.; Zhu, Y.; Du, B.; Zhang, Z.; Chen, C.; Wang, X.; Zhang, N. Construction of CdS/MoS₂ Heterojunction from Core-Shell MoS₂@Cd MOF for Efficient Photocatalytic Hydrogen Evolution. *Dalton Trans.* **2019**, *48*, 2715–2721.

(109) Qiu, J.; Zheng, W.; Yuan, R.; Yue, C.; Li, D.; Liu, F.; Zhu, J. A Novel 3D Nanofibrous Aerogel-Based $MoS_2@Co_3S_4$ Heterojunction Photocatalyst for Water Remediation and Hydrogen Evolution Under Stimulated Solar Irradiation. *Appl. Catal., B* **2020**, *264*, 118514.

(110) Ma, B.; Chen, T.-T.; Li, Q.-Y.; Qin, H.-N.; Dong, X.-Y.; Zang, S.-Q. Bimetal-Organic-Framework-Derived Nanohybrids Cu_{0.9}Co_{2.1}S₄@MoS₂ for High-Performance Visible-Light-Catalytic Hydrogen Evolution Reaction. ACS Appl. Energy Mater. **2019**, *2*, 1134–1148.

(111) Qiao, Z.; Wang, W.; Liu, N.; Huang, H.-T.; Karuppasamy, L.; Yang, H.-J.; Liu, C.-H.; Wu, J. J. Synthesis of MOF/MoS₂ Composite Photocatalysts with Enhanced Photocatalytic Performance for Hydrogen Evolution from Water Splitting. *Int. J. Hydrog. Energy.* **2022**, 47, 40755–40767.

(112) Tahir, M. B. Construction of MoS₂/CND-WO₃ Ternary Composite for Photocatalytic Hydrogen Evolution. J. Inorg. Organomet. Polym. Mater. **2018**, 28, 2160–2168.

(113) Kumar, D. P.; Hong, S.; Reddy, D. A.; Kim, T. K. Ultrathin MoS₂ Layers Anchored Exfoliated Reduced Graphene Oxide Nanosheet Hybrid as a Highly Efficient Co-catalyst for CdS Nanorods Towards Enhanced Photocatalytic Hydrogen Production. *Appl. Catal., B* **2017**, *212*, 7–14.

(114) Zhu, C.; Wang, Y.; Jiang, Z.; Xu, F.; Xian, Q.; Sun, C.; Tong, Q.; Zou, W.; Duan, X.; Wang, S. CeO_2 Nanocrystal Modified Layered $MoS_2/g-C_3N_4$ as 0D/2D Ternary Composite for Visible Light Photocatalytic Hydrogen Evolution: Interfacial Consecutive Multystep Electron Transfer and Enhanced H_2O Reactant Adsorption. *Appl. Catal., B* **2019**, *259*, 118072.

(115) Xu, X.; Si, Z.; Liu, L.; Wang, Z.; Chen, Z.; Ran, R.; He, Y.; Weng, D. Co- $MoS_2/rGO/C_3N_4$ Ternary Heterojunctions Catalysts with High Photocatalytic Activity and Stability for Hydrogen Evolution Under Visible Light Irradiation. *Appl. Surf. Sci.* **2018**, 435, 1296–1306.

(116) Kumar, S.; Reddy, N. L.; Kushwaha, H. S.; Kumar, A.; Shankar, M. V.; Bhattacharyya, K.; Halder, A.; Krishnan, V. Efficient Electron Transfer Across a ZnO-MoS₂-Reduced Graphene Oxide Heterojunction for Enhanced-Sunlight Driven Photocatalytic Hydrogen Evolution. *ChemSusChem.* **201**7, *10*, 3588–3603.

(117) Reddy, D. A.; Park, H.; Ma, R.; Kumar, D. P.; Lim, M.; Kim, T. K. Heterostructured WS_2 -MoS₂ Ultrathin nanosheets Integrated on CdS Nanorods to Promote Charge Separation and Migration and Improve Solar-Driven Photocatalytic Hydrogen Evolution. *ChemSuschem.* **2017**, *10*, 1563–1570.

(118) Choi, J.; Amaranatha Reddy, D.; Han, N. S.; Jeong, S.; Hong, S.; Praveen Kumar, D.; Song, J. K.; Kim, T. K. Modulation of Charge Carrier Pathways in CdS Nanospheres by Integrating MoS₂ and NiP for Improved Migration and Separation Toward Enhanced Photocatalytic Hydrogen Evolution. *Catal. Sci. Technol.* **2017**, *7*, 641–649. (119) Yu, X.; Du, R.; Li, B.; Zhang, Y.; Liu, H.; Qu, J.; An, X.

Biomolecule-Assisted Self-Assembly of CdS/MoS₂/Graphene Hollow Spheres as High-Efficiency Photocatalysts for Hydrogen Evolution without Noble Metals. *Applied Catalysis B: Environmental.* **2016**, *182*, 504–512.

(120) Sasikala, R.; Gaikwad, A. P.; Jayakumar, O. D.; Girija, K. G.; Rao, R.; Tyagi, A. K.; Bharadwaj, S. R. Nanohybrid MoS₂-PANI-CdS Photocatalyst for Hydrogen Evolution from Water. *Colloids Surf, A PhysicochemEng. Asp.* **2015**, *481*, 485–492.

(121) Sun, J.; Maimaiti, H.; Zhai, P.; Zhang, H.; Feng, L.; Bao, J.; Zhao, X. Preparation of a Coal-Based $MoS_2/SiO_2/GO$ Composite Catalyst and Its Performance in the Photocatalytic Degradation of Wastewater and Hydrogen Production. *Langmuir.* **2022**, *38*, 3305–3315.

(122) Dong, J.; Fang, W.; Yuan, H.; Xia, W.; Zeng, X.; Shangguan, W. Few-Layered $MoS_2/ZnCdS/ZnS$ Heterostructures with an Enhanced Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials. **2022**, *5*, 4893–4902.

(123) Wang, J.; Zhu, H.; Tang, S.; Li, M.; Zhang, Y.; Xing, W.; Xue, Q.; Yu, L. Sandwich Structure MoO₂/MoS₂/TiO₂ Photocatalyst for Superb Hydrogen Evolution. *J. Alloys Compd.* **2020**, *842*, 155869.

(124) Feng, H. Q.; Xi, Y.; Xie, H. Q.; Li, Y. K.; Huang, Q. Z. An Efficient Ternary $Mn_{0.2}Cd_{0.8}S/MoS_2/Co_3O_4$ Heterojunction for Visible-Light-Driven Photocatalytic Hydrogen Evolution. *Int. J.* Hydrog. Energy. **2020**, 45, 10764–10774.

(125) Liu, Y.; Xu, C.; Xie, Y.; Yang, L.; Ling, Y.; Chen, L. Au-Cu Nanoalloy/ TiO_2/MOS_2 Ternary Hybrid with Enhanced Photocatalytic Hydrogen Production. J. Alloys Compd. **2020**, 820, 153440. (126) Chen, R.; Wang, P.; Chen, J.; Wang, C.; Ao, Y. Synergistic

Effect of MoS_2 and MXene on the Enhanced H_2 Evolution Performance of CdS Under Visible Light Irradiation. *Appl. Surf. Sci.* **2019**, 473, 11–19.

(127) Wang, B.; Deng, Z.; Fu, X.; Li, Z. MoS₂/CQDs Obtained by Photoreduction for Assembly of a Ternary MoS₂/CQDs/ZnIn₂S₄ Nanocomposite for Efficient Photocatalytic Hydrogen Evolution Under Visible Light. *J. Mater. Chem. A* **2018**, *6*, 19735–19742.

(128) Guan, Z.; Wang, P.; Li, Q.; Li, G.; Yang, J. Constructing a $ZnIn_2S_4$ Nanoparticle/MoS₂-RGO Nanosheet 0D/2D Heterojunction

for Significantly Enhanced Visible Light Photocatalytic H₂ Production. *Dalton Trans.* **2018**, 47, 6800–6807.

(129) Du, J.; Wang, H.; Yang, M.; Zhang, F.; Wu, H.; Cheng, X.; Yuan, S.; Zhang, B.; Li, K.; Wang, Y.; Lee, H. Highly Efficient Hydrogen Evolution Catalysis Based on $MoS_2/CdS/TiO_2$ Porous Composites. *Int. J. Hydrog. Energy.* **2018**, *43*, 9307–9315.

(130) Yuan, Y.-J.; Fang, G.; Chen, D.; Huang, Y.; Yang, L.-X.; Cao, D.-P.; Wang, J.; Yu, Z.-T.; Zou, Z.-G. High Light Harvesting Efficiency CuInS₂ quantum dots/TiO₂/MoS₂ Photocatalysts for Enhanced Visible Light Photocatalytic Hydrogen Production. *Dalton Trans.* **2018**, 47, 5652–5659.

(131) Zhao, H.; Sun, S.; Wu, Y.; Jiang, P.; Dong, Y.; Xu, Z. J. Ternary Graphitic Carbon Nitride/Red Phosphorous/Molybdenum Disulfide Heterostructure: An Efficient and Low-Cost Photocatalyst for Visible-Light -Driven H_2 Evolution from Water. *Carbon.* 2017, 119, 56–61.

(132) Qin, N.; Xiong, J.; Liang, R.; Liu, Y.; Zhang, S.; Li, Y.; Li, Z.; Wu, L. Highly Efficient Photocatalytic H₂ Evolution over MoS₂/CdS-TiO₂ Nanofibers Prepared by an Electrospinning Mediated Photoreduction Method. *Appl. Catal., B* **201**7, *202*, 374–380.

(133) Jo, W.-K.; Sagaya Selvam, N. C. Fabrication of Photostable Ternary CdS/MoS₂/MWCNTs Hybrid Photocatalysts with Enhanced H₂ Generation Activity. *Appl. Catal. A Gen.* **2016**, 525, 9–22. (134) Jiang, W.; Liu, Y.; Zong, R.; Li, Z.; Yao, W.; Zhu, Y. Photocatalytic Hydrogen Generation on Bifunctional Ternary Heterostructured $In_2S_3/MoS_2/CdS$ Composites with High Activity and Stability Under Visible Light Irradiation. *J. Mater. Chem. A* **2015**, 3, 18406–18412.

(135) Du, R.; Zhang, Y.; Li, B.; Yu, X.; Liu, H.; An, X.; Qu, J. Biomolecule-Assisted Synthesis of Defect-Mediated $Cd_{1,x}Zn_xS/MoS_2/$ Graphene Hollow Spheres for Highly Efficient Hydrogen Evolution. *Phys. Chem. Chem. Phys.* **2016**, *18*, 16208–16215.

(136) Yan, W.; Xu, Y.; Hao, S.; He, Z.; Wang, L.; Wei, Q.; Xu, J.; Tang, H. Promoting Charge Separation in Hollow-Structured C/ $MoS_2@ZnIn_2S_4/Co_3O_4$ Photocatalysts via Double Heterojunctions for Enhanced Photocatalytic Hydrogen Evolution. *Inorg. Chem.* **2022**, *61*, 4725–4734.

(137) Xu, Y.; Yan, A.; Jiang, L.; Huang, F.; Hu, D.; Duan, G.; Zheng, F. $MoS_2/HCSs/ZnIn_2S_4$ Nanocomposites with Enhanced Charge Transport and Photocatalytic Hydrogen Evolution Performance. *J. Alloys Compd.* **2022**, 895, 162504.

(138) Ran, Q.; Yu, Z.; Jiang, R.; Qian, L.; Hou, Y.; Yang, F.; Li, F.; Li, M.; Sun, Q.; Zhang, H. Path Electron Transfer Created in S-Doped NH₂-UiO-66 Bridged $ZnIn_2S_4/MoS_2$ Nanosheet Heterostructure for Boosting Photocatalytic Hydrogen Evolution. *Catal. Sci. Technol.* **2020**, *10*, 2531–2539.

(139) Lin, H.; Sun, B.; Wang, H.; Ruan, Q.; Geng, Y.; Li, Y.; Wu, J.; Wang, W.; Liu, J.; Wang, X. Unique 1D $Cd_{1,x}Zn_xS@O-MoS_2/NiOx$ Nanohybrids: Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution via Integrated Structural Regulation. *Small.* **2019**, *15*, 1804115.

(140) Liu, X.; Wang, B.; Heng, Q.; Chen, W.; Li, X.; Mao, L.; Shangguan, W. Promoted Charge Separation on 3D Interconnected $Ti_3C_2/MoS_2/CdS$ Composite for Enhanced Photocatalytic H2 Production. *Int. J. Hydrog. Energy.* **2022**, 47, 8284–8293.

(141) Huang, X.; El-Sayed, M. A. Gold Nanoparticles: Optical Properties and Implementations in Cancer Diagnosis and Photo-thermal Therapy. J. Adv. Res. 2010, 1, 13–28.

(142) Pany, S.; Naik, B.; Martha, S.; Parida, K. Plasmon Induced Nano Au Particle Decorated over S, N-Modified TiO_2 Exceptional Photocatalytic Hydrogen Evolution Under Visible Light. *ACS Appl. Mater. Interfaces.* **2014**, *6*, 839–846.

(143) Zhang, J.; Liu, M.; Wang, Y.; Shi, F. Au/ MoS_2/Ti_3C_2 Composite Catalyst for Efficient Photocatalytic Hydrogen Evolution. *CrystEngComm.* **2020**, *22*, 3683–3691.

(144) Li, S.; Pu, T.; Wang, J.; Fang, X.; Liu, Y.; Kang, S.; Cui, L. Efficient Visible-Light-Driven Hydrogen Evolution over Ternary $MoS_2/Pt-TiO_2$ Photocatalyst with Low Overpotential. *Int. J. Hydrog. Energy.* **2018**, *43*, 16534–16542.

(145) Wi, D. H.; Park, S. Y.; Lee, S.; Sung, J.; Hong, J. W.; Han, S. W. Metal-Semiconductor Ternary Hybrids for Efficient Visible-Light Photocatalytic Hydrogen Evolution. *J. Mater. Chem. A* 2018, *6*, 13225–13235.

(146) Huang, T.; Hua, Y.; Yao, J.; Luo, Y.; Liu, X. The Synergetic Effect of Graphene and MoS_2 on AgInZnS for Visible-Light-Driven Photocatalytic H₂ Evolution. *Mater. Chem. Phys.* **2018**, *212*, 506–512.

(147) Chava, R. K.; Do, J. Y.; Kang, M. Smart Hybridization of Au Coupled CdS Nanorods with Few Layered MoS₂ Nanosheets for High-Performance Photocatalytic Hydrogen Evolution Reaction. ACS Sustain. Chem. Eng. **2018**, *6*, 6445–6457.

(148) Guo, S.; Li, X.; Zhu, J.; Tong, T.; Wei, B. Au NPs@MoS₂ Sub-Micrometer Sphere-ZnO Nanorod Hybrid Structures for Efficient Photocatalytic Hydrogen Evolution with Excellent Stability. *Small.* **2016**, *12*, 5692–5701.

(149) Cowan, A. J.; Durrant, J. R. Long-Lived Charge Separated States in Nanostructured Semiconductor Photoelectrodes of the Production of Solar Fuels. *Chem. Soc. Rev.* **2013**, *42*, 2281–2293.

(150) Izumi, Y. Recent Advances in the Photocatalytic Conversion of Carbon Dioxide to Fuels with Water and/or Hydrogen Using Solar Energy and Beyond. *Coord. Chem. Rev.* **2013**, *257*, 171–186.

(151) Yu, J.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced Photocatalytic CO_2 -Reduction Activity of Anatase TiO_2 by Co-exposed {001} and {101} Facets. *J. Am. Chem. Soc.* **2014**, *136*, 8839–8842.

(152) Hoffmann, M. R.; Moss, J. A.; Baum, M. M. Artificial Photosynthesis: Semiconductor Photocatalytic Fixation of CO_2 to Afford Higher Organic Compounds. *Dalton Trans.* **2011**, *40*, 5151–5158.

(153) Sun, H.; Wang, S. Research Advances in the Synthesis of Nanocarbon-Based Photocatalysts and their Applications for Photocatalytic Conversion of Carbon Dioxide to Hydrocarbon Fuels. *Energy Fuels.* **2014**, *28*, 22–36.

(154) Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Cocatalysts for Selective Photoreduction of CO_2 into Solar Fuels. *Chem. Rev.* **2019**, *119*, 3962–4179.

(155) Xiong, Z.; Lei, Z.; Li, Y.; Dong, L.; Zhao, Y.; Zhang, J. A Review on Modification of Facet-Engineered TiO_2 for Photocatalytic CO₂ Reduction. *J. Photochem. Photobiol.* C **2018**, *36*, 24–47.

(156) Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powders. *Nature.* **1979**, *277*, 637–638.

(157) Singh, S.; Modak, A.; Pant, K. K. CO_2 Reduction to Methanol Using a Conjugated Organic-Inorganic Hybrid Ti O_2 - C_3N_4 Nanoassembly. *Transactions of the Indian National Academy of Engineering.* **2021**, *6*, 395–404.

(158) Aguirre, M. E.; Zhou, R.; Eugene, A. J.; Guzman, M. I.; Grela, M. A. Cu_2O/TiO_2 Heterostructures for CO_2 Reduction Through a Direct Z-scheme: Protecting Cu_2O from Photocorrosion. *Appl. Catal. B: Environ.* **2017**, 217, 485–493.

(159) Wei, Z. H.; Wang, Y. F.; Li, Y. Y.; Zhang, L.; Yao, H. C.; Li, Z. J. Enhanced Photocatalytic CO_2 Reduction Activity of Z-scheme CdS/BiVO₄ Nanocomposite with Thinner BiVO₄ Nanosheets. J. CO_2 Util. **2018**, 28, 15–25.

(160) Wang, S.; Teramura, K.; Hisatomi, T.; Domen, K.; Asakura, H.; Hosokawa, S.; Tanaka, T. Optimized Synthesis of Ag-Modified Al-Doped SrTiO₃ Photocatalyst for the Conversion of CO₂ Using H_2O as an Electron Donor. *ChemistrySelect.* **2020**, *5*, 8779–8786.

(161) Miao, Y. F.; Guo, R. T.; Gu, J. W.; Liu, Y. Z.; Wu, G. I.; Duan, C. P.; Zhang, X. D.; Pan, W. G. Fabrication of $In_2S_3/NiAl-LDH$ Heterojunction Photocatalyst with Enhanced Separation of Charge Carriers for Efficient CO₂ Photocatalytic Reduction. *Appl. Surf. Sci.* **2020**, 527, 146792.

(162) Fu, J.; Zhu, B.; Jiang, C.; Cheng, B.; You, W.; Yu, J. Hierarchical Porous O-doped $g-C_3N_4$ with Enhanced Photocatalytic CO₂ Reduction Activity. *Small.* **2017**, *13*, 1603938.

(163) Gusain, R.; Kumar, P.; Sharma, O. P.; Jain, S. L.; Khatri, O. P. Reduced Graphene Oxide-CuO Nanocomposites for Photocatalytic (164) Li, Z.; Meng, X.; Zhang, Z. Recent Development on MoS₂-Based Photocatalysis: A review. J. Photochem. Photobiol. C: Photochem. Rev. **2018**, 35, 39–55.

(165) Lv, R.; Terrones, H.; Elias, A. L.; Perea-Lopez, N.; Gutierrez, H. R.; Cruz-Silva, E.; Rajukumar, L. P.; Dresselhaus, M. S.; Terrones, M. Two-Dimensional Transition Metal Dichalcogenides: Clusters, Ribbons, Sheets and More. *Nano Today.* **2015**, *10*, 559–592.

(166) Zhou, W.; Zou, X.; Najmaei, S.; Liu, Z.; Shi, Y.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J.-C. Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. *Nano letters.* **2013**, *13*, 2615–2622.

(167) Liu, P.; Choi, Y.; Yang, Y.; White, M. G. Methanol Synthesis from H_2 and CO_2 on a Mo_6S_8 Cluster: A Density Functional Study. *J. Phys. Chem. A* **2010**, *114*, 3888–3895.

(168) Santos, V. P.; van der Linden, B.; Chojecki, A.; Budroni, G.; Corthals, S.; Shibata, H.; Meima, G. R.; Kapteijn, F.; Makkee, M.; Gascon, J. Mechanistic Insight into the Synthesis of Higher Alcohols from Syngas: The Role of K Promotion on MoS₂ Catalysts. *ACS Catal.* **2013**, *3*, 1634–1637.

(169) Asadi, M.; Kumar, B.; Behranginia, A.; Rosen, B. A.; Baskin, A.; Repnin, N.; Pisasale, D.; Phillips, P.; Zhu, W.; Haasch, R.; Klie, R. F.; Kral, P.; Abiade, J.; Salehi-Khojin, A. Robust Carbon Dioxide Reduction on Molybdenum Disulfide Edges. *Nat. Commun.* **2014**, *5*, 1–8.

(170) Xie, Y.; Li, X.; Wang, Y.; Li, B.; Yang, L.; Zhao, N.; Liu, M.; Wang, X.; Yu, Y.; Liu, J.-M. Reaction Mechanisms for Reduction of CO₂ to CO on Monolayer MoS₂. *Appl. Surf. Sci.* **2020**, *499*, 143964. (171) Wu, J.; Huang, Y.; Ye, W.; Li, Y. CO₂ Reduction: from the Electrochemical to Photochemical Approach. *Adv. Sci.* **2017**, *4*, 1700194.

(172) Meier, A. J.; Garg, A.; Sutter, B.; Kuhn, J. N.; Bhethanabotla, V. R. MOS_2 Nanoflowers as a Gateway for Solar-Driven CO_2 Photoreduction. ACS Sustain. Chem. Eng. 2019, 7, 265–275.

(173) Tu, W.; Li, Y.; Kuai, L.; Zhou, Y.; Xu, Q.; Li, H.; Wang, X.; Xiao, M.; Zou, Z. Construction of Unique Two-Dimensional MoS_2 -TiO₂ Hybrid Nanojunctions: MoS_2 as a Promising Cost-effective Cocatalyst Toward Improved Photocatalytic Reduction of CO_2 to Methanol. *Nanoscale* **201**7, *9*, 9065–9070.

(174) Jung, H.; Cho, K. M.; Kim, K. H.; Yoo, H. W.; Al-Saggaf, A.; Gereige, I.; Jung, H. T. Highly Efficient Stable CO_2 Reduction Photocatalyst with a Hierarchical Structure of Mesoporous TiO₂ on 3D Graphene with Few-Layered MoS₂. ACS Sustain. Chem. Eng. **2018**, *6*, 5718–5724.

(175) Jia, P.-y.; Guo, R.-t.; Pan, W.-g.; Huang, C.-y.; Tang, J.-y.; Liu, X.-y.; Qin, H.; Xu, Q.-y. The MoS_2/TiO_2 Heterojunction Composites with Enhanced Activity for CO_2 Photocatalytic Reduction Under Visible Light Irradiation. *Colloids Surf, A Physicochem Eng. Asp.* **2019**, *570*, 306–316.

(176) Xu, F.; Zhu, B.; Cheng, B.; Yu, J.; Xu, J. $1D/2D \text{ TiO}_2/\text{MoS}_2$ Hybrid Nanostructures for Enhanced Photocatalytic CO₂ Reduction. *Adv. Opt. Mater.* **2018**, *6*, 1800911.

(177) Zhao, Y.; Cai, W.; Shi, Y.; Tang, J.; Gong, Y.; Chen, M.; Zhong, Q. Construction of Nano-Fe₂O₃-Decorated Flower-Like MoS_2 with Fe-S Bonds for Efficient Photoreduction of CO₂ under Visible-Light Irradiation. *ACS Sustain. Chem. Eng.* **2020**, *8*, 12603–12611.

(178) Dai, W.; Yu, J.; Deng, Y.; Hu, X.; Wang, T.; Luo, X. Facile Synthesis of MoS_2/Bi_2WO_6 Nanocomposites for Enhanced CO_2 Photoreduction Activity Under Visible Light Irradiation. *Appl. Surf. Sci.* **201**7, 403, 230–239.

(179) Khan, B.; Raziq, F.; Bilal Faheem, M.; Umar Farooq, M.; Hussain, S.; Ali, F.; Ullah, A.; Mavlonov, A.; Zhao, Y.; Liu, Z.; Tian, H.; Shen, H.; Zu, X.; Li, S.; Xiao, H.; Xiang, X.; Qiao, L. Electronic and Nanostructure Engineering of Bifunctional MoS₂ Towards Exceptional Visible-light Photocatalytic CO₂ Reduction and Pollutant Degradation. J. Hazard. Mater. **2020**, 381, 120972. (180) Kim, R.; Kim, J.; Do, J. Y.; Seo, M. W.; Kang, M. Carbon Dioxide Photoreduction on the Bi_2S_3/MoS_2 Catalysts. *Catalysts.* **2019**, *9*, 998.

(181) Qin, H.; Guo, R.-T.; Liu, X.-Y.; Pan, W.-G.; Wang, Z.-Y.; Shi, X.; Tang, J.-Y.; Huang, C.-Y. Z-Scheme $MoS_2/g-C_3N_4$ Heterojunction for Efficient Visible Light Photocatalytic CO₂ Reduction. *Dalton Trans.* **2018**, 47, 15155–15163.

(182) Sun, S.; An, Q.; Watanabe, M.; Cheng, J.; Ho Kim, H.; Akbay, T.; Takagaki, A.; Ishihara, T. Highly Correlation of CO₂ Reduction Selectivity and Surface Electron Accumulation: A Case Study of Au-MoS₂ and Ag-MoS₂ Catalyst. *Appl. Catal., B* **2020**, *271*, 118931.

(183) Ouyang, T.; Fan, W.; Guo, J.; Zheng, Y.; Yin, X.; Shen, Y. DFT Study on Ag Loaded 2H-MoS₂ for Understanding the Mechanism of Improved Photocatalytic Reduction of CO₂. *Phys. Chem. Chem. Phys.* **2020**, *22*, 10305–10313.

(184) Zheng, Y.; Yin, X.; Jiang, Y.; Bai, J.; Tang, Y.; Shen, Y.; Zhang, M. Nano Ag-Decorated MoS_2 Nanosheets from 1T to 2H Phase Conversion for Photocatalytically Reducing CO_2 to Methanol. *Energy Technol.* **2019**, *7*, 1900582.

(185) Lu, J.; Zhang, Z.; Cheng, L.; Liu, H. MoS_2 -Wrapped $Mn_{0.2}Cd_{0.8}S$ Nanospheres Towards Efficient Photocatalytic H_2 Generation and CO_2 Reduction. *New J. Chem.* **2020**, *44*, 13728–13737.

(186) Wang, X.; He, J.; Mao, L.; Cai, X.; Sun, C.; Zhu, M. CsPbBr₃ Perovskite Nanocrystals Anchoring on Monolayer MoS₂ Nanosheets for Efficient Photocatalytic CO₂ Reduction. *Chem. Eng. J.* **2021**, *416*, 128077.

(187) Kumar, N.; Kumar, S.; Gusain, R.; Manyala, N.; Eslava, S.; Ray, S. S. Polypyrrole-Promoted rGO-MoS₂ Nanocomposites for Enhanced Photocatalytic Conversion of CO₂ and H₂O to CO, CH₄, and H₂ Products. ACS Appl. Energy Mater. **2020**, *3*, 9897–9909.

(188) Yin, S.; Li, J.; Sun, L.; Li, X.; Shen, D.; Song, X.; Huo, P.; Wang, H.; Yan, Y. Construction of Heterogenous S-C-S $MoS_2/SnS_2/r$ -GO Heterojunction for Efficient CO₂ Photoreduction. *Inorg. Chem.* **2019**, 58, 15590–15601.

(189) Wang, Y.; Zhang, Z.; Zhang, L.; Luo, Z.; Shen, J.; Lin, H.; Long, J.; Wu, J. C. S.; Fu, X.; Wang, X.; Li, C. Visible-Light Driven Overall Conversion of CO_2 and H_2O to CH_4 and O_2 on 3D SiC@2D MoS₂ Heterostructure. *J. Am. Chem. Soc.* **2018**, *140*, 14595–14598.

(190) Qiu, C.; Hao, X.; Tan, L.; Wang, X.; Cao, W.; Liu, J.; Zhao, Y.; Song, Y. F. 500 nm Induced Tunable Syngas Synthesis from CO_2 Photoreduction by Controlling Heterojunction Concentration. *ChemComm.* **2020**, *56*, 5354–5357.

(191) Alkanad, K.; Hezam, A.; Drmosh, Q. A.; Ganganakatte Chandrashekar, S. S.; AlObaid, A. A.; Warad, I.; Bajiri, M. A.; Neratur Krishnappagowda, L. Construction of $Bi_2S_3/TiO_2/MOS_2$ S-Scheme Heterostructure with a Switchable Charge Migration Pathway for Selective CO₂ Reduction. *Sol. RRL.* **2021**, *5*, 2100501.

(192) Geioushy, R. A.; Hegazy, I. M.; El-Sheikh, S. M.; Fouad, O. A. Construction of 2D $MoS_2@ZnO$ Heterojunction as Superior Photocatalyst for Highly Efficient and Selective CO_2 Conversion into Liquid Fuel. J. Environ. Chem. Eng. **2022**, 10, 107337.

(193) Wang, F.; Liu, D.; Wen, J.; Zheng, X. In-situ Sulfurized $In_2S_3/MoO_3@MoS_2$ Heterojunction for Visible Light-induced CO₂ Photoreduction. J. Environ. Chem. Eng. **2021**, 9, 106042.

(194) Zheng, X.; Wang, H.; Wen, J.; Peng, H. In_2S_3 -NiS Codecorated MoO₃@MoS₂ Composites for Enhancing the Solar-light Induced CO₂ Photoreduction Activity. *Int. J. Hydrog. Energy.* **2021**, 46, 36848–36858.

(195) Yu, F.; Jing, X.; Wang, Y.; Sun, M.; Duan, C. Hierarchically Porous Metal-Organic Framework/MoS₂ Interface for Selective Photocatalytic Conversion of CO_2 with H_2O into CH_3COOH . *Angew. Chem.* **2021**, 133, 25053–25057.

(196) Li, H.; Sun, T.; Zhang, L.; Cao, Y. Improved Photocatalytic Activity of ZnO via the Modification of In_2O_3 and MoS_2 Surface Species for the Photoreduction of CO₂. *Appl. Surf. Sci.* **2021**, *566*, 150649.

(197) Singh, S.; Punia, R.; Pant, K. K.; Biswas, P. Effect of Workfunction and Morphology of Heterostructure Components on CO₂ Reduction Photo-catalytic Activity of MoS_2 -Cu₂O Heterostructure. Chem. Eng. J. **2022**, 433, 132709.

(198) Li, P.; Hu, H.; Xu, J.; Jing, H.; Peng, H.; Lu, J.; Wu, C.; Ai, S. New Insights into the Photo-Enhanced Electrocatalytic Reduction of Carbon Dioxide on MoS₂-Rods/TiO₂ NTs with Unmatched Energy Bands. *Appl. Catal., B* **2014**, *147*, 912–919.

(199) Kim, M. S.; Don, W. J.; Hong, S. I.; Ri, M. I.; Yang, S. I. Photocatalytic Property of Two Dimensional Heterostructure MoS_2/WS_2 for Hydrogen Evolution via Water Splitting; a First Principles Calculation. *Int. J. Hydrog. Energy.* **2023**, *48*, 9371–9376.