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Irisin, out-membrane part of fibronectin type III domain–containing 5 protein

(FNDC5), was activated by Peroxisome proliferator-activated receptor g
(PPARg) coactivator-1a (PGC-1a) during physical exercise in skeletal muscle

tissues. Most studies have reported that the concentration of irisin is highly

associated with health status. For instance, the level of irisin is significantly

lower in patients with obesity, osteoporosis/fractures, muscle atrophy,

Alzheimer’s disease, and cardiovascular diseases (CVDs) but higher in patients

with cancer. Irisin can bind to its receptor integrin aV/b5 to induce browning of

white fat, maintain glucose stability, keep bone homeostasis, and alleviate

cardiac injury. However, it is unclear whether it works by directly binding to its

receptors to regulate muscle regeneration, promote neurogenesis, keep liver

glucose homeostasis, and inhibit cancer development. Supplementation of

recombinant irisin or exercise-activated irisin might be a successful strategy to

fight obesity, osteoporosis, muscle atrophy, liver injury, and CVDs in one go.

Here, we summarize the publications of FNDC5/irisin from PubMed/Medline,

Scopus, and Web of Science until March 2022, and we review the role of

FNDC5/irisin in physiology and pathology.

KEYWORDS
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Abbreviations: UCP-1, uncoupling protein 1; Dio2, type II iodothyronine deiodinase 2; Cidea, cell death

activator; Prdm16, PR domain-containing 16; Cox-7a, cytochrome c oxidase subunit 7a; PINK1, PTEN-

induced putative kinase 1; RANKL, receptor activator for nuclear factor–kB ligand; RANK, receptor

activator of nuclear factor–kB; NFATc1, nuclear factor of activated T cell 1; TRAP, tartrate-resistant acid

phosphatase; CK, cathepsin K; IGF1, insulin-like growth factor 1; FOXO1, forkhead box protein O1;

SOST, Sclerostin.
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1 Introduction

The protein sequence of fibronectin type III domain–

containing 5 protein (FNDC5) contains a signal peptide [for

endoplasmic reticulum (ER) targeting nascent FNDC5] (1), a

hydrophobic transmembrane domain, a fibronectin III domain

(the main part of irisin in the extracellular), and a

carboxyterminal domain in the cytoplasm. After being N-

glycosylated at the two potential sites—Asn36 and Asn81

(mouse) (2) or Asn7 and Asn52 (human) (3) in the ER—and

cleaved by disintegrin and metallopeptidase domain (ADAM)

family proteins such as ADAM10 (4), irisin is secreted to the

blood circulation.

The physiological role of irisin in inducing thermogenic

beige fat genesis to control energy metabolism was first described

by Spiegelman and his teammates in 2012 in Nature (5). After

that, irisin has also been found to promote liver glycogen

synthesis and inhibit liver gluconeogenesis to maintain glucose

homeostasis (6, 7). Later, the function of irisin in nerve system

was found in improving cognition, learning, and memory (8).

Moreover, irisin also contributes to maintaining musculoskeletal

homeostasis by binding with integrin aVb5 (9, 10). In recent

years, researchers have also revealed that irisin reduces the risk

of cancers (11) and cardiovascular diseases (CVDs) (12).

In this review, we summarized the up-to-date publications

on irisin. We hope that it will help to understand the

mechanisms of irisin and provide clues for the clinical

application of irisin in diseases.
2.1. Role of irisin in inducing white
fat browning

The upregulation of FNDC5/irisin under aerobic exercise (5,

8, 13) or cold-induced shivering (14) induces the “browning” of

white fat via increasing the expression of thermogenic genes

such as Prdm16, Dio2, cidea, Cox-7a, PGC-1a, and UCP-1 in

white fat. The activated beige fat dissipated energy in the form of

heat by absorbing the excessive energy substrates (fatty acid or

glucose), which improved obesity and type 2 diabetes mellitus

(T2DM). On the basis of the single-cell RNA-seq method,

Kajimura and his workmates revealed that irisin induced

adipocyte progenitor cells (APCs) toward de novo beige fat

biogenesis and proliferation by activating a complex of CD81

and aVb1/b5 integrins to phosphorylate Focal adhesion kinase 1
(FAK, Tyr397) signaling (15, 16). Moreover, injection of

recombinant irisin (r-irisin; 0.5 mg/g/day) into diet-induced

obese (DIO) mice for 14 days resulted in activating

thermogenic genes expression and browning of subcutaneous

white fat, thereby reducing body weight and improving glucose

metabolism (3). In vitro studies suggested that irisin induced the

expression of UCP1 and other thermogenic genes in primary

inguinal adipocytes and 3T3-L1 preadipocytes through
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activating p38 mitogen-activated protein kinase (p38 MAPK)

and extracellular signal–related kinase 1/2 (ERK1/2) signaling

pathways (3). Inhibition of P38 and ERK1/2 expression could

block the upregulation of Uncoupling protein 1 (UCP-1) by

irisin, which was called “Irisin ERKs the Fat” byWu et al. (17). In

conclusion, irisin can promote the proliferation and

differentiation of beige APCs and the browning of mature

white fat.

Most studies have shown that irisin expression is

significantly lower in individuals with DIO or T2DM than

normal individuals (6, 18–20). However, there are also

opposite results, for instance, the concentration of irisin in the

blood of obese individuals is higher than that of thin individuals

(normal) (21–23) under sedentary conditions. A meta-analysis

with 1,005 obese patients and 1,242 control subjects showed that

obese individuals had a higher circulating irisin level (24). In the

development of obesity, the high level of irisin was probably

derived from the increased in white adipose tissue (WAT) (25),

as the expression of FNDC5/irisin was decreased in muscle

tissues (26), as well as in brown adipose tissue and other

tissues. However, if irisin concentration is indeed elevated in

obese individuals, then why is not irisin doing its job of burning

and “ERK-ing” the fat? In obese adipose tissues, is it reduced in

the expression of its receptor aVb1/b5 integrins or the

sensitivity? This controversial phenomenon was also assumed

as “irisin resistance”. Clearly, these questions require further

exploration in the future.
2.2. Role of irisin in the liver

The liver is the main site of gluconeogenesis and

glycogenesis to maintain energy metabolism. Irisin expression

was significantly reduced in subjects with steatohepatitis (6, 18,

19) or in mouse models of ischemia-reperfusion (I/R)–induced

liver injury (27, 28). Long-term exercise-induced irisin or

supplementation of exogenous r-irisin could protect the liver

from non-alcoholic fatty liver disease (NAFLD) (6, 7), liver

glucose disorder (29, 30), or I/R-induced liver injury (31), which

embodied the potential role of irisin in muscle-liver cross-

talk (32).

Hong et al. (33) revealed that injection of r-irisin into DIO

mice for 2 weeks inhibited hepatic cholesterol synthesis via

activating Adenosine 5‘-monophosphate (AMP)-activated

protein kinase (AMPK, Thr172) and inhibiting sterol

regulatory element-binding transcription factor 2 (SREBP2)

expression. Hepatic glucose homeostasis is closely related to

hepatic gluconeogenesis and glycogen synthesis. Studies have

found that irisin reduces the expression of phosphoenolpyruvate

carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase)–

mediated gluconeogenesis in the liver, which can be weakened

by suppressing AMPK Small interfering RNA (AMPK siRNA),

suggesting that irisin inhibits gluconeogenesis through activating
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AMPK-PEPCK/G6Pase pathway (30). Similar results also

revealed that irisin inhibited glucosamine (GlcN) or palmitate-

induced primary hepatocyte insulin resistance by activating

phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (Akt)/

forkhead box protein O1 (FOXO1)–mediated PEPCK and

G6Pase; meanwhile, irisin augments liver glycogenesis through

PI3K/Akt/GSK3–glycogen synthase (GS) signaling pathway

(29). A recent study has revealed that exercise-induced irisin

competitively inhibits the binding of myeloid differentiation

factor 2 (MD2) and Toll-like receptor 4 by forming a complex

with MD2 in liver cells and thus inhibits the inflammatory

response, which may contribute to the improvement of NAFLD

by reducing liver steatosis and fibrosis through exercise (34).

I/R is a leading reason of liver injury after liver resection or

transplantation (35), which highly associated with liver steatosis

(36). During I/R, irisin expression was significantly reduced in

serum and liver tissues (27, 31). Intravenous injection of irisin

(250 mg/kg) significantly attenuated the I/R-induced decrease of

mitochondria, the increment of apoptotic liver cells, high

expression of inflammatory factors, and oxidative stress in the

liver (27). Studies have found that supplemental irisin can bind

to integrin aVb5 and activate the downstream AMPK-UCP2

pathway to protect intestinal epithelial cells against I/R-induced

cell apoptosis and oxidative stress (37).

In conclusion, irisin acts as an anti-obesity and anti-diabetic

factor via regulating glucose and cholesterol synthesis

metabolism in the liver. It enhances liver glycogen synthesis by

activating PI3K/Akt/GSK3-GS pathway and inhibits

gluconeogenesis via activating AMPK-PEPCK/G6Pase as well

as PI3K/Akt/FoxO1-PEPCK and G6Pase pathway in the liver. In

addition, irisin alleviates inflammation and oxidative stress in

liver injury induced by I/R. However, there are still some

problems that are not clear enough. The role of irisin receptor

in the liver is rarely reported, and whether irisin first activates

receptors on the surface of hepatocyte and then regulates glucose

and lipid metabolism is still unclear.
2.3. Role of irisin in nerves

FNDC5/irisin as a novel therapeutic factor capable of

improving cognition, learning, and memory function (38),

which has been proved in brain injury caused in cerebral

ischemia (39), stroke (40), and anxiety (41). The mediator role

of FNDC5/irisin in the brain was first described by Spiegelman

and his co-workers in 2013 (8); it was shown that RNA

interference (RNAi)-mediated knockdown of FNDC5 reduced

brain-derived neurotrophic factor [BDNF; key factor for

neuronal cell survival, synaptic plasticity, dendritic arborization,

and synaptogenesis (42, 43)]; reversely, increasing irisin levels in

the blood by delivery FNDC5 with adenovirus increased the

expression of BDNF and other neuroprotective factors, which

opened a new avenue in skeletal muscle-brain cross-talk.
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Moreover, fndc5 knockout Knock out (KO) mice had

abnormal morphology and function of dentate gyrus neurons

(part of the hippocampus), and the cognitive function of the

mutant mice was significantly inhibited. Direct or peripheral

delivery of irisin to the dentate gyrus was sufficient to ameliorate

the cognitive deficits and neuropathology of the mice (44). In the

mouse cerebral ischemia model induced by middle cerebral

artery occlusion, the level of irisin was negatively correlated

with the cerebral infarction volume and brain function injury

score, whereas in those treated with r-irisin, the cerebral

infarction volume, nerve function injury, and brain edema of

the mice were significantly improved, which were related with

phosphorylation of ERK1/2-Akt–mediated inflammation (39).

Recently, integrin aV/b5 in the hippocampus and cortex was

detected (45), which makes it available that irisin combines with

integrin aV/b5 to exert the protective effect on brain; however,

the specific mechanism remains to be further explored.

In addition, Lourenco et al. showed that the FNDC5/irisin

expression was reduced in hippocampi and cerebrospinal fluid

of Alzheimer’s disease (AD) models. Inhibition of FNDC5 in the

brain impaired the memory system of mice and blocked the

neuroprotective effect of physical exercise on synaptic plasticity

and memory. Conversely, the increased irisin levels in AD mice

improved synaptic plasticity and memory (38). In vitro, r-irisin

prevented neurons from Ab- (25–35)–induced cell toxicity via

attenuating IL-6– and IL-1b–mediated inflammation status (46).

Furthermore, irisin was the upstream regulator of BDNF, which

attenuated the learning and memory deficits as well as the

cytotoxic response against Ab toxicity in AD (47, 48). Thus,

the activation of the irisin–BDNF axis may be a potential

therapeutic target for AD (49).

In conclusion, the expression of irisin was decreased in

patients with brain injury. Exogenous r-irisin supplementation

significantly protects nerves and enhances memory and

cognitive function. Thus, irisin can be used as a potential

target for the treatment of stroke, cerebral ischemia, AD, and

other brain injuries.
2.4. Role of irisin in bone

2.4.1. Effects of irisin on bone tissues
Musculoskeletal interaction is one of research hot spots in

recent years (50, 51). Colaianni et al. (52) found that conditioned

medium (CM) from primary myoblasts of mice after 3 weeks of

exercise induced a higher degree of osteoblast differentiation in

vitro than that under resting conditions, and adding neutralizing

antibody of FNDC5/irisin into the CM significantly reduced the

expression of alkaline phosphatase (ALP) and collagen I (Col I)

in osteoblasts. That was the first to establish that irisin secreted

from muscles has a positive regulatory effect on bone during

physical exercise. After that, Zhang et al. (53) found that 2 weeks

of free wheel-running exercise increased the expression of
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osteogenic markers such as osterix (Osx), bone sialoprotein

(BSP), and osteocalcin (OCN), as well as FNDC5/irisin in

bone tissues. Irisin receptor integrin aV mediated the

modulation of irisin on bone during exercise. Eight weeks of

running exercise–inhibited ovariectomized (OVX) induced the

reduction of femoral trabecular and cortical bone mineral

densi ty (BMD) (54) , and exerc ise improved bone

microarchitecture and increased the number of ALP-positive

cells in OVX mice, whereas twice-weekly injection of cyclo

RGDyk polypeptide drugs (anti-irisin receptor integrin aV
agents) weakened the improvement effects of exercise (55).

The concentration of FNDC5/irisin was strongly correlated

with BMD and bone homeostasis. A cross-sectional and case-

control study showed that low concentrations of irisin in serum

were related to hip fractures and osteoporosis in

postmenopausal women (56, 57). FNDC5/irisin deletion in

osteoblast lineage resulted in a lower bone density and delayed

bone development and mineralization in mice, FNDC5/irisin

KO also blocked the increment of cortical bone thickness by 4

days of voluntary wheel-running exercise (58). Systemic FNDC5

KO mice resulted in low bone strength and mass than Wild type

(WT) mice (59), and global FNDC5/irisin KO also completely

blocked OVX-induced osteocytic osteolysis and trabecular bone

loss (60).

2.4.2 Role of irisin in osteoblasts
Bone modeling and remodeling require the balance of

osteoblasts-induced bone formation and osteoclasts-induced

bone resorption (61). Irisin activates osteogenic gene

expression and induces bone formation. Injecting r-irisin

(100 mg/kg/weeks, 4 weeks) significantly increased the mRNA

expression of activating transcription factor 4 (Atf4) in bone

marrow and phosphoprotein 1 (osteopontin, Spp1) in the

whole tibia, indicating that irisin shifted from mesenchymal

stem cell commitment toward osteoblast lineage and increased

bone formation; in vitro experiments showed that r-irisin

upregulated osteoblast marker genes like Bmp2/4, Spp1,

Runt-related transcription factor-2 (Runx2), Alp, and Atf4, as

well as phosphorylation of ERK1/2 in bone marrow stromal

cells (62).

Furthermore, administration of r-irisin (100 ng/ml) induced

differentiation and mineralization of primary rat osteoblasts and

MC3T3-E1 cells by increasing the expression of osteoblast

transcription regulators and differentiation marker, which was

blocked by inhibiting p38 and ERK1/2 expression (63). Physical

exercise activated Akt-b-catenin (essential for osteoblastic

differentiation (64)) and induced ALP-positive cells increment,

and these effects were abolished by tail vein injecting integrin aV
inhibitor (55), which suggested that irisin increased bone mass

by binding to osteoblast surface receptors and activating the Akt/

b-catenin-Alp pathway. Recently, Xue et al. (65). also got a

similar result in preosteoblasts.
Frontiers in Endocrinology 04
2.4.3. Role of irisin in osteoclasts
Irisin protects bone microstructure by stimulating

osteoblasts production and inhibiting the differentiation of

osteoclasts to establish a “new balance”. Injection of r-irisin

into OVX-induced mice significantly increased the number of

osteoblasts on the surface of trabeculae bone while inhibiting the

number of osteoclasts and decreasing the concentration of

tartrate-resistant acid phosphatase (TRAP; marker of

osteoclasts) (66, 67).

In addition, supplementation of r-irisin (20 nmol/L) in pre-

osteoclastic RAW264.7 cells for 4 days resulted in the decrease of

osteoclast differentiation markers (53). Moreover, Ma et al. (68)

showed that irisin promoted the proliferation of two osteoclast

precursor cells (RAW264.7 cells and mouse bone marrow

monocytes) via activating p38-MAPK and c-Jun N-terminal

kinase (JNK) s ignal ing pathways but significant ly

downregulated osteoclasts differentiation markers, as well as

decreased hydroxyapatite resorption pits and TRAP+

multinucleated cell numbers. However, there were also some

different results. Estell et al. (69). found that administration of

irisin (2–10 ng/ml) promoted the differentiation of mouse bone

marrow progenitors toward osteoclasts and that overexpression

of fndc5 in mice promoted the differentiation and resorption of

osteoclasts, which resulted in lower bone mass.

2.4.4. Role of irisin in osteocytes
Osteocytes accounted for more than 90% of bone cells and

played crucial roles in bone homeostasis. Irisin prevents bone

loss and osteoporosis by robustly inhibiting osteocytic apoptosis.

Spiegelman and his workmates revealed for the first time that

irisin bound directly to osteocytes by integrin receptors (aVb1/
b5) and that inhibition of integrin aV receptor expression

significantly inhibited the activation of SOST in bone cells by

r-irisin. Injection of r-irisin (100 mg/kg) in vivo improved disuse-

induced low viability and apoptosis of osteocytes and a high rate

of empty lacunae (70). Furthermore, they found that irisin

rapidly activated the expression of Atf4 and inhibited

apoptosis by activating ERK1/2 in MLO-Y4 osteocytes, which

contributed to bone development (70, 71).

In summary, irisin regulates bone regeneration and

homeostasis, which reflects the key regulatory role of muscle

on bone (72). We summarized the effects of irisin in bone tissue

cells in Table 1.
2.5. Role of irisin in skeletal muscle

AMPK–PGC-1a (PPARg coactivator-1a)–FNDC5 axis is

the most important pathway for irisin synthesis. During

exercise, the Ca2+ level is increased significantly in the muscle

cytoplasm along with skeletal muscle contraction and then

stimulates the phosphorylation of AMPK (78), which, in turn,
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enhances PGC-1a and regulates transcription of downstream

factors such as fndc5. Shan et al. revealed that myostatin (MSTN)

KO in skeletal muscle significantly increased PGC-1a and

FNDC5/irisin expression, and the high level of irisin increased

the browning of WAT in MSTN−/− mice (79). Moreover, Ge

et al. found that myostatin inhibited FNDC5/irisin expression by

increasing miR-34a (80).

The blood circulation level of irisin has been identified as a

biomarker for muscle mass and performance (81). For example,

the concentration of irisin in patients with sarcopenia and pre-

sarcopenia was lower compared with that in non-sarcopenic

participants (82, 83). Exposure to an ambient hypoxic

environment can cause skeletal muscle loss and atrophy, along

with the low concentration of irisin in blood circulation both in

humans (84) and mice (85), which could be one of the reasons of

muscle atrophy induced by hypoxia (86). However, interestingly,

knockdown of fndc5 in skeletal muscle still performed equal

muscle mass, development, growth, regeneration, and strength

compared with WT mice. Although, there was no difference in

cardiotoxin-induced muscle injury between fndc5-mutant and

WT mice (87).

Multiple studies showed that exogenous r-irisin improved

skeletal muscle loss and atrophy. Colaianni et al. revealed that r-

irisin prevented hindlimb unloading-induced muscle mass

decline and decrease of myosin type II expression (10). In

addition, in vitro , fndc5 gene expression and irisin

concentration were positively correlated with the process of

differentiation of C2C12 myotubes; r-irisin supplementation

increased human primary skeletal muscle cell growth and

hypertrophy by increasing insulin-like growth factor 1(IGF-1)/

PGC1a4 and decreasing myostatin through activating ERK1/2

pathway (88). Another study from Reza et al. showed that r-

irisin increased myogenic differentiation and myoblast fusion via
Frontiers in Endocrinology 05
activating IL-6 signaling pathway, and r-irisin treatment also

improved denervation-induced muscle injury by increasing

protein synthesis through the ERK1/2 pathway (9). Irisin

treatment (100 ng/ml, 24 h) also prevented dexamethasone-

induced atrophy in C2C12 myotubes by upregulating IGF-1 and

attenuating proteolytic activity through dephosphorylation of

FoxO3a-mediated ubiquitin-proteasome overactivity (89).

In short, irisin is mainly produced by muscle tissue via Ca2+–

AMPK–PGC-1a–FNDC5 pathway. It induces the expression of

myoblasts by activating downstream ERK1/2 and IL-6 pathways

in an autocrine manner, which plays key regulatory role in

muscle growth and differentiation. However, there are still some

problems, such as whether the receptor is still integrin aV/b5 on
the surface of muscle cells. In addition, the role of integrin aV/
b5 in exercise-induced muscle hyperplasia and hypertrophy

is unclear.
2.6. Role of irisin in articular cartilage

Osteoarthritis (OA) is a degenerative joint injury

characterized by joint pain, progressive cartilaginous

degeneration, and stiffness, which poses a great challenge to the

physical health of the patients (90). It was stated that FNDC5/

irisin activated by moderate physical exercise played a key role in

alleviating symptoms and the process of OA such as progressive

cartilaginous degeneration, synovial inflammation, and

osteophyte formation (71, 91, 92). Studies have shown that the

expression of FNDC5/irisin is reduced in patients with

osteoarthritic cartilage (93) or synovial fluid (94) compared with

that in healthy subjects. In addition, FNDC5 KOmice accelerated

anterior cruciate ligament transection–induced OA progression;

conversely, FNDC5 knock-in attenuated OA progression (95).
TABLE 1 Role of irisin in bone.

Type cell/Animal Irisin concentration/Endurance Main effect Reference

Mice 100 mg/kg/week; 4 weeks Atf4↑, spp1↑, bone formation↑ (62)

Primary osteoblast and MC3T3-E1 cell 100 ng/ml; 3 and 14 days Runx2↑, Osx↑, ALP↑, ColIa1↑, p-P38↑, p-ERK1/2↑ (63)

Murine BMSCs 40 mM; 2, 7, 14, and 21days Runx2↑, OCN↑, ALP↑, Atg5↑, b-catenin↑, Lef1↑, Tcf4↑ (73)

Mouse preosteoblast-like cells MC3T3-
E1

100n g/ml; 1, 5, 10, and 20 min; 3, 8, and
24 h; 6 days

P21↓ (74)

Mice 100 µg/kg/week; 4 weeks ALP↑, Col I↑, BMD↑ (10)

Primary murine OC, MC3T3E1 100 ng/ml; 14 days Runx2↑, Atf4↑, Osterix↑, Col I↑, Osteoprotegerin↑, Trap (×),
Cathepsin K (×)

(75)

Primary osteoblasts, MC3T3-E1 1 nM; 24, 48, and 72 h; 14 days ColIa1↑, ALP↑, calcium deposition↑, b-catenin↑, (76)

RAW264.7 cells 20 nmol/L; 4 days NFATc1↓, CK ↓, Trap↓ (53)

RAW264.7 cells, mouse bone marrow
monocytes

20 and 40 nM; 4 and 5 days RANK↓, CK ↓, Trap↓
differentiation↓

(68)

MLO-Y4 100 ng/ml; 1, 5, 10, 20, and 60 min; 6 days p-ERK1/2↑, Atf4↑, SOST↓,
caspase3/9↓

(70)

Mice 18 ng/ml; 3× a week for 4 weeks TNF-a↓, IL-17↓ (77)
fro
↑: Increased, ↓: Decreased, ×: No change
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Direct intraarticular injection of irisin may be more effective

as almost no blood vessels pass through cartilage. Destabilized

medial meniscus (DMM)–induced OA mice were directly

injected intra-articular with r-irisin for 8 weeks; the results

showed that irisin prevented articular cartilage loss and

ameliorated irregular gait; moreover, administration of irisin

increased autophagy flux and survival of chondrocytes in DMM-

induced OA mice by increasing the expression of LC3 and

proliferating cell nuclear antigen (93). In vitro, Col II and

tissue inhibitor of matrix metalloproteinase (MMP)–1 and –3

expression was significantly increased, and Col X (hypertrophic

chondrocyte–related gene) and MMP-1 and MMP-13

expression significantly decreased by adding r-irisin to human

primary chondrocytes for 7 days, indicating that the addition of

irisin contributes to maintaining partial stability of the

extracellular matrix (ECM) of cartilage (96). This mechanism

may be related to irisin, lowering the activation of p38, JNK, and

Akt in chondrocytes (96, 97). Recently, Jia et al. (98). found that

exercise-activated irisin alleviated OA chondrocyte

inflammation by inhibiting PI3K/Akt/Nuclear factor kappa B

(NF-kB) signaling pathway and suppressing the NOD-like

receptor protein 3 (NLRP3) and caspase-1–mediated

pyroptosis. In addition, in vitro, r-irisin treatment (5 and 10

ng/ml, 24 h) attenuated IL-lb–induced PI3K/Akt/NF-kB p65

cascade and blocked the nuclear translocation of NF-kB p65.

Furthermore, irisin supplementation also improved the

inflammatory status of OA by reducing the expression of

inflammation factors such as IL-1b (95, 99), TNF-a (92), IL-6,

and IL-1 (96).

In summary, the expression of irisin was reduced in patients

with OA, and moderate physical exercise could alleviate OA by

activating irisin (92). The therapeutic effect of irisin is mainly

reflected in reducing the inflammatory state of damaged

cartilage and increasing the autophagy flux; additionally,

intraarticular injection of r-irisin may be effective for

rehabilitating patients with OA.
2.7. Role of irisin in cancer

Cancer is one of the leading causes of human death. Regular

exercise helps reducing the risk of cancer (100); as an exercise

gene (101), the role of FNDC5/irisin in the occurrence and

prevention of cancer has received extensive attention (102).

Most studies have shown an elevated irisin expression in

cancer (103–105). However, a few studies also reported that

irisin expression is reduced in patients with cancer (106).

Therefore, more research studies are needed to explore the

role of irisin in cancer.

In vitro, r-irisin inhibited the proliferation, migration,

invasion, and epithelial-to-mesenchymal transition (EMT) in

lung cancer (11), epithelial ovarian cancer (107), and pancreatic

cancer (PC) (108) cells by inhibiting PI3K/Akt- and Signal
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transducer and activator of transcription 3 (STAT3)-mediated

(109) downstream Snail expression (an important role in

stimulating EMT).

Irisin induces the arrest of cancer cell division and inhibits

cell growth. Huang et al. revealed that irisin induced G (2)/M cell

cycle arrest and increased the expression of P21 and tissue factor

pathway inhibitor 2, thereby inhibiting the proliferation and

invasion of glioblastoma multiforme cells (91). Similarly, Liu

et al. found that the receptor of irisin also existed on the surface

of PC cells; supplementation of both non-glycosylated and

glycosylated r-irisin in PCs could induce G1 arrest and inhibit

the growth of PC via activating AMPK and inhibiting mTOR

expression (110); these results indicate that irisin can affect

tumor tissues and exert antitumor properties. However, there

is still not enough evidence that irisin can directly act on the

integrins on tumor cells to inhibit the development of EMT or

tumor proliferation (111).

Overall, irisin has a wide application prospect for the

treatment of cancer. Irisin inhibited the proliferation,

migration, and invasion of tumor cells by inhibiting PI3K/

Akt- and STAT3-mediated Snail/EMT pathways. In addition,

irisin also inhibited tumor growth by inducing G1 or G (2)/M

cell cycle arrest through AMPK/mTOR pathway.
2.8. Role of irisin in myocardium and
blood vessel

CVDs include hypertension, coronary artery disease,

myocardial infarction, heart failure, atherosclerosis, and

myocardial I/R injury, which are the leading cause of human

death worldwide (112). Regular exercise can reduce the risk of

CVDs, and irisin may play a crucial role in it. Studies have found

that the expression of irisin in patients with CVDs is significantly

lower than that in healthy people (113–117). Li et al. revealed

that resistance exercise could activate the release of irisin from

skeletal muscle and then stimulate the AMPK-PINK1/Parkin-

LC3/P62 signaling pathway, which regulated mitophagy and

inhibited oxidative stress in the myocardium (12). In vitro,

studies have shown that irisin binds directly to the endothelial

cell surface receptor integrin aV/b5, thereby phosphorylating

AMPK (Thr172) and activating PGC-1a (induce mitochondrial

biogenesis) and mitochondrial transcription factor A (a key

activator of mitochondrial transcription and a participant in

mitochondrial genome replication).

Cardiac hypertrophy progresses to heart failure; irisin can

significantly improve myocardial hypertrophy. Qing et al.

showed that administration of r-irisin could attenuate

angiotensin II (Ang II)–induced cardiomyocyte hypertrophy,

in vitro, and that treatment of irisin in transverse aortic

constriction (TAC)–induced cardiac hypertrophy murine, in

vivo, significantly suppressed cardiac hypertrophy and fibrosis

by phosphorylating AMPK (Thr172) and inhibiting the
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phosphorylation of mTOR (Ser2448). However, the expression

of irisin increased in the hypertrophic heart and serum during

this period, which may be a stress response from the body, as the

elevated irisin could decrease endothelial damage by suppressing

oxidative stress and inflammation (4, 118). Yue et al. found that

r-irisin protected myocardial hypertrophic mice induced by

TAC or Ang II–treated cardiomyocytes via inhibiting NLRP3-

mediated pyroptosis (119).

The therapeutic role of irisin on cardiac hypertrophy was

also reflected in the improvement of autophagy flux and

induction of protective autophagy. Li et al. found that

supplementation of irisin in Ang II–treated cardiomyocytes

significantly increased the expression of LC3II and decreased

P62 expression and activated the phosphorylation of AMPK

(Thr172) and ULK1 (Ser555), thereby reducing cardiomyocyte

apoptosis, and this protection will be reversed by autophagy

inhibitor such as 3-methyladenine, autophagy-related 5 siRNA

(ATG5), and chloroquine; moreover, blockage of AMPK and

ULK1 also abrogated autophagy flux and indicted irisin-induced

protective autophagy in cardiac hypertrophy via activating

AMPK-ULK1 pathway (120, 121).

Growing evidence suggests that the content of irisin in

patients with atherosclerosis is significantly lower than that in

normal controls (122–124), and irisin supplementation has a

significant effect on the treatment and improvement of

atherosclerosis. For example, irisin supplementation can

significantly improve endothelial dysfunction, decrease

endothel ial apoptosis , and predominantly decrease

atherosclerotic plaque area in nicotine or streptozotocin-

induced apolipoprotein E-Null [apoE(−/−)] atherosclerosis

mice (125). Here, we enumerated the role of irisin in

atherosclerosis disease in Table 2.

Overall, the integrin aVb5 on the endothelial cell surface

could be activated by FNDC5/irisin. As a key energy sensor to

maintain energy balance and mitochondrial hemostasis (131),

AMPK mediated the effect of FNDC5/irisin on mitophagy,

oxidative stress, and mitochondrial biogenesis, thereby

improving myocardial hypertrophy, myocardial infarction,
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atherosclerosis, and other cardiac diseases, which reflecting the

protection of regular exercise on cardiac health.
2 Conclusions

In this review, we systematically summarized the roles of

FNDC5/irisin in fat, liver, nerve, bone, skeletal muscle, articular

cartilage, cancer, and angiocarpy. Irisin, as a muscle factor secreted

by exercise, plays an extremely important role in regulating fat

browning, improving liver and systemic glucose metabolism,

maintaining musculoskeletal homeostasis, promoting synaptic

growth, and inhibiting the progression of cancer. The

mechanism of irisin is mainly through first directly binding to its

receptor integrin aV/b1/5 and then activating AMPK, FAK, and

MAPK signaling pathways. Collectively, potential mechanisms and

signaling pathways for the actions of irisin in musculoskeletal and

pathological tissues are shown in Figures 1 and 2, respectively.

There are still some unsolved questions, for example, the

concentration of irisin in pathophysiological conditions that are

highly controversial; some studies suggest that the irisin level

rises in patients with obesity or cancer, but why does irisin not

play a role in burning and “ERK-ing” the fat as well as inhibiting

the development of cancer? Perhaps, its receptor sensitivity and

number are reduced under these pathological conditions, which

resulted in “irisin resistance”. At this point, high concentration

of irisin may not come from muscle tissue but from newly

increased fat or cancer tissues; perhaps, due to the decreased

activity and expression of its receptor, irisin could not play a

substantial role even if the concentration increased. In addition,

whether irisin that directly binds to receptors on the surface of

chondrocytes, myoblasts, cancer cells, and hepatocytes plays a

regulatory role is still unclear, and relevant studies are limited.

Therefore, it may be necessary to further explore the role of irisin

by detecting the expression of its receptor integrin aV/b1/5 in

these pathological and physiological tissues.

Here, we summarized the progress and mechanism of

FNDC5/irisin in physiological and pathological conditions,
TABLE 2 The role of irisin in atherosclerosis.

Type cell/Animal Irisin concentration/
Endurance

Main effect Reference

APOE−/− mice 0.02 mg/ml, 2× a week for 3 weeks Irisin reversed intimal thickening via integrin aVb5 receptor. (125)

Irisin inhibited atherosclerosis progression via the integrin aVb5/PI3K/P27
pathway.

(126)

C57BL/6, human umbilical vein
endothelial cells

20 nM for 7 days in mice, 24 h in
EC

Irisin increased EC viability, migration, and tube formation via Akt/mTOR/
Nrf2 pathway.

(127)

ApoE−/− mice 0.02 mg/ml, 2× a week for 4 weeks Irisin decreased endothelial apoptosis, and predominantly decreased
atherosclerotic plaque area.

(128)

RAW264.7 macrophages 20, 40, and 80 ng/ml for 30 min Irisin reduced lipid accumulation in macrophages and inhibited apoptosis (129)

Human umbilical vein endothelial cells 0.01, 0.1, and 1 mg/ml for 48 h Irisin ameliorated inflammation and endothelial dysfunction by inhibiting
ROS-NLRP3.

(130)
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FIGURE 1

Potential mechanisms signaling pathways for the actions of irisin in musculoskeletal. During exercise, the elevated Ca2+ in muscle cytoplasm-
induced activation of the AMPK–PGC-1a–FNDC5 axis is the main pathway for irisin synthesis. In addition, irisin, in turn, can stimulate muscle
growth and myoblast differentiation via ERK1/2–IGF-1/MSTN and IL-6 signaling pathways, respectively. Multiple pathways mediated exercise-
induced irisin and r-irisin–activated osteoblast differentiation and mineralization, e.g., p38/ERK1/2, Akt-b-catenin, and Wnt-b-catenin–mediated
activation of ALP/OCN/Col I pathways. In osteoclast, irisin induced its proliferation through activating the p38/JNK pathway. In addition, irisin
also inhibited the NF-kB and NFATc1 levels in the nucleus, thus inhibiting the expression of osteoclast differentiation marker genes. As for
osteocytes, irisin inhibited osteocyte apoptosis by inhibiting caspase-9 and caspase-3 expression, which probably through activating p38/ERK1/
2. Furthermore, moderate exercise-activated irisin or r-irisin could alleviate OA by maintaining ECM stabilization and reducing inflammatory
response through p38/JNK-Akt and PI3K/Akt/NF-kB signaling pathway, respectively.
FIGURE 2

Potential mechanisms signaling pathways for the actions of irisin in the pathological tissues. Irisin protects against DIO by inducing the
recruitment of beige fat to dissipate energy into heat. This mechanism is involved in p38 MAPK and ERK1/2 pathways, as well as FAK-mediated
beige APCs proliferation. In addition, irisin attenuated diet-induced metabolic disorders, including NAFLD and hepatic steatosis by promoting the
synthesis of liver glycogen via PI3K/Akt/GSK3-GS and inhibiting the generation of liver gluconeogenesis through AMPK-PEPCK/G6Pase and
PI3K/Akt/FOXO1-mediated PEPCK/G6Pase pathways. In brain tissues, irisin promoted cognition and neuro development via inhibiting the
inflammatory response and activating BDNF-mediated nerve cell survival, differentiation, and plasticity. Moreover, irisin affects the proliferation,
migration, and invasion of tumor cells probably by binding integrin aV/b5–mediated PI3K/Akt-Snail-EMT and AMPK-mTOR pathways, which has
great therapeutic prospects for inhibiting cancer development. Moreover, exercise-induced irisin can also reduce the risk of cardiovascular
diseases. In cardiomyocytes, irisin stimulated AMPK-mediated autophagy and mitobiogenesis by binding to its receptor integrin aV/b5, thereby
relieving cardiac hypertrophy and injury.
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and we analyzed the shortcomings of current research of

FNDC5/irisin. We hope that this review may provide an

available reference for FNDC5/irisin research.
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