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Abstract
Background: Brain metastasis (BM) comprises the most common reason for
crizotinib failure in patients with anaplastic lymphoma kinase (ALK)-rearranged non–
small cell lung cancer (NSCLC). We hypothesize that its occurrence could be
predicted by a computed tomography (CT)-based radiomics model, therefore, all-
owing for selection of enriched patient populations for prevention therapies.
Methods: A total of 75 eligible patients were enrolled from Sun Yat-sen University
Cancer Center between June 2014 and September 2019. The primary endpoint was
brain metastasis-free survival (BMFS), estimated from the initiation of crizotinib to
the date of the occurrence of BM. Patients were randomly divided into two cohorts
for model training (n = 51) and validation (n = 24), respectively. A radiomics
signature was constructed based on features extracted from chest CT before crizotinib
treatment. Clinical model was developed using the Cox proportional hazards model.
Log-rank test was performed to describe the difference of BMFS risk.
Results: Patients with low radiomics score had significantly longer BMFS than those
with higher, both in the training cohort (p = 0.019) and validation cohort (p = 0.048).
The nomogram combining smoking history and the radiomics signature showed good
performance for the estimation of BMFS, both in the training (concordance index
[C-index], 0.762; 95% confidence interval [CI], 0.663–0.861) and validation cohort
(C-index, 0.724; 95% CI, 0.601–0.847).
Conclusion: We have developed a CT-based radiomics model to predict subsequent
BM in patients with non-brain metastatic NSCLC undergoing crizotinib treatment.
Selection of an enriched patient population at high BM risk will facilitate the design of
clinical trials or strategies to prevent BM.
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BACKGROUND

Lung cancer is one of the most common and lethal malig-
nancies worldwide.1,2 Among lung cancers, non–small cell
lung cancer (NSCLC) is the most common histology. More
than 60% of lung adenocarcinoma harbor mutations in spe-
cific driven genes, including epidermal growth factor recep-
tor (EGFR), anaplastic lymphoma kinase (ALK), ROS
proto-oncogene 1 receptor tyrosine kinase (ROS1), and so
on.3 The application of targeted therapies that block
corresponding driver genes has significantly improved the
survival of lung cancer patients.4

Approximately 5% of NSCLC has ALK rearrangement.5

For patients with ALK-rearranged NSCLC, crizotinib is the
first approved targeted agent that demonstrated survival ben-
efit.6 However, patients treated with crizotinib ultimately
experience disease progression, with brain metastasis
(BM) being the most common reason of treatment failure.7,8

BM is a major cause of mortality among patients with
NSCLC, with <5% of patients surviving over 5 years after BM
diagnosis.9 For patients with BM, psychological and physical
impairments are common complications following brain-
directed therapies and symptomatic therapies. Therefore, BM
remains a critical challenge for maintaining patients’ quality
of life and prolonging patients’ survival. On the other side,
controversies still exist in terms of the frequency of BM
screening in asymptomatic patients with ALK-rearranged
lung cancer who were free of BM at baseline. Hence, it is clin-
ically relevant to identify those who are more likely or less
likely to develop BM to tailor patient’s management.

Currently, the occurrence of BM from ALK-rearranged
NSCLC cannot be accurately predicted in patients with non-
brain metastatic disease undergoing crizotinib treatment. We
hypothesized that a nomogram could be constructed by com-
bining computed tomography (CT)-based radiomics signatures
and selected clinical variables using a multivariate model to pre-
dict the likelihood of occurrence of BM. Radiomics is an attrac-
tive method for comprehensive assessment of the tumor and its
microenvironment in entirety that can reflect tumor pheno-
types, genotypes, microenvironment, and other biological
features.10–12 A number of studies have found that radiomics is
a reliable tool in cancer diagnosis and prognosis prediction.13,14

We, therefore, constructed and validated such a nomogram
using retrospectively reviewed data from our institute. This pre-
diction model could be used to develop radiologic screening or
preventive treatment strategies for patients with NSCLC with
non-brain metastatic disease treated with crizotinib.

METHODS

Patients

We searched the electronic Lung Tumor Database of the
Sun Yat-sen University Cancer Center (Guangzhou, China)
and retrospectively reviewed records for patients treated
with crizotinib between June 2014 and September 2019. A

total of 75 consecutive patients were enrolled according to
the inclusion and exclusion criteria as listed below.

The inclusion criteria: (1) patients pathologically diag-
nosed as NSCLC; (2) the tumor had ALK rearrangement as
determined by established methods including next-generation
sequencing (NGS), fluorescent in situ hybridization (FISH),
immunohistochemistry (IHC), or reverse transcription-
polymerase chain reaction (RT-PCR); (3) had available CT
scan before crizotinib treatment that could provide lung
tumor images for data mining; (4) without BM at the initia-
tion of crizotinib as per brain magnetic resonance imaging
(MRI); and (5) had subsequent brain MRI monitoring.

The exclusion criteria: (1) had a life-threatening medical
disorder; and (2) had other invasive malignant disease
within the past 5 years, except basal-cell skin carcinoma and
cervical carcinoma in situ.

The particular main lung lesions were selected on CT
images according to diagnostic reports, and pathological
reports or follow-up data. The primary endpoint was brain
metastasis-free survival (BMFS), which was defined as the
time from the initiation of crizotinib to the date of the
occurrence of BM. Patients were divided randomly into
training cohort and validation cohorts by random numbers.
The study flow diagram is shown in Figure 1.

The study was approved by the Ethics Committee of Sun
Yat-sen University Cancer Center, and the informed consent
requirement was waved because of the retrospective nature.

CT image acquisition

All chest CT scans were performed by using the following
scanners: performed with a 64-, 128-, or 256-detector row
scanner CT machine (Aquilion TSX-101A, Toshiba Medical
System; Discovery CT750 HD, GE System; and Brilliance
iCT, Philips System) or a dual-source spiral CT system
(SOMATOM Force, Siemens Medical System).

The scanning parameters were routinely set regardless of
the type of devices as follows: tube voltage, 80–140 kVp;
tube current, automatic tube current modulation (maxi-
mum, 450 mAs); pitch factor, 1.0; slice thickness, 1, 1.25, or
2 mm; and slice interval, 1 mm. Images were evaluated on a
separate workstation using both mediastinal and lung visual-
ization windows. Contrast-enhanced CT images were
acquired after an intravenous bolus dose (1.5–2 mL/kg body
weight) of non-ionic iodinated contrast agent (Ultravist 300;
Bayer Healthcare Company), which was administered into
the antecubital vein at a rate of 3.0 mL/s via a high-pressure
syringe. All the CT images were reconstructed with a stan-
dard kernel and were retrieved from the picture archiving
and communication system (PACS).

Volume-of-interest segmentation

The pathological results and clinical information such as
age and sex were referred and selected from our hospital’s
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medical records. Two radiologists experienced in lung CT
interpretation reviewed all CT scans. The boundary
between the chest and other tissues is mainly identified in
the mediastinal window, and the mediastinal window is
used for contouring (Figure 2).

The CT images were imported into the open-source
software 3D Slicer (version 4.10.2, Brigham and Women’s
Hospital) using Digital Imaging and Communications in
Medicine (DICOM) format for delineation. The delinea-
tion was performed meticulously to exclude the visible
surrounding large vessels and bronchioles from the
volume of the lesions as much as possible. The regions

of interest (ROIs) were delineated slice-by-slice semi-
automatically on enhanced CT images by experienced
radiologists, subsequently confirmed by a senior radiolo-
gist, and the corresponding ROIs were stacked up to con-
struct volumes of interest (VOIs) of the primary lung
lesions.

Feature extraction and feature selection

Texture analysis was performed at the same time using
the PyRadiomics15 platform implanted in the 3D Slicer

F I G U R E 1 Workflow of necessary steps in current study. Patients were enrolled as the recruitment pathway. Tumors are semi-automatically segmented
on axial arterial phase CT. Radiomic features are extracted from corresponding VOIs on CT images. Feature was selected by inter- and intra-observer
reliability assessment and subsequent least absolute shrinkage and selection operator (LASSO) method. The radiomics signature is constructed by a linear
combination of selected features. The performance of the prediction model is assessed by C-index and the calibration curve. A nomogram is built for
individualized assessment, decision curve analysis, and survival prediction are then performed

F I G U R E 2 Representative clinical cases and related thoracic CT. This set of images showed the ability of brain metastasis risk stratification of the
radiomics score. The upper images demonstrated a particular patient (patient Z) with brain metastasis 21.03 months after crizotinib treatment, whereas the
lower images demonstrated one (patient J) without brain metastasis during 40.94 months’ follow-up, both patients did not smoke. The selected lesions were
marked by red and demonstrated with 3D visualization. Obviously, patient J’s lesion was much larger than that of patient Z’s, but brain metastasis occurred
in patient Z. Volume of lesion did not work. The radiomics scores of these two patients were �0.368 and �0.554, respectively. Patient Z was of high risk and
patient J was of low risk, according to the cut-off point of �0.512
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software. The code is open-source at https://github.com/
radiomics/pyradiomics. A total of 1561 features were
extracted. A total of 35 patients were randomly selected
for VOI segmentation and feature extraction again by the
same radiologist and a different one. The intraclass corre-
lation coefficient (ICC) was used to assess the intra- and
interobserver reproducibility of radiomics feature extrac-
tion. Features of ICC over 0.8 were selected for further
feature selection.

Prognosis-related feature selection and
radiomics signature construction

Leave-one-out cross-validation was applied in the training
cohort. The least absolute shrinkage and selection operator
(LASSO) cox regression algorithm, which is suitable for the
regression of high dimensional data, was applied in training
dataset to select the most predictive features with nonzero
coefficients from among the selected texture features with

T A B L E 1 Characteristics of patients in the training and validation cohort

Variable Overall, n = 75 Training cohort, n = 51 Validation cohort, n = 24

Age 48 (29–76) 48 (29–76) 49 (31–70)

Sex

Male 36 (48%) 26 (51%) 10 (42%)

Female 39 (52%) 25 (49%) 14 (58%)

Smoking 8 (11%) 6 (12%) 2 (8.3%)

ECOG PS

0 22 18 (35%) 7 (29%)

1 49 30 (59%) 16 (67%)

2 4 3 (6%) 1 (4)

Stage

IIIB-IIIC/recurrence 21 (28%) 15 (29%) 6 (25%)

IV 54 (72%) 36 (71%) 18 (75%)

Intrapulmonary metastasis

Yes 35 (47%) 26 (51%) 9 (38%)

No 40 (53%) 25 (49%) 15 (62%)

Liver metastasis

Yes 6 (8%) 5 (10%) 1 (4%)

No 69 (92%) 46 (90%) 23 (96%)

Bone metastasis

Yes 15 (20%) 7 (14%) 8 (33%)

No 60 (80%) 44 (86%) 16 (67%)

No. of metastatic sites

0 21 (28%) 15 (29%) 6 (25%)

1 49 (65%) 32 (63%) 17 (71%)

≥2 5 (7%) 4 (8%) 1 (4%)

Treatment line

1st 59 (79%) 41 (81%) 18 (76%)

2nd 7 (9%) 4 (8%) 3 (12%)

≥3rd 9 (12%) 6 (11%) 3 (12%)

Tumor CT Volume

Low volume (≤5643.75 mm3) 38 (51%) 25 (49%) 13 (54%)

High volume (>5643.75 mm3) 37 (49%) 26 (51%) 11 (46%)

Median BMFS (range) 14 (8–30) 17 (7–31) 13 (9–25)

BMFS status

Non-progression 42 (56%) 30 (59%) 12 (50%)

Progression 33 (44%) 21 (41%) 12 (50%)

Radiomics score �0.51 (�0.68 to 0.10) �0.51 (�0.66 to 0.12) �0.52 (�0.76 to 0.10)

Abbreviations: CT, computed tomography; BMFS, brain metastasis-free survival; ECOG PS, Eastern Cooperative Oncology Group performance status

JIANG ET AL. 1561

https://github.com/radiomics/pyradiomics
https://github.com/radiomics/pyradiomics


good reproducibility. A linear combination of the selected fea-
tures weighted by their respective coefficients educed a radio-
mics score for each patient, reflecting the risk of BM.

Clinical characteristics selection

The impact of potential risk factors on BMFS was evaluated
using univariable and multivariable Cox proportional hazard
proportional regression analysis. Factors considered in the
model included age, sex, smoking history, Eastern Coopera-
tive Oncology Group performance status (ECOG PS), metas-
tasis sites, treatment line, inflammatory markers, and tumor
volume. For multivariable analysis, a variable selection
method with selection criteria of p ≤ 0.1 was considered, and
interactions among factors significant at 0.05 were included.

Nomogram building, calibration, and validation

A radiomics nomogram was built by a multivariate Cox regres-
sion model to predict BMFS and tested in the validation cohort.

The predictive accuracy of the radiomics nomogram was
quantified by concordance index (C-index) in both the
training and validation cohort.

Clinical use of the radiomics nomogram

Decision curve analysis (DCA) was performed by calculating
the net benefits of different threshold probabilities in the model

and validation cohort combined, thereby estimating the clinical
use of the nomogram. Net benefit can be calculated as net
benefit = true positive rate – (false positive rate � Pt

1�Pt). Where
Pt is the threshold probability given by predict model.

Statistical analysis

A dedicated statistician using R statistical software (version
4.0.3; R Foundation for Statistical Computing) performed all
statistical tests. The differences in age, sex, stage, smoking his-
tory, ECOG PS, metastatic sites, treatment line, and tumor vol-
ume between the training and validation data sets were
assessed by using an independent samples χ2 test or Wilcoxon
test, where appropriate. The “glmnet” package was used to
perform the LASSO Cox regression model analysis. Cox
regression analyses were performed to find prognostic clinical
and radiomics feature(s) for BM during follow-up and log-
rank test was performed to describe the difference between
two risk groups. Nomogram construction was performed using
the “rms” package. DCA was performed using the “rmda”
package. A two-sided p < 0.05 was considered significant.

RESULTS

Patient characteristics

The baseline characteristics of all the 75 eligible patients are
shown in Table 1. Among these patients, 36 were males;
median age was 48 years (range, 29–76 years old); all had

(a) (b)

F I G U R E 3 Feature selections using the LASSO Cox model. (a) The LASSO logistic regression model was used with tuning parameter (λ) conducted by
leave-one-out cross-validation based on the minimum criteria. The deviance was plotted versus log(λ). Dotted vertical lines were drawn at the optimal values,
using the minimum criteria and the 1 standard error of the minimum criteria (the 1—standard error criteria). The optimal tuning parameter λ value of 0.098
with log(λ) = �2.321 was selected. (b) LASSO coefficient profiles of the 489 texture features. The dotted vertical line was plotted at the value selected using
leave-one-out cross-validation in plot (a). The eight resulting features with nonzero coefficients are indicated in the plot
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histology of lung adenocarcinoma; most patients had meta-
static disease (72%) and most patients received crizotinib as
first-line treatment (79%). All the included patients were
randomly divided into training cohort (n = 51) and valida-
tion cohort (n = 24). The characteristics were well balanced
between the training and the validation cohorts. During the
follow-up, 33 patients (44.0%) eventually had radiological
evidence of brain metastases. The median BMFS was
14.39 months (95% confidence interval [CI], 16.92–25.84) in
the entire cohort, 16.56 months (95% CI, 16.77–28.32) in

the testing cohort, and 13.21 months (95% CI, 11.80–25.99)
in the validation cohort, respectively.

Feature selection and radiomics signature
construction

Totally 489 radiomics features with high reproducibility was
selected and demonstrated with histograms (Figure S1). All out-
comes were based on themeasurements of the first radiologist.

T A B L E 2 Correlation between characteristics of patients and radiomics score

Variable High radiomics score, n = 38 Low radiomics score, n = 37 p-value

Age >0.999

≤60 33 (87%) 32 (86%)

>60 5 (13%) 5 (14%)

Sex >0.999

Male 18 (47%) 18 (49%)

Female 20 (53%) 19 (51%)

Smoking >0.999

Yes 4 (11%) 4 (11%)

No 34 (89%) 33 (89%)

ECOG PS 0.987

0 13 (34%) 12 (32%)

1 23 (61%) 23 (62%)

2 2 (5.3%) 2 (5.4%)

Stage 0.045a

IIIB-IIIC/recurrence 2 (5.3%) 9 (24%)

IV 36 (95%) 28 (76%)

Intrapulmonary metastasis 0.904

Yes 19 (50%) 17 (46%)

No 19 (50%) 20 (54%)

Liver metastasis >0.999

Yes 3 (7.9%) 3 (8.1%)

No 35 (92%) 34 (92%)

Bone metastasis 0.603

Yes 9 (24%) 6 (16%)

No 29 (76%) 31 (84%)

No. of metastatic sites 0.305

0 8 (21%) 13 (35%)

1 28 (74%) 21 (57%)

≥2 2 (5.3%) 3 (8.1%)

Treatment line 0.260

1st 27 (71%) 32 (86%)

2nd 5 (13%) 2 (5.4%)

≥3rd 6 (16%) 3 (8.1%)

Volume 0.002a

Low volume (≤5643.75 mm3) 12 (32%) 26 (70%)

High volume (>5643.75 mm3) 26 (68%) 11 (30%)

aStatistically significant.
Abbreviations: ECOG PS, Eastern Cooperative Oncology Group performance status.

JIANG ET AL. 1563



Eight texture features with nonzero coefficient in the
LASSO Cox regression models were as follows (Figure 3):

original_shape_Elongation;
log.sigma.2.0.mm.3D_glrlm_GrayLevelNonUniformity

Normalized;
log.sigma.3.0.mm.3D_ngtdm_Busyness;
wavelet.HLL_firstorder_Maximum;
wavelet.HLH_gldm_LargeDependenceHighGrayLevel

Emphasis;
wavelet.HLH_ngtdm_Busyness;
wavelet.HHH_glcm_DifferenceVariance; and

logarithm_glszm_HighGrayLevelZoneEmphasis.
The radiomics signature was constructed and represen-

ted as radiomics score calculated by the formula followed:
Radiomics Score =
-original_shape_Elongation�0.92777 +
log.sigma.2.0.mm.3D_glrlm_GrayLevelNonUniformity

Normalized�1.596924+
log.sigma.3.0.mm.3D_ngtdm_Busyness�0.341031 -
wavelet.HLL_firstorder_Maximum�0.06123 -
wavelet.HLH_gldm_LargeDependenceHighGrayLevel

Emphasis�0.23798 +

T A B L E 3 Differences of characteristics between BM group and non-BM group

Variable Non-BM group, n = 42 BM group, n = 33 p-value

Age >0.999

≤60 36 (86%) 29 (88%)

>60 6 (14%) 4 (12%)

Sex 0.759

Female 23 (55%) 16 (48%)

Male 19 (45%) 17 (52%)

Smoking 0.136

Yes 2 (4.8%) 6 (18%)

No 40 (95%) 27 (82%)

ECOG PS 0.193

0 17 (40%) 8 (24%)

1 22 (52%) 24 (73%)

2 3 (7.1%) 1 (3.0%)

Stage 0.378

IIIB-IIIC/recurrence 8 (19%) 3 (9.1%)

IV 34 (81%) 30 (91%)

Intrapulmonary metastasis 0.874

Yes 21 (50%) 15 (45%)

No 21 (50%) 18 (55%)

Liver metastasis 0.904

Yes 4 (9.5%) 2 (6.1%)

No 38 (90%) 31 (94%)

Bone metastasis 0.954

Yes 9 (21%) 6 (18%)

No 33 (79%) 27 (82%)

Treatment line 0.781

1st 32 (76%) 27 (82%)

2nd 4 (9.5%) 3 (9.1%)

≥3rd 6 (14%) 3 (9.1%)

No. of metastatic sites 0.918

0 11 (26%) 10 (30%)

1 28 (67%) 21 (64%)

≥2 3 (7.1%) 2 (6.1%)

Volume 0.918

Low volume (≤5643.75 mm3) 22 (52%) 16 (48%)

High volume (>5643.75 mm3) 20 (48%) 17 (52%)

Abbreviations: BM, brain metastasis; ECOG PS, Eastern Cooperative Oncology Group performance status.

1564 JIANG ET AL.



wavelet.HLH_ngtdm_Busyness�0.736794 -
wavelet.HHH_glcm_DifferenceVariance�0.75541 -
logarithm_glszm_HighGrayLevelZoneEmphasis�0.04781

Performance of multimodality prediction model

Patients were classified into a high-risk group and a low-
risk group by the median radiomics scores in the training
cohort (�0.512) as cut-off. There are no correlations

between patient characteristics and radiomics score
(Table 2), except that larger tumor volume was signifi-
cantly associated with lower radiomics score (p = 0.002)
and higher stage (p = 0.045). There is no difference of
patient characteristics between BM group and those with-
out BM (Table 3).

Patients with low radiomics score had significantly lon-
ger BMFS than those with high radiomics score in the train-
ing cohort (not reached [NR] vs. 19.6 months; p = 0.019;
HR, 2.09; 95% CI, 1.10–3.95) (Figure 4(a)). The findings

F I G U R E 4 Predictive capacity of radiomic signature. Kaplan–Meier curve shows that this radiomic signature could effectively discriminate patients with better
BMFS survival from those with worse BMFS in training group (not reached [NR] vs. 19.6 months; p= 0.019; HR= 2.09, 95% confidence interval [CI], 1.10–3.95)
(Figure 4(a)) and validation group (NR vs. 12.8 months; p= 0.048; HR. 2.41; 95% CI, 0.95–6.08) (Figure 4(b)). Patients with low radiomics score and non-smoking
history had the longest BMFS than those with at least one of these two negative features (NR vs. 19.5 months vs. 17.1 months vs. 7.5 months; p < 0.001) (Figure 4(c))
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were confirmed in the validation cohort (median BMFS
between low and high radiomics score: NR vs. 12.8 months;
p = 0.048; HR, 2.41; 95% CI, 0.95–6.08) (Figure 4(b)).

Because of the limited sample size and the similarity
between the training and validation set, we next conducted
univariate and multivariate Cox regression analyses in the
combined cohort (Table 4). In the univariate analysis, radio-
mics score (HR, 5.45; 95% CI, 2.49–11.92; p < 0.0001),
smoking history (HR, 3.52; 95% CI, 1.12–11.12; p = 0.032),
and platelet lymphocyte ratio (HR, 3.32; 95% CI, 1.58–6.96;
p = 0.0.001) was significantly associated with for BM occur-
rence. Multivariate Cox regression analysis revealed that
radiomics score (HR, 5.07; 95% CI, 1.73–14.85; p = 0.003)

and smoking (HR, 5.84; 95% CI, 1.70–20.04; p = 0.005)
remained independent factors for BMFS. Subsequently,
patients with low radiomics score and non-smoking history
had the longest BMFS than those with at least one of these
two negative features (p < 0.001) (Figure 4(c)).

Performance interpretation with nomogram

The radiomics signature built on eight selected features
showed good discrimination, yielding a C-index of
0.733 (95% CI, 0.637–0.828) in the training cohort and
0.693 (95% CI, 0.569–0.818) in the validation cohorts.

F I G U R E 5 (a) Nomogram integrated radiomics signature and smoking history predicting intracranial progression-free survival in ALK-positive NSCLC
patients treated with crizotinib. Decision curve analysis for each model in the training (b) and validation (c) cohort. The y-axis measured by the net benefit is
calculated by summing the benefit (true positive finding) and subtracting the harm (false positive finding). The latter is weighted by a factor related to the
relative harm of brain metastasis compared to the harm of unnecessary treatment. Compared with the other characteristics and simple strategies such as
follow-up of all patients (curve light gray line) or no patients (horizontal light gray line), the radiomics nomogram (the orange line) had the highest net
benefit across most of threshold probabilities when a patient would choose to undergo imaging follow-up
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The only independent clinical risk factor was smoking
history and was combined with the radiomics signature
for nomogram construction (Figure 5(a)). The C-indexes
of the radiomics-based nomogram incorporating radio-
mics signature and smoking history were 0.762 (95%
CI, 0.663–0.861) and 0.724 (95% CI, 0.601–0.847),
respectively.

Further, a decision curve analysis showed that the
radiomics-based nomogram had a relatively higher overall
net benefit than the clinical factor and radiomics signature
only across the majority of the range of reasonable threshold
probabilities (Figure 5(b),(c)). The calibration curves of the
integrated nomograms for the probability of BM at 1, 2, or
3 years undergoing crizotinib treatment are shown in
Figure S2, and these curves exhibit better agreement
between the estimation and actual observation.

DISCUSSION

We have developed and validated a robust, relatively simple
radiomics-based nomogram that is able to predict the develop-
ment of subsequent BM in patients with advanced NSCLC
treated with crizotinib. This model can be used to predict
which patients are at risk for BM, and therefore, can aid in
selecting candidates for treatment with newer-generation ALK
inhibitors or other preventive approaches. This tool is useful in
deciding the monitoring strategies in patients with non-brain
metastatic disease. To the best of our knowledge, this is the first
predictive model for BM in this population. Extensive research
efforts are currently under way at the molecular level, with the
goal of optimizing predictive models incorporating clinical,
radiological, pathological, and molecular data.

BM is an increasing challenge in the management of
ALK-rearranged lung cancer.16 It is associated with reduced

quality of life because of neurologic impairment following
disease progression or brain local treatment. Therefore,
predicting and clustering patients by the risk of developing
BM would enrich populations for appropriate management
to reduce or prevent occurrence of BM, and improve the
clinical outcomes. Newer-generation ALK inhibitors, includ-
ing alectinib, ceritinib, brigatinib, and lorlatinib, have better
blood–brain barrier penetrating capacity and intracranial
activity.17,18 In this case, patients who are at higher risk of
developing BM predicted by our proposed model should
preferentially receive treatment with newer-generation ALK
inhibitors. Currently, alectinib, brigatinib, and lorlatinib are
recommended as preferred first-line options for ALK-
rearranged lung cancer as per the National Comprehensive
Cancer Network (NCCN) guidelines. However, there was no
evidence of significant overall survival improvement with
these agents, compared with crizotinib.19 We proposed that
crizotinib is useful in circumstances where patients are at
lower risk of developing BM and it is better to retain newer-
generation ALK inhibitors for subsequent therapies in low-
risk population. Optionally, it remains unknown if high-risk
patients should undergo prophylactic brain radiotherapy.

Regardless of baseline BM status, the brain remained the
most common site of disease progression in ALK-rearranged
NSCLC patient. We also found that the occurrence of BM
was the most common reason for crizotinib failure, occurring
in 44% of patients without baseline BM. The one underlying
reason was the limited penetration of crizotinib into the cen-
tral nervous system through the blood–brain barrier.20

Another reason may be the neglect of tumor heterogeneity.
Studies have reported molecular status, including EGFR,
ALK, and KRAS, demonstrated significantly higher risk of
BM than triple negative.21 The potential mechanisms of pro-
moting brain progression over time by ALK-rearrangement
in lung cancer remain unclear. Yet, evaluating the risk of lung

T A B L E 4 Univariate and multivariate COX analyses of brain metastases-free survival

Characteristics

Univariate cox Multivariate Cox

Hazard ratio 95% CI p-value Hazard ratio 95% CI p-value

Age 1.00 0.96–1.03 0.919

Sex 0.81 0.35–1.92 0.640

Smoking 3.52 1.11–11.12 0.032a 5.84 1.70-20.04 0.005a

ECOG PS 1.79 0.70–4.60 0.226

Bone metastasis 0.91 0.21–3.96 0.904

Liver metastasis 1.39 0.32–6.03 0.66

Intrapulmonary metastasis 0.95 0.4–2.23 0.901

No. of metastatic sites 0.73 0.28–1.87 0.506

Treatment line 0.57 0.18–1.87 0.356

Radiomics score 5.45 2.49–11.92 <0.001a 5.07 1.73-14.85 0.003a

Volume 1.17 0.63-2.16 0.618

Platelet 1.00 1.00–1.01 0.135

NLR 1.02 0.85–1.22 0.506

PLR 3.32 1.58–6.96 0.001a 1.55 0.52-4.63 0.430

aStatistically significant.
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cancer invasion and recurrence based on different geno-
types and phenotypes will be the key to understand the
tumor heterogeneity and implementation of individualized
treatment.22 Although more and more studies have tried to
establish specific prediction models for ALK-positive
NSCLC patients in terms of survival,23 there are no effec-
tive and recognized methods for using radiomics informa-
tion from primary lung tumor lesions to predict risk of
developing BM in crizotinib-treated patients. Therefore,
our research is enlightening and shows the potential for
clinical practice and future research.

In this study, we analyze 489 radiomics features from
pretreatment thoracic CT images of ALK-rearranged
patients who were subsequently treated with crizotinib. In
the process of building a radiomics model, eight signatures,
including original_shape_Elongation, log.sigma.2.0.mm.3D_
glrlm_GrayLevelNonUniformityNormalized, log.sigma.3.0.
mm.3D_ngtdm_Busyness, wavelet.HLL_firstorder_Maximum,
wavelet.HLH_gldm_LargeDependenceHighGrayLevelEmphasis,
wavelet.HLH_ngtdm_Busyness, wavelet.HHH_glcm_Difference
Variance, and logarithm_glszm_HighGrayLevelZoneEmphasis,
were selected using LASSO Cox regression. The selected fea-
tures obtained were combined as a radiomic signature, that
demonstrated sufficient discrimination in both training and val-
idation cohorts. Radiomics postulated that intratumor heteroge-
neity was exhibited on the spatial distribution of voxel
intensity.24 Findings of previous studies have supported the
hypothesis that proteogenomic and phenotypic information of
the tumor can be inferred from radiologic images.25 Radiomics
has been reported in predicting lymph node metastases in dif-
ferent kinds of tumor, including lung cancer,26 colorectal can-
cer,27 and so on. Moreover, it could decode different tumor
genotype such as EGFR mutation, or ALK, ROS1, and RET
fusion in lung cancer.28 Most of these radiomic features are tex-
ture features that reflect image heterogeneity and were similar
to those in other proposed signatures for NSCLC.29 Our study
focused on a minority of NSCLC patients with high incidence
of BM and we aimed at finding possible model combined with
radiomics marker and clinicopathological parameters for
predicting subsequent BM following crizotinib treatment, which
has significance for clinical treatment decision-making and
prognosis evaluation.

In addition to the high-order radiomic features, multiple
feature combinations can better reflect the complex heteroge-
neity of tumors, which will undoubtedly improve the accu-
racy of prediction. Risk factors for development of BM
identified in our study only include smoking. Smoking was
significant risk factor in the multivariate analysis. Cigarette
smoking is a well-known environmental risk factor of lung
carcinogenesis.30 Tobacco smoke contains many mutagenic
and carcinogenic chemicals, which may be related to muta-
tions in tumor suppressor genes and oncogenes, such as
p5331 and K-Ras.32 What is more, nicotine could promote
BM by skewing the polarity of M2 microglia, which
enhances metastatic tumor growth.33 In this study, there
was a significant correlation between the smoking and the
brain metastases of patients using crizotinib. We found

smoking history plus lung tumor CT-based radiomics sig-
nature could produce a nomogram that better predicts the
occurrence of BM. This could easily be incorporated into
clinical practice by stratifying patients based on radiomics
score and smoking history.

There are some limitations in this study. First, consid-
ering the general low incidence of ALK rearrangement
among NSCLC, the sample size of this study is relatively
small. However, by using LASSO Cox regression method,
we were able to mine key features that together form an
independent risk score. Additionally, the prediction model
shows good and similar performance both in the training
and validation cohorts. Prospective multicenter studies
with larger sample size are needed to further validate the
robustness and reproducibility of our prediction model.
Second, changes in radiomic characteristics from one time
point to the next (delta radiomics), such as changes before
and after treatment, could dynamically respond to changes
in tumor heterogeneity and may have a higher predictive
value than a single time point extraction. Third, we did not
analyze other potential genomic characteristics, which is
undoubtedly a medical hotspot to promote the progress in
the analysis.

CONCLUSIONS

In conclusion, we have developed a radiomics-based nomo-
gram that robustly predicts subsequent BM in patients with
ALK-rearranged lung cancer with non-brain metastatic dis-
ease. Our model will allow selection of patients at higher risk
for BM and therefore, will facilitate the design of prevention
trials or development of drugs with better intra-cranial
activity for the affected population.
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