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Abstract

Binary logistic regression is one of the most frequently applied statistical approaches for developing clinical prediction

models. Developers of such models often rely on an Events Per Variable criterion (EPV), notably EPV �10, to determine the

minimal sample size required and the maximum number of candidate predictors that can be examined. We present an

extensive simulation study in which we studied the influence of EPV, events fraction, number of candidate predictors, the

correlations and distributions of candidate predictor variables, area under the ROC curve, and predictor effects on out-of-

sample predictive performance of prediction models. The out-of-sample performance (calibration, discrimination and

probability prediction error) of developed prediction models was studied before and after regression shrinkage and

variable selection. The results indicate that EPV does not have a strong relation with metrics of predictive performance,

and is not an appropriate criterion for (binary) prediction model development studies. We show that out-of-sample

predictive performance can better be approximated by considering the number of predictors, the total sample size and

the events fraction. We propose that the development of new sample size criteria for prediction models should be based

on these three parameters, and provide suggestions for improving sample size determination.
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1 Introduction

Binary logistic regression modeling is among the most frequently used approaches for developing multivariable
clinical prediction models for binary outcomes.1,2 Two major categories are: diagnostic prediction models that
estimate the probability of a target disease being currently present versus not present; and prognostic prediction
models that predict the probability of developing a certain health state or disease outcome over a certain time
period.3 These models are developed to estimate probabilities for new individuals, i.e. individuals that were not
part of the data used for developing the model,3–5 which need to be accurate and estimated with sufficient precision
to correctly guide patient management and treatment decisions.

One key contributing factor to obtain robust predictive performance of prediction models is the size of the data
set used for development of the prediction model relative to the number of predictors (variables) considered for
inclusion in the model (hereinafter referred to as candidate predictors).4,6–10 For logistic regression analysis,
sample size is typically expressed in terms of events per variable (EPV), defined by the ratio of the number of
events, i.e. number of observations in the smaller of the two outcome groups, relative to the number of degrees of
freedom (parameters) required to represent the predictors considered in developing the prediction model.
Lower EPV values in the prediction model development have frequently been associated with poorer predictive
performance upon validation.6,7,9,11–13
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In the medical literature, an EPV of 10 is widely used as the lower limit for developing prediction models that
predict a binary outcome.14,15 This minimal sample size criterion has also generally been accepted as a
methodological quality item in appraising published prediction modeling studies.2,14,16 However, some authors
have expressed concerns that that the EPV � 10 rule-of-thumb is not based on convincing scientific reasoning.17

The rule also did not perform well in large-scale simulation studies.18–20 Indeed, EPV � 10 has been found too
lenient when default stepwise predictor selection strategies are used for development of the prediction model.11,13

EPV � 50 may be needed when stepwise predictor selection with conventional type I error � ¼ :05 is applied.11

Conversely, more recent work suggests that the EPV � 10 criterion may be too strict in particular settings,
showing several examples where prediction models developed with modern regression shrinkage techniques
showed good out-of-sample predictive performance in settings with EPV� 10.15,21

Despite all the concerns and controversy, surprisingly few alternatives for considering sample size for logistic
regression analysis have been proposed to move beyond EPV criteria, except those that have focused on
significance testing of logistic regression coefficients.22 Sample size calculations for testing single coefficients are
of little interest when developing a prediction model to be used for new individuals where the predictive
performance of the model as a whole is of primary concern.

Our work is motivated by the lack of sample size guidance and uncertainty about the factors driving the
predictive performance of clinical prediction models that are developed using binary logistic regression.
We report an extensive simulation study to evaluate out-of-sample predictive performance (hereafter shortened
to predictive performance) of developed prediction models, applying several methods for model development.
We examine the predictive performance of logistic regression-based prediction models developed using
conventional Maximum Likelihood (ML), Ridge regression,23 Least absolute shrinkage and selection operator
(Lasso),24 Firth’s correction25 and heuristic shrinkage after ML estimation.26 Backwards elimination predictor
selection using the conventional p¼ .05 and p¼ .157 (¼AIC) stopping rules is also evaluated. Using a full-factorial
approach, we varied EPV, the events fraction, number of candidate predictors, area under the ROC curve
(model discrimination), distribution of predictor variables and type of predictor variable effects. The simulation
results are summarized using metamodels.27,28

This paper is structured as follows. In section 2 we present models and notation. The design of the simulation
study is presented in section 3, and the results are described in section 4. A discussion of our findings and its
implications for sample size considerations for logistic regression is presented in section 5.

2 Developing a prediction model using logistic regression

2.1 General notation

We define a logistic regression model for estimating the probability of an event occurring (Y¼ 1) versus not
occurring (Y¼ 0) given values of (a subset of) P candidate predictors, X ¼ f1,X1, . . . ,XPg. For an individual i
(i ¼ 1, . . . ,N), let �i ¼ PrðY ¼ 1jxi) ¼ 1� PrðY ¼ 0jxi)). The logistic model assumes that �i is an inverse logistic
function of xi

�i ¼
1

1þ expf�ðb0xiÞg

where the vector b contains an intercept, a scalar, and P� � P regression coefficients corresponding to the log odds
ratios for a 1-unit increase in the corresponding predictor (hereinafter referred to as predictor effects), assuming a linear
effect for each candidate predictor. At different steps in the prediction model development, the number of predictor
effects estimated (P�) may be smaller than the number of candidate predictors (P) due to predictor selection.

2.2 Maximum likelihood estimation and known finite sample properties

Conventionally, the P� þ 1 dimensional parameter vector b of the logistic model is estimated by ML estimation,
which maximizes the log-likelihood function29

logLðbÞ ¼
X
i

yi log�i þ ð1� yiÞ logð1� �iÞ

which are usually derived by iteratively solving the scoring equation: @ logL=@�p ¼ 0, p ¼ 0, . . . ,P�.
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While ML logistic regression remains a popular approach to developing prediction models, ML is also known
to possess several finite sample properties that can cause problems when applying the technique in small or sparse
data. These properties can be classified into the following five separate and not mutually exclusive issues:

. Issue 1: ML estimators are not optimal for making model predictions of the expected probability (risk) in new
individuals. In most circumstances shrinkage estimators can be defined that have lower expected error for
estimating probabilities in new individuals than ML estimators.30,31 The benefits of the shrinkage estimators
over the corresponding ML estimators decreases with increasing EPV.9

. Issue 2: the predictor effects are finite sample biased.32,33 The regression coefficients from ML logistic regression
models estimate the (multivariable) log-odds ratios for the individual predictors, which are biased towards more
extreme effects, i.e. creating optimistic estimates of predictor effects for individual predictors in smaller data
sets. This bias reduces with increasing EPV,34–36 but may not completely disappear even in large samples.19

. Issue 3: model estimation becomes instable when predictor effects are large or sparse (i.e. separation).37,38

The estimated predictor effects tend to become infinitely large in value when a linear combination of
predictors can be defined that perfectly discriminates between events and non-events. Extreme probability
estimates close to their natural boundaries of 0 or 1 is an undesirable consequence. Separation becomes less
likely with increasing EPV.19

. Issue 4: model estimation becomes instable when predictors are strongly correlated (i.e. collinearity).9,39

If correlations between predictors are very strong, the standard errors for the predictor effects become
inflated reflecting uncertainty about the effect of the individual predictor, although this has limited effect on
the predictive performance of the entire model.8 With increasing EPV, spurious predictor collinearity becomes
less likely.

. Issue 5: commonly used automated predictor selection strategies (e.g. stepwise selection using p-values to decide
on predictor inclusion40) cause distortions when applied in smaller data sets. In small datasets, predictor selection
is known to: (i) lead to unstable models where small changes in the number of individuals – deletion or addition of
individuals – can result in different predictors being selected7,8,41,42; (ii) cause bias in the predictor effects towards
extremer values10,11; and (iii) reduce a model’s predictive performance when applied in new individuals, due to
omission of important predictors (underfitting) or inclusion of many unimportant predictors (overfitting).9,11 The
distortions due to predictor selection typically decrease with increasing EPV.

As these small and sparse data effects can affect the performance of a developed ML prediction model, and thus
impact the required sample size for prediction model development studies, we additionally focus on four
commonly applied shrinkage estimators for logistic regression. Each of these methods aims to reduce at least
one of the aforementioned issues.

2.3 Regression shrinkage

2.3.1 Heuristic shrinkage logistic regression

Van Houwelingen and Le Cessie43 proposed a heuristic shrinkage (HS) factor to be applied uniformly on all the
predictor effects. The shrinkage factor is calculated as

ĉheur ¼
G2 � P�

G2
ð1Þ

where G2 is the ML logistic regression’s likelihood ratio statistic: �2ðlogLð0Þ � logLðbÞÞ, with L(0) denoting
the likelihood under the intercept-only ML logistic model.8 The predictor effects of the ML regression are
subsequently multiplied with ĉheur to obtain shrunken predictor effect estimates. After shrinkage, the intercept
is recalculated by refitting the ML model by taking the shrunken regression coefficients as fixed (i.e. as
offset terms).

The HS estimator was developed to improve a model’s predictive performance over the ML estimator in
smaller data sets (issue 1).43 However, in cases of weak predictor effects the HS estimator can perform poorly,
as can be seen from equation (1) that ĉheur takes on a negative value if: G2 5P�, in which case each of the
predictor effects switches sign and a different modeling strategy is recommended. As HS relies on estimating the
ML model to calculate the shrinkage factor and intercept, it may be sensitive to ML estimation instability (issue 3
and issue 4).44
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2.3.2 Firth logistic regression

Firth’s penalized likelihood logistic regression model25,38,45 penalizes the model likelihood by log jIðbÞj1=2, where
IðbÞ denotes Fisher’s information matrix evaluated at b, IðbÞ ¼ X0WX, with W ¼ diagf�ið1� �iÞg. Firth’s logistic
regression model is estimated by solving the modified scoring equationX

i

fyi � �i þ hið0:5� �iÞgxip ¼ 0, p ¼ 0, . . . ,P� ð2Þ

where hi is the diagonal element i of matrix W1=2XfX0WXg�1X0W1=2 (cf.38).
The Firth estimator was initially developed to remove the first-order finite sample bias (issue 2) in ML

estimators of logistic regression coefficients and other exponential models with canonical links.25 As a
consequence of its penalty function, the regression coefficients remain finite in situations of separation
(issue 3).38 More recently, Puhr and colleagues21 evaluated the Firth’s estimator for improving predictive
performance (issue 1), warning that it introduced bias in predicted probabilities toward �i ¼ 0:5, a consequence
of the use the Fisher’s matrix for penalization that maximizes at �i ¼ 0:5.21

2.3.3 Ridge logistic regression

Ridge regression penalizes the likelihood proportionally to the sum of squared predictor effects:
PP�

j¼1 �
2
j .

For estimation, the predictors are standardized to have mean zero and unit variance.46 Then, for a particular
value of the tuning parameter �1, the regression coefficients are estimated using a coordinate decent algorithm that
minimizes

�L?ðbÞ � �1
XP�
j¼1

�2j ð3Þ

where

L?ðbÞ / �
XN
i¼1

~�ið1� ~�iÞ

�
zi � �0 �

XP�
p¼1

xip�p

�
ð4Þ

zi ¼ ~�0 þ
XP�
p¼1

xip ~�p þ
yi � ~�i

~�ið1� ~�iÞ
ð5Þ

with the tilde (~) denoting that estimates are evaluated at their current value (cf.47). The optimal value for the
tuning parameter �1 can be approximated using cross-validation optimized for a particular performance criterion.
In this paper, we apply the commonly used 10-fold cross-validation (whenever possible) with minimal deviance as
the performance criterion.

The Ridge estimator was originally developed to deal with collinearity (issue 4).23,39 Due to its penalty function
it can also deal with separation (issue 3). Moreover, the Ridge estimator has been shown to improve predictive
performance in smaller data sets that do not suffer from collinearity or separation (issue 1), although in some
circumstances it showed signs of underfitting.15,48

2.3.4 Least absolute shrinkage and selection operator (Lasso) regression

Lasso regression penalizes the likelihood proportional to the sum of the absolute value of predictor effects:Pdf
j¼1 j�j j. Estimating Lasso regression can be done using the same procedure as Ridge regression, where

�L?ðbÞ � �2
XP�
j¼1

j�j j ð6Þ

with L?ðbÞ defined by equation (4). Similar to Ridge regression, in this paper we use 10-fold cross-validation with
minimal deviance as the performance criterion to define the tuning parameter.

Lasso regression is attractive for developing prediction models as it simultaneously performs regression
shrinkage (addressing issue 1) and predictor selection (by shrinking some coefficients to zero), while avoiding
some of the adverse effects of regular automated predictor selection strategies (issue 5). It is also suited to handle
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separation (issue 3), but in the context of highly correlated predictors (issue 4), the Lasso has been reported to
perform less well.15,49

3 Methods

This simulation study was set up to evaluate the predictive performance of various prediction modeling strategies
in relation to characteristics of the development data. Our primary interest was in the size of the development data
set relative to other data characteristics, such as the number of candidate predictors and the events fraction (i.e.
Pr(Y¼ 1)). The various modeling strategies we considered are described in section 3 3.1, and the variations in data
characteristics are described in section 3.2. A description of the predictive performance metrics and metamodels
are given in sections 3.3.1 and 3.3.2, respectively. Software and error handling are given in section 3.4.

3.1 Modeling strategies

The predictive performance of the various logistic regression models as described in section 2 were evaluated
on large sample validation data sets. These regressions correspond to different ways of applying regression
shrinkage (ML regression applies none). For future reference, we collectively call these approaches ‘‘regression
shrinkage strategies’’.

We also evaluated predictive performance after backward elimination predictor selection.40 This procedure
starts by estimating a model with all P candidate predictor variables and considering the p-values associated with
the predictor effects. For some pre-specified threshold value, the variable with the highest p-value exceeding the
threshold value is dropped. The model is then re-estimated without the omitted variable. This process is continued
until all the p-values associated with the effects of the predictors in the model are below the threshold. In this
paper, we consider two commonly used threshold p-values values for ML and Firth’s regressions. We use
conventional threshold p¼ 0.050 and a more conservative threshold p¼ 0.157. The latter is equivalent to the
AIC criterion for selection of predictors. We collectively call the backwards elimination predictor selection
approaches and Lasso (which performs predictor selection by means of shrinkage) ‘‘predictor selection strategies’’.

3.2 Design and procedure

We conducted a full factorial simulation study, examining six design factors. These six factors are: (1) EPV,
ranging from 3 to 50; (2) events fraction (Pr(Y¼ 1)), ranging from 50% to 6%; (3) number of candidate
predictors (P), ranging from 4 to 12; (4) model discrimination, defined by the area under the ROC curve
(AUC50), ranging from 0.65 to 0.85; (5) distribution of the predictor variables, independent Bernoulli or
multivariate normal with equal pairwise correlation ranging from 0 to 0.5; (6) type of predictor effect, ranging
from equal predictor effects for all candidate predictors to half of the candidate predictors as noise variables.
All factor levels are described in Table 1.

In total, 4032 unique simulation scenarios were investigated. For each of these scenarios, 5000 simulation runs
were executed using the following steps:

(1) A development data set was generated satisfying the simulation conditions (Table 1). For each of
N ¼ ðEPV� PÞ=PrðY¼ 1Þ hypothetical individuals, a predictor variable vector (xi) was drawn. For each
individual, a binary outcome was generated as yi ¼ Bernoulli(�i) (i.e. the outcome was drawn conditional
on the true risk for each individual, which depends on the true predictor effects and the individuals predictor
values).

(2) Nine binary logistic prediction models with different regression shrinkage and predictor selection strategies
were estimated on the development data generated at step 1. These approaches are described in Table 2.

(3) A large validation data set was generated with sample size, N� ¼ 5000=PrðY ¼ 1Þ (i.e. data set with 5000
expected events, which is 25 times larger than the recommended minimum sample size for validation studies51),
using the sampling approach of step 1.

(4) The performance of the prediction models developed in step 2 is evaluated on the validation data generated in
step 3. The measures of performance are detailed in section 3.3.
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More details about the development of the simulation scenarios appear in Web Appendix A.

3.3 Simulation outcomes

3.3.1 Predictive performance metrics

Model discrimination was evaluated by the average (taken over all validation simulation samples) loss in the area
under the ROC-curve (�AUC). �AUC was defined by the average difference between the AUCs estimated on the
generated data and the AUC of the data generating model (the AUC defined by simulation factor number 5,
Table 1). �AUCs were expected to be negative, with higher values (closer to zero) indicating better discriminative
performance.

Model calibration performance was evaluated by the median of calibration slopes (CS) and average calibration
in the large (CIL). CS values closer to 1 and CIL closer to 0 indicate better performance. CS was estimated using
standard procedures.52–54 Due to the expected skewness of slope distributions for smaller sized development data
sets, medians rather than means and interquartile ranges rather than standard deviations were calculated. CS< 1
indicates model overfitting, CS> 1 indicates underfitting. CIL was calculated by average differences between

the generated events fraction
�
i:e:

P
i
yi

N

�
and average estimated probabilities

�
i:e:

P
i
�̂i

N

�
. Values of CIL< 0

indicates systematic underestimation of estimated probabilities, CIL> 0 indicates systematic overestimation of
estimated probabilities.

Table 1. Design factorial simulation study (7� 4� 3� 4� 3� 4).

Simulation factors Factor levels

1. Events per variable (EPV) 3, 5, 10, 15, 20, 30, 50

2. Events fraction 1/2, 1/4, 1/8, 1/16

3. Number of candidate predictors (P) 4, 8, 12

4. Model discrimination (AUC) .65,.75,.85

5. Distribution of predictor variables B(0.5): Independent Bernoulli with

success probability.5.

MVN(0.0): Normal (means¼ 0, variances¼ 1,

covariances¼ 0.0)

MVN(0.3): Normal (means¼ 0, variances¼ 1,

covariances¼ 0.3)

MVN(0.5): Normal (means¼ 0, variances¼ 1,

covariances¼ 0.5)

6. Predictor effects Equal effect: �1 ¼ � � � ¼ �P

1 strong: 3�1 ¼ �2 ¼ � � � ¼ �P

1 noise: �1 ¼ 0,�2 ¼ � � � ¼ �P

1/2 noise: �1 ¼ � � � ¼ �P=2 ¼ 0,�P=2þ1 ¼ � � � ¼ �P

Table 2. Prediction models: parameter shrinkage and variable selection strategies.

Model

Parameter

shrinkage

Variable

selection Abbreviation

Maximum likelihood (full model) No No ML

Maximum likelihood (backward 1) No Yes, p< 0.050 MLp

Maximum likelihood (backward 2) No Yes, p< 0.157 MLAIC

Heuristic shrinkage Yes No HS

Firth’s penalized likelihood (full model) Yes No Firth

Firth’s penalized likelihood (backward 1) Yes Yes, p< 0.050 Firthp

Firth’s penalized likelihood (backward 2) Yes Yes, p< 0.157 FirthAIC

Ridge penalized likelihood Yes No Ridge

Lasso penalized likelihood Yes Yes Lasso
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The prediction error was evaluated by the average of Brier scores55 (Brier), the square root of the mean
squared prediction error (rMPSE) and mean absolute prediction error (MAPE). The rMPSE and MAPE are
based on the distance between the estimated probabilities (�̂i) and the true probabilities (�i, which can
be calculated under the data generating model using the generated predictor variable vector (xi)), by the square
root of the average squared distance and the absolute distance, respectively. Lower values for Brier, rMSPE and
MAPE indicate better performance.

3.3.2 Metamodels

Variation in simulation results across simulation conditions was studied by using metamodels.27,28

The metamodels were used to quantify the relative impact of the various development data characteristics
(taken as covariates in the metamodels) on a particular predictive performance simulation outcome
(the outcome variable in the metamodel).

We considered the following covariates in the metamodel: development sample size (N), events fraction
(PrðY ¼ 1Þ), number of candidate predictor (P), true area under the characteristic curve (AUC), binary
predictor variables (Bin, coding: 0¼ no, 1¼ yes), predictor pairwise correlations (Cor), and noise variables
(Noise, coding: 0¼ no, 1¼ yes). Metamodels were developed for the following outcomes: natural log
transformed MSPE (¼rMPSE2), natural log transformed MAPE, natural log transformed Brier, �AUC (�100
for notational convenience) and CS. These models were developed separately for each of the shrinkage and
predictor selection strategies.

To facilitate interpretation, three separate metamodels were considered: i) a full model with all metamodel
covariates, ii) a simplified model with only the development data size, events fraction and the number of candidate
predictors, and for comparison: iii) a model with only development data EPV as a covariate. Metamodel ii was
conceptualized before the start of the simulation study based on the notion that it would incorporate the same type
of information as needed for estimating EPV before data collection, that is information available at the design
phase of a prediction model development study (i.e. before the actual number of events are known).

The metamodels were estimated using linear regression with a Ridge penalty (i.e. Gaussian Ridge regression)
specifying only linear main effects of the metamodel covariates. While more complex models (e.g. for interactions
and non-linear effects) are possible, we found that linear main effects to be sufficient for constructing the
metamodels. The Ridge metamodel tuning parameter was chosen based on 10-fold cross-validation that
minimized mean squared error.

3.4 Software and estimation error handling

All simulations were performed in R (version 3.2.2)56 executed on a central high-performance computing facility
running on a CentOS Linux operating system. We used the CRAN packages: GLMnet47 for estimating the Ridge
and Lasso regression models (version 2.0-5, with an expanded grid of tuning parameters of 100 additional � values
that were smaller than the lowest value of the default), package logistf (version 1.21) for estimating ML, HS and
Firth’s model and to perform backward selection and package MASS (version 7.3-45)57 for generating predictor
data. Estimation errors were closely monitored (details in Web Appendix B). A summary of the estimation errors
and their handling is given in Table 3. The Web Appendix also presents detailed simulation results focusing only
on the ML model (Web Appendix C) and the relative rankings of the various model strategies with respect to the
observed predictive performance (Web Appendix D).

4 Results

4.1 Predictive performance by relative size of development data

Figure 1 shows the average predictive performance of the various prediction models as a function of EPV and the
events fraction. The impact of EPV and events fraction was consistent across the prediction models. There was
improved predictive performance (i.e. reduction in average value for rMSPE and MAPE; �AUC closer to zero)
when EPV increased (while keeping events fraction constant), and when the events fraction decreased (while
keeping EPV constant). Differences between events fraction conditions decreased when EPV increased. Brier
consistently improved (i.e. reduction in average value) with decreasing events fractions across prediction
models, but showed little association with EPV beyond an EPV of 20.

Close to perfect average values (a value of 0) were observed for CIL for all models across all studied
conditions (Figure 1), except for the Firth regressions with and without predictor selection (Figure 1).
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This miscalibration-in-the-large occurred in lower EPV settings, and did not occur in the conditions where the
events fraction was 1/2. CS improved (i.e. average values closer to 1) with increasing EPV and decreasing events
fraction for all models. On average, all models except the Ridge regression showed signs of overfitting (CS values
below 1). The Ridge regression consistently showed signs of underfitting (CS values above 1). For all models,
improved CS values were observed when EPV increased (while keeping the events fraction constant) and the events
fraction decreased (while keeping EPV constant).

4.1.1 Performance of regression shrinkage strategies by relative size of development data

Unsurprisingly, the impact of shrinkage lessened with increasing EPV as depicted in Figure 2. The active
regression shrinkage strategies (Ridge, Lasso, HS, Firth) showed lower median rMPSE and MAPE values than
the non-shrunken ML regression at EPV¼ 5 and EPV¼ 10. In those settings, Ridge, Lasso and HS regression
showed more variability between simulation scenarios than Firth and ML. For simulation scenarios at EPV¼ 50,
the differences between shrinkage strategies were smaller.

In Figure 2, Brier and CIL outcomes showed little variation between shrinkage strategies. Notice that for this
figure the events fraction was kept constant at 1/2, miscalibration-in-the-large was therefore not observed for the
Firth regression. Poor CIL and rMPSE for the HS model was observed in some conditions with a high rate of
separation (results not shown). Only the Ridge regression showed superior performance on the outcome �AUC,
with little differences between HS, Firth and ML, and slightly less favorable and more variable performance of the
Lasso regression at EPV¼ 5 and EPV¼ 10. The Lasso regression yielded CS closest to optimal (value of 1).

4.1.2 Performance of predictor selection strategies by relative size of development data

Backwards elimination (MLp, MLAIC, Firthp and FirthAIC) produced higher median rMPSE and MAPE than ML
and Firth regressions that did not perform predictor selection (Figure 2). Median rMPSE and MAPE were more
favorable for MLAIC and FirthAIC than MLp and Firthp. Backwards elimination also showed more variable MAPE
and rMPSE values across the different simulation scenarios. The patterns were noticeable for the EPV¼ 5 and
EPV¼ 10 conditions but did not completely disappear even at EPV¼ 50. Lasso regression had lower MAPE and
rMPSE than the backwards elimination strategies and less variable results between conditions for the whole
considered range of EPV.

Brier and CIL showed little variation between predictor selection strategies (Figure 2). For the predictor
selection strategies, median �AUC were least favorable and more variable for Firthp and MLp, followed by
MLAIC and FirthAIC, followed by Lasso. Lasso also yielded closer to optimal CS, with little differences

Table 3. Simulation estimation errors and consequences.

No. (%) Consequences

Development datasets generated 20,160,000 (100%)

Simulation conditions 4,032 (100%)

Separation detected 90,846 (0.45%) The separated cases are left in (to avoid

selective missing data).

Degenerate distributions

<3 events or <3 non-events generated 211 (0.001%) Data sets are treated as missing data

sets.

<8 events or <8 non-events generated 68,048 (0.34%) Leave-one-out cross-validation is used

for estimating Lasso and Ridge tuning

parameters.

Degenerate predictor variable generated 0 (0%)

Heuristic shrinkage factor inestimable 2,470,118 (12.25%) For HS, results are replaced by ML

results.

Degenerated linear predictor (no variables selected)

MLp 650,133 (3.22%)

MLAIC 179,638 (0.89%)

Firthp 718,194 (3.56%)

FirthAIC 204,617 (1.01%)

Lasso 744,575 (3.69%)
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Figure 1. Marginal out-of-sample predictive performance.
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observed between the backwards elimination strategies. These patterns were observed consistently across the
considered EPV range.

4.2 Predictive performance by other development data characteristics

Figure 3 describes the average performances of prediction models. We left out Brier (only noticeable changes
occurred when varying the AUC of the data generating mechanism) and CIL (close to optimal for all but Firth
regressions) for this presentation.

Lower AUC of the data generating mechanism was associated with poorer CS and �AUC outcomes. In
conditions with AUC¼ 0.65, Ridge regression was superior in terms of rMPSE, MAPE and �AUC, while HS
was superior in terms of CS. We also observed improved predictive performance as the number of predictors
increased. This is partly due to a doubling of the development data size in our simulations when going from 4 to 8
predictors and three-fold increase in sample size when going from 4 to 12 predictors, a direct consequence of EPV
as one of the chosen simulation factors.

With respect to the individual effects of the predictor variables (Figure 3), the average predictive performance of
the variable selection strategies was best in conditions with one strong predictor. Effects of noise variables on the

Figure 2. Boxplot distribution of out-of-sample predictive performance outcomes (restricted to conditions with events fraction = 1/2).
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performances were negligible. Higher pairwise correlations between the predictors improved rMPSE, MAPE and
�AUC for Ridge and Lasso and CS for Lasso. Higher correlations also increased the signs of underfitting of the
Ridge regression (CS> 1).

4.3 Metamodels results

Table 4 presents the fitted results of the metamodels (linear regressions subject to a Ridge penalty).
The metamodels showed similar results for the outcomes natural log transformed MSPE (ln(MSPE)) and

MAPE (ln(MAPE)) outcomes (Tables 4 and 5). For the metamodels that included all eight covariates as linear

Figure 3. Average relative out-of-sample performances of modeling strategies per simulation factor level.
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main effects, the percentage of explained variance (R2) was 99.3% for the outcome ln(rMSPE) and R2 ¼ 99:6% for
ln(MAPE). Using the simplified metamodel with three covariates, the R2 dropped to between 93.5% and 99.2%
indicating that these factors – N, events fraction and P – explained a sizable amount of the variance between
simulation conditions. R2 was similar for ML and Firth regression, but lower for Ridge, Lasso, HS and after
backwards elimination. Using only EPV as covariate in the metamodel yielded R2 between 28.5% and 43.2% for
the ln(MSPE) and ln(MAPE) outcomes.

As expected, MSPE and MAPE were negatively related to N and positively related to P. The positive relation
between the events fraction (events fraction � 1=2) and MPSE/MAPE can be explained by a shift of the average of
estimated probabilities �i towards zero as the event rate decreases (assuming the model is appropriately
calibrated). These lower probabilities have lower expected variance, considering that the variance of a Bernoulli
is asymptotically �ð1� �Þ. Similar findings were observed for the outcome ln(Brier) (Table 6). There was a strong
relation between the simplified model covariates and ln(Brier) (R2 4 92:0%). Little variation between the fitted
metamodel coefficients and R2 was observed for the different regression models. For all models, N was negatively
related to ln(Brier), while the events fraction and P were positively related to ln(Brier). In contrast, EPV had only
weak relation to ln(Brier) with R2 5 1:0%.

The outcomes �AUC (Table 7) and CS (Table 8) were less well predicted by the eight covariate metamodel and
varied considerably between the prediction models (R2 between 84.8% and 49.6%). Similarly, for the simplified
metamodel with three covariates, R2 was between 70.0% and 19.0%. R2 dropped even further for metamodels with
EPV as the only predictor, R2 was between 63.3% and 18.0%. Largest R2 was observed for the ML regression.
Similar to other metamodels, �AUC and CS improved with higher N and decreasing P. The direction of effect of

Table 4. Results of simulation meta models: Outcome: ln(MSPE).

Natural log transformed Original scale

Meta model Int EPV N

Events

fraction P AUC Cor Bin Noise R2

Full ML �0.55 . �1.06 0.36 0.94 0.40 0.00 0.05 0.00 0.993

Simplified ML �0.59 . �1.06 0.36 0.94 . . . . 0.992

EPV only ML �3.29 �1.06 . . . . . . . 0.432

Full Firth �0.84 . �1.03 0.33 0.93 0.31 0.00 0.04 0.00 0.993

Simplified Firth �0.86 . �1.03 0.33 0.93 . . . . 0.992

EPV only Firth �3.42 �1.03 . . . . . . . 0.438

Full HS �0.39 . �0.97 0.44 0.74 1.17 0.00 �0.01 0.00 0.985

Simplified HS �0.75 . �0.97 0.44 0.74 . . . . 0.977

EPV only HS �3.64 �0.97 . . . . . . . 0.385

Full Lasso �0.59 . �0.93 0.46 0.68 0.97 �0.48 0.04 0.03 0.983

Simplified Lasso �0.86 . �0.93 0.46 0.68 . . . . 0.973

EPV only Lasso �3.78 �0.93 . . . . . . . 0.371

Full Ridge �0.39 . �0.88 0.50 0.49 1.33 �0.85 0.03 �0.02 0.979

Simplified Ridge �0.93 . �0.88 0.50 0.49 . . . . 0.952

EPV only Ridge �4.08 �0.88 . . . . . . . 0.337

Full MLp �0.85 . �1.02 0.40 0.95 0.34 0.03 0.07 0.17 0.943

Simplified MLp �0.57 . �1.03 0.40 0.96 . . . . 0.939

EPV only MLp �3.18 �1.03 . . . . . . . 0.393

Full MLAIC �0.74 . �1.05 0.38 0.95 0.35 0.00 0.06 0.10 0.977

Simplified MLAIC �0.59 . �1.05 0.38 0.95 . . . . 0.975

EPV only MLAIC �3.25 �1.05 . . . . . . . 0.417

Full Firthp �0.94 . �1.01 0.39 0.95 0.34 0.02 0.07 0.17 0.939

Simplified Firthp �0.66 . �1.01 0.39 0.95 . . . . 0.935

EPV only Firthp �3.22 �1.01 . . . . . . . 0.392

Full FirthAIC �0.90 . �1.03 0.37 0.95 0.32 0.00 0.06 0.10 0.975

Simplified FirthAIC �0.74 . �1.03 0.37 0.95 . . . . 0.973

EPV only FirthAIC �3.32 �1.03 . . . . . . . 0.418

Full: metamodel with all eight meta-model covariates; Simplified: model with covariates N, events fraction and P, EPV only: meta model with EPV as a

covariate. Int: Intercept; EPV: Events per variable; N: Sample size; P: number of candidate predictors; AUC: Area under the ROC-curve; Cor: Predictor

pairwise correlations.
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the events fraction is in the opposite direction as compared to MSPE, MAPE and brier, showing decreased
performance with decreasing event fraction.

5 Discussion

This paper has investigated the impact of EPV and other development data characteristics in relation to modelling
strategies on the (out-of-sample) predictive performance of prediction models developed with logistic regression.
We showed that the EPV fails to have a strong relation with metrics of predictive performance across modelling
strategies. Given our findings, it is clear that EPV is not an appropriate sample size criterion for binary prediction
model development studies. Below we discuss our simulation results, followed by a discussion of the implications
for sample size determination for prediction model development. A new strategy for such sample size
consideration is proposed.

5.1 Simulation findings

Our study confirms previous findings that predictive performance can be poor for prediction models developed
using conventional maximum likelihood binary logistic regression in data with a small number of subjects
relative to the number of predictors. As expected, predictive performance generally improved when regression
shrinkage strategies were applied, while backwards elimination predictor selection strategies generally worsened
the predictive accuracy of the prediction model. These tendencies were observed consistently for discrimination

Table 5. Results of simulation meta models: Outcome: ln(MAPE).

Natural log transformed Original scale

Meta model Int EPV N

Events

fraction P AUC Cor Bin Noise R2

Full ML �0.60 . �0.53 0.31 0.48 �0.50 0.00 �0.01 0.00 0.996

Simplified ML �0.48 . �0.53 0.31 0.48 . . . . 0.992

EPV only ML �2.03 �0.53 . . . . . . . 0.355

Full Firth �0.74 . �0.51 0.29 0.47 �0.51 0.00 �0.01 0.00 0.996

Simplified Firth �0.61 . �0.51 0.29 0.47 . . . . 0.991

EPV only Firth �2.10 �0.51 . . . . . . . 0.357

Full HS �0.55 . �0.49 0.33 0.39 �0.15 0.00 �0.03 0.00 0.991

Simplified HS �0.56 . �0.49 0.33 0.39 . . . . 0.991

EPV only HS �2.19 �0.49 . . . . . . . 0.326

Full Lasso �0.59 . �0.48 0.34 0.35 �0.19 �0.24 �0.01 0.01 0.989

Simplified Lasso �0.59 . �0.48 0.34 0.35 . . . . 0.983

EPV only Lasso �2.24 �0.48 . . . . . . . 0.314

Full Ridge �0.48 . �0.45 0.36 0.26 0.03 �0.43 �0.02 �0.01 0.986

Simplified Ridge �0.61 . �0.45 0.36 0.26 . . . . 0.970

EPV only Ridge �2.39 �0.45 . . . . . . . 0.285

Full MLp �0.75 . �0.52 0.31 0.49 �0.58 0.03 �0.01 0.09 0.951

Simplified MLp �0.45 . �0.52 0.31 0.49 . . . . 0.942

EPV only MLp �1.95 �0.52 . . . . . . . 0.334

Full MLAIC �0.70 . �0.53 0.31 0.49 �0.55 0.01 �0.01 0.06 0.982

Simplified MLAIC �0.48 . �0.53 0.31 0.49 . . . . 0.975

EPV only MLAIC �2.00 �0.53 . . . . . . . 0.348

Full Firthp �0.79 . �0.52 0.30 0.50 �0.56 0.02 �0.01 0.09 0.947

Simplified Firthp �0.49 . �0.52 0.30 0.50 . . . . 0.938

EPV only Firthp �1.96 �0.52 . . . . . . . 0.335

Full FirthAIC �0.78 . �0.52 0.30 0.49 �0.55 0.01 �0.01 0.06 0.979

Simplified FirthAIC �0.55 . �0.52 0.30 0.49 . . . . 0.973

EPV only FirthAIC �2.03 �0.52 . . . . . . . 0.348

Full: metamodel with all eight meta-model covariates; Simplified: model with covariates N, events fraction and P, EPV only: meta model with EPV as a

covariate. Int: Intercept; EPV: Events per variable; N: Sample size; P: number of candidate predictors; AUC: Area under the ROC-curve; Cor: Predictor

pairwise correlations.
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(�AUC), calibration slopes (CS) and prediction error (rMPSE, MAPE, and Brier) outcomes. Calibration in the
large was near ideal for all models in all simulation settings, except for Firth regression that showed upward biased
estimation of probability towards � ¼ 0:5. Some more recent refinements to the Firth’s correction have shown
promising results in circumventing the issues with calibration in the large.21,48,58,59

With larger sample sizes, the benefits (in terms of predictive performance) of the regression shrinkage strategies
gradually declined, but predictive performance after shrinkage remained slightly superior or equivalent to ML
regression even for larger sample sizes. Between the regression shrinkage strategies, the Ridge regression showed
best discrimination (lowest average �AUC) and lowest prediction error (lowest average rMSPE, MAPE and
Brier) performance when compared to Firth, Lasso and HS. Median CS of the HS and Lasso regression were
closer to optimal than the Ridge regression, the latter showing signs of underfitting. The observed tendency to
underfitting of Ridge regression is consistent with other recent simulation studies.16,48 In smaller samples,
backwards elimination with conventional p¼ 0.050 and AIC criteria, generally performed worse than an
equivalent regression without predictor selection or Lasso, even when only half of the predictor variables were
randomly associated to the outcome. For conditions with EPV as large as 50, backwards elimination was found to
yield higher rMSPE and MAPE than the equivalent model with all variables left in. Between the backward
elimination criteria, the more conservative AIC criterion was found to produce better average predictive
performance than p¼ 0.050, in accordance with earlier work.9,11

The metamodels fitted on the simulation results revealed that between simulation variation of (r)MPSE, MAPE
and Brier could largely be explained by a linear model with three covariates: sample size, the events fraction and
the number of candidate predictors. The joint effect of these three covariates on prediction error tended to become

Table 6. Results of simulation meta models: Outcome: ln(Brier).

Natural log transformed Original scale

Meta model Int EPV N

Events

fraction P AUC Cor Bin Noise R2

Full ML �1.23 . �0.04 0.62 0.04 �1.02 0.00 0.01 0.00 0.969

Simplified ML �0.91 . �0.04 0.62 0.04 . . . . 0.925

EPV only ML �2.06 �0.04 . . . . . . . 0.005

Full Firth �1.27 . �0.03 0.62 0.03 �1.02 0.00 0.01 0.00 0.969

Simplified Firth �0.95 . �0.03 0.62 0.03 . . . . 0.923

EPV only Firth �2.08 �0.03 . . . . . . . 0.003

Full HS �1.23 . �0.03 0.62 0.02 �0.98 0.00 0.00 0.00 0.969

Simplified HS �0.93 . �0.03 0.62 0.02 . . . . 0.927

EPV only HS �2.08 �0.03 . . . . . . . 0.003

Full Lasso �1.27 . �0.03 0.62 0.02 �1.00 �0.02 0.01 0.00 0.969

Simplified Lasso �0.96 . �0.03 0.62 0.02 . . . . 0.925

EPV only Lasso �2.10 �0.03 . . . . . . . 0.002

Full Ridge �1.29 . �0.02 0.62 0.01 �1.00 �0.02 0.01 0.00 0.968

Simplified Ridge �0.98 . �0.02 0.62 0.01 . . . . 0.924

EPV only Ridge �2.12 �0.02 . . . . . . . 0.002

Full MLp �1.19 . �0.04 0.62 0.04 �0.96 �0.02 0.01 0.01 0.969

Simplified MLp �0.89 . �0.04 0.62 0.04 . . . . 0.929

EPV only MLp �2.04 �0.04 . . . . . . . 0.006

Full MLAIC �1.22 . �0.04 0.62 0.04 �0.99 �0.01 0.01 0.00 0.969

Simplified MLAIC �0.91 . �0.04 0.62 0.04 . . . . 0.927

EPV only MLAIC �2.05 �0.04 . . . . . . . 0.005

Full Firthp �1.20 . �0.04 0.62 0.04 �0.96 �0.02 0.01 0.01 0.968

Simplified Firthp �0.90 . �0.04 0.62 0.04 . . . . 0.929

EPV only Firthp �2.05 �0.04 . . . . . . . 0.005

Full FirthAIC �1.24 . �0.04 0.62 0.04 �1.00 �0.01 0.01 0.00 0.969

Simplified FirthAIC �0.93 . �0.04 0.62 0.04 . . . . 0.926

EPV only FirthAIC �2.06 �0.04 . . . . . . . 0.004

Full: metamodel with all eight meta-model covariates; Simplified: model with covariates N, events fraction and P, EPV only: meta model with EPV as a

covariate. Int: Intercept; EPV: Events per variable; N: Sample size; P: number of candidate predictors; AUC: Area under the ROC-curve; Cor: Predictor

pairwise correlations.
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slightly weaker when regression shrinkage or variable selection strategies were applied. �AUC and CS were found
to be more unpredictable by the metamodel regression. �AUC and CS were found to be particularly sensitive to
the prediction model development strategy employed (e.g. whether regression shrinkage or predictor selection was
used) and, importantly, dependent on the AUC of the data generating mechanism.

Some limitations apply to our study. The broad setup of our simulations, with over 4000 unique scenarios, does
allow for a generalization of the findings to a large variety of prediction modeling settings. However, as with any
simulation study, the number of investigated scenarios was finite and extrapolation of our findings far beyond the
investigated regions is not advised. A total of nine prediction modeling strategies were investigated. In practice,
we expect that other approaches to regression shrinkage and predictor selection than we considered may
sometimes be preferable (e.g. Elastic Net,49 non-negative Garrotte,60 random forest61). Finding optimal
strategies for developing clinical prediction models in small or sparse data was not the main objective of the
current study but is a worthwhile topic for future research.

5.2 Implications for sample size considerations

There is general consensus on the importance of having data of adequately size when developing a prediction
model.2 However, consensus is lacking on the criteria to determine what size would count as adequate.

Our results showed that the recommended minimal EPV criteria for prediction model development, notably the
EPV � 10 rule,34 falls short of providing appropriate sample size guidance. Earlier critiques on EPV as a sample

Table 7. Results of simulation meta models: Outcome: �AUC� 100.

Natural log transformed Original scale

Meta model Int EPV N

Events

fraction P AUC Cor Bin Noise R2

Full ML �3.63 . 1.47 0.92 �1.66 5.02 �0.03 �0.46 �0.06 0.821

Simplified ML �6.01 . 1.47 0.92 �1.66 . . . . 0.700

EPV only ML �5.44 1.47 . . . . . . . 0.633

Full Firth �3.56 . 1.46 0.92 �1.66 5.05 �0.03 �0.47 �0.06 0.822

Simplified Firth �5.97 . 1.46 0.92 �1.66 . . . . 0.698

EPV only Firth �5.42 1.46 . . . . . . . 0.632

Full HS �5.60 . 1.63 1.11 �1.53 4.05 �0.03 �0.08 �0.07 0.665

Simplified HS �7.05 . 1.63 1.11 �1.53 . . . . 0.614

EPV only HS �5.96 1.63 . . . . . . . 0.571

Full Lasso �6.11 . 1.93 1.24 �1.63 7.30 2.11 �0.45 �0.08 0.713

Simplified Lasso �8.73 . 1.93 1.24 �1.63 . . . . 0.580

EPV only Lasso �6.95 1.93 . . . . . . . 0.528

Full Ridge �3.14 . 0.98 0.62 �0.91 3.38 2.18 �0.42 �0.03 0.684

Simplified Ridge �4.47 . 0.98 0.62 �0.91 . . . . 0.515

EPV only Ridge �3.70 0.98 . . . . . . . 0.468

Full MLp �9.03 . 2.62 1.75 �2.29 8.89 2.18 �0.23 �0.23 0.764

Simplified MLp �11.94 . 2.62 1.75 �2.29 . . . . 0.645

EPV only MLp �9.80 2.62 . . . . . . . 0.597

Full MLAIC �5.79 . 1.91 1.25 �1.87 6.64 0.99 �0.33 �0.17 0.797

Simplified MLAIC �8.37 . 1.91 1.25 �1.87 . . . . 0.680

EPV only MLAIC �7.13 1.92 . . . . . . . 0.626

Full Firthp �9.92 . 2.75 1.81 �2.33 8.72 2.36 �0.22 �0.22 0.751

Simplified Firthp �12.72 . 2.75 1.81 �2.33 . . . . 0.646

EPV only Firthp �10.25 2.75 . . . . . . . 0.592

Full FirthAIC �6.18 . 1.98 1.28 �1.89 6.61 1.10 �0.33 �0.17 0.785

Simplified FirthAIC �8.73 . 1.98 1.28 �1.89 . . . . 0.677

EPV only FirthAIC �7.34 1.98 . . . . . . . 0.621

Full: metamodel with all eight meta-model covariates; Simplified: model with covariates N, events fraction and P, EPV only: meta model with EPV as a

covariate. Int: Intercept; EPV: Events per variable; N: Sample size; P: number of candidate predictors; AUC: Area under the ROC-curve; Cor: Predictor

pairwise correlations.
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size criterion has identified its weak theoretical and empirical underpinning,17–20 and has shown that the EPV � 10
rule can be too lenient11,13 or too strict,15,21 depending on the modelling approach taken. The current study also
showed that EPV fails the minimal requirement of strong relation to (at least one aspect of) predictive
performance. In itself EPV was found to have only a weak relation with outcomes of prediction error and a
mediocre relation with calibration and discrimination. The EPV � 10 rule also does not adequately account for
changes in events fraction. The implied relation by the EPV � 10 rule between required sample size (N) and the
events fraction is described by the function: N ¼ 10� P/ events fraction, where the events fraction � 1=2 (trivially
recoding of Y can ensure the events fraction not exceeds 1/2). This relation is depicted in Figure 4. The figure
shows that the relation between the events fraction and required N is in the same direction but much steeper for
EPV ¼ 10 than the relation between the required sample size when keeping expected CS and �AUC constant.
The relation between prediction error measures is in the opposite direction.

The search for new minimal sample size criteria inherently calls for abandoning EPV as the sole sample size
criterion. Alternatives for sample size must have a predictable relationship with future predictive performance and
be on a scale that is interpretable for users. It is our view that general single threshold values should be avoided.
Instead, sample size determination should be based on threshold values on an interpretable scale that ensure
predictive performance that is fit for purpose. What counts as fit for purpose varies from application to application
(e.g. clinical prediction models for informing short-term high-risk treatment decisions may differ from the
requirements for long-term low-risk decisions). It is the duty of the researcher to define what constitutes as fit
for purpose in context and explain how the sample size was arrived at (see also: the TRIPOD statement2,3).

Table 8. Results of simulation meta models: Outcome: CS.

Natural log transformed Original scale

Meta model Int EPV N

Events

fraction P AUC Cor Bin Noise R2

Full ML 0.50 . 0.15 0.09 �0.16 0.65 0.00 0.00 0.00 0.848

Simplified ML 0.31 . 0.15 0.09 �0.16 . . . . 0.689

EPV only ML 0.40 0.15 . . . . . . . 0.616

Full Firth 0.73 . 0.12 0.08 �0.15 0.77 0.00 �0.01 0.00 0.835

Simplified Firth 0.50 . 0.12 0.08 �0.15 . . . . 0.556

EPV only Firth 0.52 0.12 . . . . . . . 0.505

Full HS 0.73 . 0.07 0.02 �0.08 0.03 0.00 �0.01 0.00 0.496

Simplified HS 0.71 . 0.07 0.02 �0.08 . . . . 0.495

EPV only HS 0.77 0.07 . . . . . . . 0.368

Full Lasso 0.98 . 0.04 0.03 �0.05 0.43 0.12 0.00 �0.01 0.513

Simplified Lasso 0.85 . 0.04 0.03 �0.05 . . . . 0.190

EPV only Lasso 0.85 0.04 . . . . . . . 0.180

Full Ridge 1.19 . �0.05 �0.03 0.03 �0.25 0.14 0.01 0.00 0.823

Simplified Ridge 1.31 . �0.05 �0.03 0.03 . . . . 0.488

EPV only Ridge 1.23 �0.05 . . . . . . . 0.418

Full MLp 0.51 . 0.15 0.09 �0.15 0.65 0.09 0.00 �0.01 0.832

Simplified MLp 0.33 . 0.15 0.09 �0.15 . . . . 0.652

EPV only MLp 0.42 0.15 . . . . . . . 0.588

Full MLAIC 0.52 . 0.15 0.09 �0.15 0.63 0.06 0.00 �0.01 0.848

Simplified MLAIC 0.33 . 0.15 0.09 �0.15 . . . . 0.682

EPV only MLAIC 0.42 0.15 . . . . . . . 0.611

Full Firthp 0.67 . 0.13 0.08 �0.15 0.74 0.09 �0.01 �0.01 0.826

Simplified Firthp 0.44 . 0.13 0.08 �0.15 . . . . 0.575

EPV only Firthp 0.49 0.13 . . . . . . . 0.522

Full FirthAIC 0.69 . 0.13 0.08 �0.15 0.73 0.05 �0.01 �0.01 0.846

Simplified FirthAIC 0.46 . 0.13 0.08 �0.15 . . . . 0.595

EPV only FirthAIC 0.50 0.13 . . . . . . . 0.537

Full: metamodel with all eight meta-model covariates; Simplified: model with covariates N, events fraction and P, EPV only: meta model with EPV as a

covariate. Int: Intercept; EPV: Events per variable; N: Sample size; P: number of candidate predictors; AUC: Area under the ROC-curve; Cor: Predictor

pairwise correlations.
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5.3 New sample size criteria

Out-of-sample (r)MSPE and MAPE are natural metrics to determine sample size adequacy of prediction models,
as they define the expected distance (squared or absolute) for new individuals between the estimated probabilities
for new patients and their unobservable ‘‘true’’ values. Because clinical prediction models are primary used to
estimate probabilities for new individuals,3–5 rMSPE and MAPE have direct relevance when developing a
prediction model.

The out-of-sample rMPSE and MAPE can be approximated via simulations as we have done in this paper. Our
simulation code is available via GitHub (https://github.com/MvanSmeden/Beyond-EPV). Alternatively, rMSPE
and MAPE may be approximated via the results of our metamodels (Table 4). For instance, at a sample size of
N¼ 400, with P¼ 8 candidate predictors and an expected event fraction of 1/4, the predicted out-of-sample
rMPSE is 0.065 when ML model (without variable selection) is applied and 0.053 for Ridge regression; MAPE
is 0.045 for the ML model and 0.038 for the Ridge regression. Obviously, whether or not these expected ‘‘average’’
prediction errors on the probability scale are acceptable or not depends on the intended use of the prediction
model (i.e. N¼ 400 may not be sufficient for accurate estimation of probability for high risk treatment decisions,
even though for this example EPV¼ 20).

We warn readers that these out-of-sample performance predictions from the simulation metamodels have not
been externally validated and that approximations may not work well far outside the range of investigated
simulation settings. In particular, using these approximations for sample size calculations with very low events
fractions may yield unacceptably poor discrimination and calibration performances (see Figure 4).

Figure 4. Relation required sample size and events fraction. Calculations based on metamodels with criterion values that were kept

constant. For illustration purposes, the criterion values were chosen such that they would intersect at events fraction¼ 1/2.
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6 Conclusion

The currently recommended sample size criteria for developing prediction models, notably the EPV � 10 rule-
of-thumb, are insufficient to warrant appropriate sample size decisions. EPV criteria fail to take into account
the intended use of the prediction model and have only a weak relation to out-of-sample predictive performance of
the prediction model. Instead, sample size should be determined based on a meaningful out-of-sample predictive
performance scale, such as the rMPSE and MAPE. The results of our study can be used to inform sample
size considerations when developing a binary prediction model given the required predictive performance in
new individuals.
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