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Abstract: This paper presents a technique to localize a stereo camera for in-crash toeboard deforma-
tion measurement. The proposed technique designed a sensor suite to install not only the stereo
camera but also initial measurement units (IMUs) and a camera for localizing purpose. The pose
of the stereo camera is recursively estimated using the measurement of IMUs and the localization
camera through an extended Kalman filter. The performance of the proposed approach was first
investigated in a stepwise manner and then tested in controlled environments including an actual
vehicle crash test, which had successfully resulted in measuring the toeboard deformation during a
crash. With the oscillation motion in the occurrence of the crash captured, the deformation of the
toeboard measured by stereo cameras can be described in a fixed coordinate system.

Keywords: toeboard deformation measurement; localization; recursive estimation; crash test; in-crash
measurement

1. Introduction

The incidence of vehicle crashes keeps increasing with the production of vehicles,
and more than six million crashes are reported every year these days in the United States,
about thirty percent of which come with fatality and injury [1]. Vehicle crash is a severe
and complicated dynamic phenomenon due to the complexity of physical interaction
between the structures resulting from the impact. It is indispensable that the vehicles
be crash-tested in indoor facilities and that the test results be used to design vehicles
with improved crashworthiness [2–6]. In the crash tests, one of the focuses is laid on
the toeboard deformation [7,8], which is due to the strong correlation between toeboard
intrusion and lower extremity injuries, as seen both from collision statistics [9,10] and
crash simulation [11]. A detailed analysis of toeboard deformation during a crash test can
disclose useful intricacies about the otherwise unknown effect of the crash phenomenon.

In general, past work on vehicle deformation measurement can be classified into two
approaches. In the first approach, finite element analysis (FEA) and other computational
mechanics analyses have been used to predict instead of measuring the deformation. The
advantage of numerical analysis is its ability to simulate all types of crash tests ([12–15]).
Hickey and Xiao [16] used the three-dimensional (3D) model of a commercial vehicle and
performed FEA to examine the effects of the deformation during a car crash test. Employing
the full-scale 3D model directly for crash analysis and subsequent computational design
requires large computational loads. Yang et al. [17] utilized the response surface method for
a complex and dynamic large deformation problem to accelerate the analysis and design
process. Pre- and post-measurements from the actual vehicle crash tests were used by
Cheng et al. [18] and McClenathan et al. [19] to provide boundary conditions for FEA.
Zhang et al. [20] reported the reconstruction of the deformation of a vehicle in a crash
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accident using high-performance parallel computing to incorporate an advanced elastic–
plastic model. While the FEA has grown to be ever more important, its ability to estimate
detailed deformations such as toeboard deformation is significantly limited because of the
presence of various computation errors and the lack of actual measurements.

The second approach is based on the direct measurement. In the approach, vision-
based measurement became most popular because of the ability of the camera to capture
information of a continuous field ([21–25]). Digital image correlation, originally proposed
by Sutton et al. [26], projects an electronic speckle pattern to the specimen to derive the
deformation of the specimen from the displacement of the image of the speckle pattern
on the specimen, and it has been widely employed to measure small deformation such as
structure strain [27], cracks identification [28,29], or vibration of structures [30,31], in a static
environment. Schmidt et al. [32] employed a stereo vision-based technique to measure
the time-varying deformation of specimens in gas gun impact tests. As an alternative
to the digital image correlation (DIC), Iliopoulos and Mchopoulos [33] developed the
mesh-free random grid technique to measure deformation using marked dots, which
was later referred to as Dot Centroid Tracking (DCT) for comparison with the DIC [34].
These techniques observed the deformation of a surface fixed to a static base from a static
viewpoint. In general, while deformation measurement was well studied, the techniques
cannot be applied to toeboard deformation measurement directly because of the oscillatory
motion of the cameras. Since the line of sight of the toeboard is significantly limited, the
cameras must be fixed near the toeboard to some part of the vehicle body, which deforms
and oscillates by the crash. The measurement of toeboard through a stereo camera is
therefore subject to the relative motion of the camera itself.

This paper presents a technique to localize a stereo camera for in-crash toeboard
deformation measurement and a design to implement the technique in vehicle crash tests
using a recursive state estimation [35–37]. This state estimation technique further completes
our previous work that localizes the sensor suite using only the camera pose obtained
through a computer vision technique [7], as the excessive oscillation of the localization
camera due to the non-rigidity of the sensor suite poses extra errors in the measured
toeboard deformation. In addition to the cameras for deformation measurement and
localization, the proposed technique uses additional inertial measurement units (IMUs)
for the localization. Having all the sensors in a rigid structure, the proposed technique
implements extended Kalman filter (EKF) and estimates the pose of the stereo camera in
the global coordinate frame using the observations of the downward camera and IMUs.
In-crash toeboard deformation can thus be measured by subtracting the estimated stereo
camera pose from the observed toeboard deformation. A sensor suite comprising the stereo
camera, downward camera, and the IMUs is designed and placed on the seat mount such
that the rigid body assumption is valid. The downward camera is located underneath the
vehicle floor by making a hole.

This paper is organized as follows. The next section defines the state estimation
problem of concern. Section 3 presents the proposed EKF-based technique to localize the
stereo camera for the in-crash toeboard deformation measurement. Section 4 introduces the
hardware design for our approach. The experimental results are then presented in Section 5.
Conclusions and ongoing work are summarized in Section 6.

2. Sensor Suite and Localization Problem of Stereovision
2.1. Problem Formulation

Figure 1 illustrates the fundamental design of the sensor suite adopted in this paper
and the major components that address the problem of localizing the stereo camera. The
stereo camera is fixed to the camera fixture, which is assumed to be rigid, and located
such that it sees the toeboard. Additionally fixed to the camera fixture are the downward
camera and the IMUs adjacent to the cameras, and a checkerboard is taped to the floor
to localize the downward camera. The IMUs each consist of a triaxial gyroscope and an
accelerometer. While the stereo camera measures the toeboard deformation in its camera
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coordinate frame, the downward camera and the IMUs are the sensors available to localize
the pose of the stereo camera. The stereovision localization problem is thus defined as
identifying the stereo camera pose given the images of the downward camera and the
readings of the IMUs.

Figure 1. Sensor suite and localization problem formulation.

2.2. Linear Acceleration of Sensor Suite

In accordance with the rigid body dynamics, the acceleration (a) at the positions of
IMUs is related to that of the center of the sensor suite by

a = ac + ω̇× r + ω× (ω× r), (1)

where ac is the acceleration of the center of the sensor suite body, ω is the angular velocity
of the sensor suite body frame, and r is the relative position of the IMU to the center.

Note that it is more convenient to describe the acceleration relation (1) in the body
frame, and that the cross-product identity U(v1 × v2) = (Uv1)× (Uv2) holds for unitary
matrix U ∈ R3×3. By left multiplying the transformation matrix from the inertial frame to
the body frame, the acceleration relation (1) can be rewritten as

aB = aB
c + ω̇B × rB + ωB × (ωB × rB), (2)

where aB, ω̇B, ωB and rB are the linear acceleration, angular acceleration, angular velocity,
and position in the body frame (B).

The linear accelerations at different position of a rigid body need the input of angular
acceleration. The input can be derived from the measurements of the triaxial accelerometers
and gyroscopes in the IMUs. Because the derivation of angular acceleration at a point
requires two IMU measurements, consider two IMUs in addition to the reference point as
indicated in Figure 2. From Equation (1), the difference of the angular acceleration of IMU
1 from that of IMU 2 is given by

a2 − a1 = ω̇× (r2 − r1) +
1
2

ω2 × (ω2 × r2)−
1
2

ω1 × (ω1 × r1), (3)

where a1, a2, ω1, and ω2 are the accelerations and angular velocities at IMU 1 and 2,
respectively. r1 and r2 are each the vector from the reference point to them. The position of
the reference point for each pair of IMUs is chosen to be the midpoint of the IMU positions:
−r1 = r2 = 1

2 r12 ≡ 1
2 r. This is to minimize the complexity and the error of transformation.

The substitution of the midpoint into Equation (3) yields

C(r)ω̇ = b ≡ a1 − a2 +
1
2

ω2 × (ω2 × r) +
1
2

ω1 × (ω1 × r), (4)
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where the skew-symmetric cross-product matrix C(r) : R3 → R3×3 is defined as

C(r) =

 0 −r3 r2
r3 0 −r1
−r2 r1 0

, (5)

where r = (r1, r2, r3)
T . The angular acceleration ω̇ can be computed through the IMU

measurements of a1, a2, ω1, and ω2 by solving the linear problem (4).

Figure 2. Illustration for angular acceleration using two IMUs.

2.3. Localization of Downward Camera

The installation of the downward camera and the checkerboard on the ground is
because the ground is the closest static surrounding structure to the sensor suite and
thus can be measured most accurately. As illustrated in Figure 3, the global frame can
be set at one end of the checkerboard and used to localize the downward camera. The
downward camera observes the checkerboard pattern and any other extractable features.
By associating the pattern and features between the global frame and pixel frame, the pose
of the downward camera with respect to the global frame can be identified after calibrating
the camera parameters following the procedures proposed by Zhang [38] or Heikkilä and
Silvén [39]. In particular, for the checkerboard attached to the ground, the checkerboard
corner points are readily identified [40] and serve as the planar pattern for the camera pose
measurement, as illustrated in Figure 3.

For the global localization of the downward camera, let the pixel coordinates of the
corner point (i, j) at the kth time step be pk,ij. The pixel coordinates can be related to the
corner point in the global frame by

pk,ij →
( Nk

0

)
+

 i
j
0

w, (6)

where w is the width of tiles of the checkerboard. Nk is the number of tiles of the origin of
the detected checkerboard at the current step relative to the origin at the first step, which
can be accumulated by

Nk = Nk−1 + Integer
(

∆k + pk,0 − pk−1,0

∆̄tile

)
, (7)

where ∆k is the motion between two images in the pixel coordinates, and pk,0 is the origin of
the detected checkerboard origin in the pixel coordinate in image k. The initial N0 is (0, 0)T.
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Figure 3. Scheme for downward camera localization.

The design and sensor settings adopted in this paper allow the motion of the sensor
suite to be predicted with respect to the body frame and the pose of the downward camera
to be measured in the global frame. While the downward camera is fixed to the sensor suite
and thus can measure the sensor suite pose through the kinematic transformation, the pose
predicted by the motion model and the angular acceleration measurement would be differ-
ent from the pose measured by the downward camera and the kinematic transformation.
The primary reason is the dead-reckoning errors stemming from the motion prediction
with angular acceleration measurements. In addition, the pose of the downward camera
alone contains excessive oscillations because of the non-rigidity of the sensor frame in the
crash test. The acceleration measurement is in general noisy, and its integration creates
notable integration errors, which accumulate over time in the name of dead-reckoning
errors. Since the pose of the downward camera can be accurately measured because of its
close distance to the ground, it is essential to estimate the pose of the sensor suite or the
stereo camera by integrating the motion prediction and the observation. The next section
presents the localization of a stereo camera proposed and formulated in the framework
of EKF.

3. EKF-Based Localization of Stereo Camera for Toeboard Measurement
3.1. Overview

Figure 4 shows the EKF-based localization of the stereo camera proposed in this paper for
toeboard deformation measurement. Since the camera fixture is assumed to be rigid and can
transform the body frame to the stereo camera, to be identified are the position and orientation
of the body frame, {p, θ}, where p ∈ R3 is the position of the origin of the body frame
and θ ∈ R3 is its Euler angle. To recursively estimate the motion of sensor suite using EKF
framework, the state x ≡ {p, ṗ, p̈, θ, ωB, ω̇B} includes not only the pose, but also velocity
ṗ, acceleration p̈, angular velocity ωB, and angular acceleration ω̇B in the body frame.
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In accordance with the EKF, the primary processes of estimation are the prediction
and the correction. The prediction of the state at discrete time k, or the derivation of the
mean xk|k−1 and the covariance Pk|k−1, is performed using the motion model of a sensor
suite and its state estimated at k− 1, i.e., xk−1|k−1 and Pk−1|k−1. In the correction step, the
predicted sensor suite state is corrected to xk|k and Pk|k by fusing the measurements of IMUs
(ak and ωk), downward camera pose (pC

k and θC
k ), and angular acceleration (ω̇k) described

in Sections 2.2 and 2.3. While different sensors are used for the same state, Kalman gain
is adjusted through the statistic property of motion and sensor noise via their covariance
Pk|k−1 and Σk,v and provides the optimal estimate for each state in the proposed approach.
Once the pose of the sensor suite is globally estimated, the deformation of the toeboard can
be measured with respect to the global and any other coordinate frames.

The operation of the EKF needs motion and sensor models. The discrete motion model
of the sensor suite and the observation model subjected to uncertainty are generically
given by

xk = f (xk−1, wk), and zk = h(xk, vk), (8)

where f (·) and h(·) are the respective motion and sensor models; wk and vk represent the
motion model noise and sensor model noise, respectively. The subsequent two sections
present the motion and sensor models developed in the proposed approach.

3.2. Motion Model of Sensor Suite

The motion of the sensor suite pose is determined by the motion and the deformation
of the entire vehicle, which cannot be modeled and identified easily. Meanwhile, the
sensor suite motion is constrained by the motion and the deformation of the vehicle. This
means that the range of the sensor suite motion is bounded. With a short time step ∆t, the
proposed approach accordingly predicts the pose of the sensor suite by the random walk
motion model as

pk = pk−1 + ∆t ṗk−1 +
1
2

∆t2(p̈k−1 + εk,p̈
)
,

ṗk = ṗk−1 + ∆t
(

ṗk−1 + εk,p̈
)
,

p̈k = p̈k−1 + εk,p̈,

θk = θk−1 + ∆tE(θk)
(

ωB
k−1 + ∆t(ω̇B

k−1 + εk,ω̇)
)

,

ωB
k = ωB

k−1 + ∆t
(

ω̇B
k−1 + εk,ω̇

)
,

ω̇B
k = ω̇B

k−1 + εk,ω̇,

(9)

where
{

εk,p̈, εk,ω̇
}

is a motion noise due to unresolved linear and angular acceleration, and

θ = [φ, θ, ϕ]> are the Euler angles corresponding to the roll, pitch, and yaw motion of the
sensor suite. In the equation

E(θ) =

 1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)
0 sin(φ)/ cos(θ) cos(φ)/ cos(θ)

, (10)

is the Euler angle rates matrix [41], whose multiplication with the body-fixed angular velocity
yields Euler angle rates. Through linearization, the motion model can be encapsulated into
a canonical form as:

xk = Fkxk−1 + Vkwk, (11)

where Fk and Vk are the Jacobian matrix of the motion and the motion noise term, respec-
tively, and are given by

Fk =

(
F1 09×9

09×9 F2,k

)
, and Vk =

(
V1 09×3

09×3 V2,k

)
, (12)
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where

F1 =

 I3 ∆tI3
∆t2

2 I3
03 I3 ∆tI3
03 03 I3

, F2,k =

 I3 ∆tE(θk) ∆t2E(θk)
03 I3 ∆tI3
03 03 I3

,

V1 =

 ∆t2

2 I3
∆tI3

I3

, V2,k =

 ∆t2E(θk)
∆tI3

I3

.

wk ∼ N (0, Σk,w) is a motion noise, which is validly assumed to be Gaussian since ∆t
is small.

3.3. Sensor Models for Localization of Sensor Suite
3.3.1. Sensor Models of Accelerometer

According to Equation (2), the sensor model outputting linear acceleration with respect
to the body frame can be approximated with Gaussian noise as

zk,a = h p̈
k,a(xk, rB) + va ≡ R(θk)

T p̈k + ω̇B
k × rB + ωB

k × (ωB
k × rB) + va, (13)

where zk,a is the measurement of linear acceleration, rB is the position of accelerometer in
the body frame, and va ∼ N (0, Σa) is the measurement noise of the accelerometer. R(θ) is
the rotation matrix [41] to transfer the body frame to the inertial frame.

Because of the association through integration, the measurement zk,a can also be repre-
sented with the velocity and the position. This additionally introduces two sensor models:

zk,a = hp
k,a(xk, rB) + va ≡ R(θk)

T pk − 2pk−1 + pk−2

∆t2 + ω̇B
k × rB + ωB

k × (ωB
k × rB) + va,

zk,a = h ṗ
k,a(xk, rB) + va ≡ R(θk)

T ṗk − ṗk−1
∆t

+ ω̇B
k × rB + ωB

k × (ωB
k × rB) + va.

(14)

Let the measurements and the sensor models be described collectively as

za
k =

 zk,a
zk,a
zk,a

, ha
k(xk) =

 hp
k,a

h ṗ
k,a

h p̈
k,a

. (15)

The corresponding Jacobian matrix is written as

Hk,a ≡
∂ha

k
∂x

=


R(θ)T

∆t2 03 03
∂hp

k,a
∂θk

∂hp̈
k,a

∂ωB
k
− C(rB)

∆t 03

03
R(θ)T

∆t 03
∂hṗ

k,a
∂θk

∂hp̈
k,a

∂ωB
k
− C(rB)

∆t 03

03 03 R(θ)T ∂hp̈
k,a

∂θk

∂hp̈
k,a

∂ωB
k

−C(rB)

, (16)

where C(·) is the skew symmetric matrix in Equation (5) and

∂hp
k,a

∂θk
=

∂R(θ)T δ2 pk
∆t2

∂θ
,

∂h ṗ
k,a

∂θk
=

∂R(θ)T δṗk
∆t

∂θ
,

∂h p̈
k,a

∂θk
=

∂R(θ)T pk
∂θ

,

∂h p̈
k,a

∂ωB
k

= −C(ωB
k × rB)− C(ωB

k )C(r
B),
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where δ represents the finite difference operation and δ2 pk = pk − 2pk−1 + pk−2 and
δṗk = ṗk − ṗk−1.

3.3.2. Sensor Models of Gyroscope

Because the gyroscope measures the angular velocity, the proposed approach constructs
two sensor models, each outputting the angular velocity and the sensor suite orientation:

zk,g = hω
k,g(xk, v) ≡ ωB

k + vg ,

zk,g = hθ
k,g(xk, v) ≡ E(θk)

−1 θk − θk−1
∆t

+ vg ,
(17)

where vg is the gyroscope measurement noise, and the inverse of the Euler angle rates
matrix is given by

E(θ)−1 =

 1 0 − sin θ
0 cos φ sin φ cos θ
0 − sin φ cos φ cos θ

.

Let the measurements and the sensor models be described collectively again:

zg
k =

(
zk,g
zk,g

)
, hg

k (xk) =

(
hθ

k,g
hω

k,g

)
. (18)

The Jacobian matrix is given by

Hk,g ≡
∂hg

k
∂x

=

(
03 03 03

E′(δθk)+E(θk)
−1

∆t 03 03
03 03 03 03 I3 03

)
, (19)

with

E′(v) =

 0 −v3 cos θ 0
−v2 sin φ + v3 cos φ cos θ −v3 sin φ sin θ 0
−v2 cos φ− v3 sin φ cos θ −v3 cos φ sin θ 0

. (20)

δθk = θk − θk−1 is the finite difference.

3.3.3. Sensor Models for Angular Acceleration

The derivation of the angular acceleration ω̇B
k in Equation (13) from accelerometers in

Equations (3)–(5) additionally introduces sensor models for angular acceleration. They are
associated with the angular acceleration, the angular velocity, and the orientation as

zk,ω̇ = hω̇
k,ω̇(x) ≡ ω̇B

k + vk,ω̇,

zk,ω̇ = hω
k,ω̇(x) ≡

ωB
k −ωB

k−1
∆t

+ vk,ω̇,

zk,ω̇ = hθ
k,ω̇(x) ≡ E(θ)−1 θk − 2θk−1 + θk−2

∆t2 + vk,ω̇ .

(21)

where vk,ω̇ ∼ N (0, Σω̇) is a measurement noise for angular acceleration. Let the measure-
ments and the sensor models be described collectively:

zω̇
k =

 zk,ω̇
zk,ω̇
zk,ω̇

, hω̇
k (xk) =

 hθ
k,ω̇

hω
k,ω̇

hω̇
k,ω̇

. (22)
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The Jacobian matrix is obtained by

Hk,ω̇ ≡
∂hω̇

k (xk)

∂x
=

 03 03 03
E′(δ2θk)+E(θk)

−1

∆t2 03 03

03 03 03 03
I3
∆t 03

03 03 03 03 03 I3

 (23)

with E′(·) being defined in Equation (20) and δ2θk = θk − 2θk−1 + θk−2.
While the sensor models have been constructed, the remaining modeling process for

angular acceleration is the derivation of the covariance Σω̇ for angular acceleration from a
pair of IMUs. We expand the right-hand side of Equation (4) by considering noise on top of
the measurement of acceleration and angular velocity:

b + vb =− (a2 − a1) +
1
2

ω2 × (ω2 × r) +
1
2

ω1 × (ω1 × r)

+ va2 +
1
2

ω2 × (vω2 × r) +
1
2

vω2 × (ω2 × r)

+ va1 +
1
2

ω1 × (vω1 × r) +
1
2

vω1 × (ω1 × r)

+
1
2

vω2 × (vω2 × r) +
1
2

vω1 × (vω1 × r) ,

where vb is the noise on vector b, va1 and va1 are the measurement noise of the accelerome-
ter, and vω1 and vω2 are that of the gyroscope. By neglecting the smaller quadratic noise
terms above, the covariance can be computed as

Σb ≈ Σa1 + Σa2 +
1
2

C̃1Σω1 C̃T
1 +

1
2

C̃2Σω2 C̃T
2 , (24)

where
C̃1 = C(ω1 × r) + C(ω1)C(r),

C̃2 = C(ω2 × r) + C(ω2)C(r).

C(·) is the cross-product matrix defined in Equation (5).

3.3.4. Sensor Model of Downward Camera

Since the downward camera ultimately derives its pose with respect to the global
frame, the sensor model associates the observations with the pose of the sensor suite:

zk,p = hk,p(xk, vk,p) ≡ pk + R(θk)
TrB

c + vk,p,

zk,θ = hk,θ(xk, vk,θ) ≡ θk + vk,θ,
(25)

where rB
c is the coordinate of the downward camera in the body frame. Let the measure-

ments and the sensor models be described collectively:

zk,c =

(
pk,c
θk,c

)
, hk,c(xk) ≡

(
pk + R(θk)

TrB
c

θk

)
+ vk,c , (26)

The Jacobian of the downward camera model is given by

Hk,c ≡
∂hk,c

∂x
=

(
I3 03 03

∂R(θ)TrB
c

∂θ 03 03
03 03 03 I3 03 03

)
. (27)

3.4. EKF

The implementation of the EKF for the localization of the sensor suite is relatively
straightforward once the motion model and all the sensor models have been developed.
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Given the motion model (11), the proposed approach predicts the mean and the covariance,
xk|k−1 and Pk|k−1, using its prior belief xk−1|k−1 and Pk−1|k−1 as

xk|k−1 = Fkxk−1|k−1,

Pk|k−1 = FkPk−1|k−1F>k + VkΣk,wV>k .
(28)

The sensor models are each given by a function of some state variables. Accordingly,
the proposed approach corrects the estimation through the parallel KF where the correction
of each state from each sensor is fused through summation [42]:

xk|k = xk|k−1 + ∑
s∈S

Kk,s

(
zk,s − hk,s(xk|k−1)

)
,

P−1
k|k = P−1

k|k−1 + ∑
s∈S

HT
k,sΣ−1

k,s Hk,s ,
(29)

where s ∈ S is each sensor, and Σk,s and Hk,s are the covariance of measurement noise of
sensor and the Jacobian matrix of the sensor model hk,s(x), respectively. Kalman gain for
sensor s is given by

Kk,s = Pk|k HT
k,sΣ−1

k,s . (30)

The great advantage of the proposed formulation is the simplicity. While the dimen-
sion of each correction is different, the Kalman gain acts not only as a scaling factor but
also as a transformation matrix. All the correction terms are thus summed without loss
of generality.

4. Sensor Suite Design and Installation

Figure 5a shows the design of the sensor suite with all sensors installed. The stereo
cameras are installed on the sensor suite using an orientation-adjustable base to have a better
view of the toeboard. The downward camera is installed on a leg welded on the sensor
suite. A three-axis gyroscope and a three-axis accelerometer are equipped on each camera
to estimate its position and orientation. The frame size is 560 mm× 450 mm× 130 mm.
The size enables the sensor suite to be installed on the mounting bolt holes of the front seat
without modifications to the test vehicle structure, as shown in Figure 5b.

IMU

(a) (b)

Figure 5. Sensor suite design (a) and installation (b).

The sensor specifications are shown in Table 1. Since the the crash of vehicle test
typically lasts 100∼200 ms, high-speed sensors with a wide measurement range are selected.
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Table 1. Parameters of sensors.

Inertial sensors sampling rate 20,000 Hz
Accelerometer noise 0.01 m/s2(1σ)
Accelerometer range 2000 g
Gyroscope noise noise 0.01◦/s(1σ)
Gyroscope range 18,000◦/s
Camera sampling rate 1000 Hz
Camera resolution 1024 × 1024 pixels
Downward camera to the ground 95 mm
Target toeboard size 500 mm× 350 mm

The sensor suite was designed and tested in a laboratory environment. It was later
tested at the crash test center of Honda Research & Development Americas, Inc. (Ohio,
USA), in a full-size passenger car. Figure 6a,b show the side and top view of the sensor
suite installed on the test vehicle. The stereo camera was placed 400 mm away from the
toeboard so both cameras could have a full view of it. A hole with size 150 mm× 150 mm
was opened on the vehicle floor to install the downward camera, as shown in Figure 6b,c.
The downward camera was about 95 mm above the ground and had a clear view of the
checkerboard pattern. Additional installations of IMU are shown in Figure 6c,d.

Toeboard

Stereo camera

Seat mount

Ca
m

er
a 

fix
tu

re

Hole for CD

Camera 
adjusting base

(a)

Cam
era fixture

Stereo cam
era

Accelerometer 
Gyroscope

Hole for down camera
Light source

Light source

(b)

Vehicle floor

Downward camera
Accelerometer 

Gyroscope

(c)

Camera

Camera mount

IMU

(d)

Figure 6. Sensor suite for real car test: (a) side view; (b) top view; (c) bottom view; (d) close-up view
of camera and IMU sensors.

5. Experimental Results

This section first demonstrates the localization of the sensor suite using the pro-
posed EKF framework in a simulated environment. Then, results of a real car crash test
are followed.

5.1. Sensor Suite Localization in Simulated Environment

Consider the following case where the center of sensor suite undergoes simple linear
and angular motion in the global frame as

a =
(
−(2π f )2 sin(2π f t), 0, 0

)T ,

ω =
(
−2π fw(cos(2π fwt)− 1), 0, 0

)T ,
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with angular acceleration

ω̇ =
(
(2π fw)2 sin(2π fwt)T , 0, 0

)T .

The measurement of the accelerometer and gyroscope in the body frame shall be

aB
IMU = aB

c + ω̇B × rB + ωB × (ωB × rB) + va,

ωB = −ω + vg
(31)

where aB
c and ω̇B are measurements at sensor suite center as

aB
c = −a, ω̇B = −ω̇

and vg ∼ N (0, σg) and va ∼ N (0, σa) model the sensor noise of accelerometer and gyro-
scope. The pose of downward camera shall be provided by

pCD = p + R(θ)rCD + vc,p

θCD = θ+ vc,θ,
(32)

where the position and orientation of the sensor suite are

p =
(

sin(2π f t)− 2π f t− 2π, 0, 0
)T ,

θ =
(
− sin(2π fwt) + 2π fwt + 2π, 0, 0

)T .

Here, R(θ) is the rotation matrix given Euler angle θ, and rB
CD

is the position of
downward camera in the body frame. Sensor noise of camera vc ∼ N (0, σc) is Gaussian.
IMU data are available between −0.1s ∼ 0.3s while camera pose information is available
between −0.01s ∼ 0.2s, to be consistent with the real car crash test.

By letting f = fw = 10, the angular acceleration can be recovered from the measure-
ment of accelerometers and gyroscope, as illustrated in Figure 7a. This angular acceleration
follows the prescribed ω̇B. The amplitude in the x-direction is close to the given amplitude
(2π fw)2. The other two directions (ω̇y and ω̇z) are zero-meaned. The estimated velocity is
shown in Figure 7b. Linear velocity and angular velocity at x-direction follow the cosine
wave, while motion in other directions is trivial. The displacement and roll angles are
shown in Figure 7c,d. Figure 7e illustrates the motion of the sensor suite in space, where
rectangular panels illustrate the position with a normal vector for the orientation.

Differential entropy of the estimation is plotted in Figure 8, which is given by

h(x) =
1
2

log
[
(2πe)n|Σk|k|

]
for multivariate Gaussian distribution considered here. The entropy shows that the down-
ward camera pose significantly improves the certainty of the estimation, as shown in
Figure 8.

To test the limits of the proposed EKF framework, we vary noise level by σa, σg, or σc
individually while keeping the other two at a low level, 0.1% of the maximum value, to be
specific. For each combination, 100 tests were performed and the statistics of maximum
error of the position max ‖pk|k − pk‖ are plotted in Figure 9, where pk|k is the estimation
and pk is the ground truth at step k. The figure shows that the proposed EKF-based
estimation is accurate when noise is typically small, say, less than 1%. Then, error can grow
significantly when the noise of accelerometers and gyroscope further increases. Note that
dead-reckoning error comes from measurements of accelerometer and gyroscope; therefore,
noise on the downward camera pose may not significantly influence the estimation if IMU
measurements are not significantly noisy.
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Figure 7. Results of sensor suite localization using EKF framework in a simulated environment.
(a) Angular acceleration; (b) linear and angular velocity of the camera fixture; (c) Estimated displace-
ment of the camera fixture; (d) estimated roll angle of the camera fixture; (e) trajectory of the camera
fixture in space.
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Figure 8. Entropy of sensor suite localization in simulated environment.
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Figure 9. Error of EKF estimation under different noise level on accelerometer, gyroscope, and
camera measurement.

5.2. Sensor Suite Localization in 56 km/h Frontal Barrier Car Crash Test
5.2.1. Pose Estimation of Downward Camera

Figure 10 shows the results of pose detection of the downward camera using the computer
vision technique. Figure 10a shows the checkerboard pattern detected, while Figure 10b
shows the features matched between two consecutive images for the purpose of localizing the
downward camera. With pixel coordinates in Figure 10a and their global frame coordinates
through Equation (7), camera pose is computed and presented in Figure 10c for position and
orientation in Figure 10d.
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Figure 10. Results of camera pose estimation using computer vision technique.

5.2.2. Localization of Sensor Suite

For the localization purpose, angular acceleration is first computed by using IMU
measurements and is plotted in Figure 11a. The results show that the pitch motion (rotation
along y-axes), related to ω̇y, is significantly larger than the other two directions, which is
consistent with onsite observation. The state of the sensor suite is then estimated through
the proposed EKF framework with the computed pose of downward camera, angular
acceleration, and IMU measurements. The results are shown in the rest of Figure 11.
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Figure 11b shows the estimated velocity. The frontal crash test has an initial speed of
15.6 m/s (56 km/h). The results show that, after the crash, the vehicle bounced back and
moved powerlessly at a speed around −3.8 m/s. Motion in the y- and z-direction is much
smaller than the x-direction. This is consistent with the onsite measurement.

Figure 11c shows the position estimated for the sensor suite. Instead of the center,
the position of the downward camera is plotted so that results from Section 5.2.1 can be
compared. The compression of structures, the distance moved in x-direction after the crash,
is about 700 mm from the figure. It conforms to the onsite measurement. The figure also
shows that the vehicle bounced up about 50 mm after the crash (from 33 ms to 77 ms), and
the motion in the z-direction was relatively small compared to the other two directions.

Figure 11d shows the pitch motion during the crash. The estimation shows that the
maximum pitch angle is around 8◦ during the crash. For comparison, we also include the
pitching angles measured by the downward camera and the gyroscope installed at the
center of the designed sensor suite. The camera measurement is subject to the oscillation of
the frame and shows strong oscillations throughout the in-crash measurement. Meanwhile,
the integration of gyroscope measurement is subject to the dead-reckoning errors and it
is hard to measure the precise pitching angle. Therefore, measurement based on a single
sensor may be less accurate than the state estimation technique that fuses multiple sensor
measurements. The motion of the sensor suite during the crash is illustrated in Figure 11e,
where rectangular panels represent its position and orientation at every other 5 ms. On each
panel, the normal vector is plotted and scaled by velocity vx to illustrate the orientation
and velocity of the sensor suite during the crash test.
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Figure 11. Frontal barrier localization result. (a) Displacement of the camera fixture. (b) Pitch angle
of the camera fixture. (c) Localization of camera fixture in the global frame.
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6. Conclusions and Ongoing Work

This paper presented a technique to localize a stereo camera for in-crash toeboard
deformation measurement. For localizing purposes, we designed a sensor suite with IMU
sensors and cameras. This technique recursively estimates the pose of the sensor suite to
where the stereo camera is attached. Using an EKF-based framework, the state, including
state mean and covariance, is predicted using a motion model and current state. The
prediction is then corrected through proposed sensor models and measurements of IMUs
and the camera. The state estimation technique can remove the dead-reckoning errors of
IMU sensors. Compared to the classical measurement-based technique, the state estimation
can remove the measurement error of a single sensor incurred by the excessive oscillation
of the sensor suite during a crash test. The proposed technique was first verified in a
simulated environment, in which the estimation matched well with the ground truth, and
the estimation was reliable given moderate sensor noise. The real crash data were analyzed
and provided localization results of the sensor suite as well as of the stereo camera.

This paper mainly focuses on the localization of a sensor suite for toeboard deformation
measurement, where the latter is not touched on in this paper but will be reported in future
work. We noticed that cameras underwent relative motion to the sensor suite in the real
crash test. This may be due to the structural flexibility, and further investigation of the
influence of structure flexibility may provide more accurate localization results.
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