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Abstract

Summary: We present FATHMM-XF, a method for predicting pathogenic point mutations in the

human genome. Drawing on an extensive feature set, FATHMM-XF outperforms competitors on

benchmark tests, particularly in non-coding regions where the majority of pathogenic mutations

are likely to be found.

Availability and implementation: The FATHMM-XF web server is available at http://fathmm.bio

compute.org.uk/fathmm-xf/, and as tracks on the Genome Tolerance Browser: http://gtb.biocom

pute.org.uk. Predictions are provided for human genome version GRCh37/hg19. The data used for

this project can be downloaded from: http://fathmm.biocompute.org.uk/fathmm-xf/

Contact: mark.rogers@bristol.ac.uk or c.campbell@bristol.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Many classifiers have been proposed for predicting the impact of

single-nucleotide variants (SNVs) in the human genome (see Liu

et al., 2017). Initially these focused on non-synonymous mutations

in coding regions of the genome, but most documented pathogenic

SNVs come from non-coding regions, so more recent methods make

predictions genome wide (Kircher et al., 2014; Shihab et al., 2015).

CADD (Kircher et al., 2014) has emerged as a standard for predict-

ing pathogenic SNVs, although its performance has been challenged

(Liu et al., 2017). The recent GAVIN method adjusts CADD scores

in a gene-specific manner, achieving greater accuracy than CADD,

whilst assigning distinct Pathogenic and Benign labels that simplify

interpretation (van der Velde et al., 2017).

Here we present FATHMM with an eXtended Feature set

(FATHMM-XF) which yields highly accurate predictions for SNVs

across the entire human genome. FATHMM-XF assigns a confidence

score (a p-score) to every prediction, to simplify interpretation, and

focus analysis on a subset of high-confidence predictions (cautious

classification). In all tests, FATHMM-XF matches or outperforms

competing methods, with its best performance in non-coding re-

gions, where the majority of pathogenic SNVs are likely to be found.

With cautious classification, FATHMM-XF consistently exceeds

94% accuracy on subsets of 80% of the highest-confidence predic-

tions from benchmark test sets.

2 Materials and methods

To build FATHMM-XF we use supervised machine learning with

labeled examples ascribed to pathogenic (positive) or benign (neu-

tral) mutations. We obtain positive examples from the Human Gene

Mutation Database (Stenson et al., 2017) (HGMD), and neutral ex-

amples from the 1000 Genomes Project (The 1000 Genomes Project

Consortium, 2012). We restrict neutral data to SNVs with a global

minor allele frequency �1% and remove any that appear in the

pathogenic dataset. To mitigate potential bias, we filter neutral

examples, selecting only those within 1000 positions of a pathogenic
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mutation (Supplementary Section S2). In addition, we remove sex

chromosomes X and Y to avoid potential biases that might arise

when allosomes are included. Our final training set consists of

156 775 coding examples and 25 720 non-coding. We characterise

SNVs using features from 27 data sets (herein called feature groups)

from ENCODE (The ENCODE Project Consortium, 2012) and

NIH Roadmap Epigenomics (Bernstein et al., 2010) that have

proved informative in other domains (Shihab et al., 2015, 2017b).

We construct four additional feature groups from conservation

scores, the Variant Effect Predictor (McLaren et al., 2016); anno-

tated gene models, and the DNA sequence itself (Supplementary

Section S3). We convert feature groups into kernels to evaluate dif-

ferent combinations and kernel-based models. k-fold cross-

validation is commonly used to evaluate models, but can introduce

bias if, for example, the same gene is represented in both training

and test sets. Instead, we use leave-one-chromosome-out cross-valid-

ation (LOCO-CV): for each fold we set aside one chromosome for

testing and use the remaining chromosomes for training.

We use Platt scaling (Platt, 1999) to assign a p-score to each pre-

diction (the probability that a particular SNV is pathogenic). For

cautious classification, we then establish confidence thresholds to

analyse sub-populations of high-confidence predictions.

3 Results

For non-coding regions, the best model incorporates five feature

groups, achieving 92.3% accuracy in LOCO-CV (Supplementary

Table S6). Briefly, these feature groups encapsulate sequence conser-

vation, proximity to genomic features (e.g. splice sites or transcrip-

tion start sites) and chromatin accessibility. Cautious classification

reaches 99% peak accuracy at a p-score threshold of s ¼ 0:96

(Supplementary Fig. S2). This high-confidence subset of examples

(p � 0.96 or � 0.04) comprises nearly 40% of test examples, dem-

onstrating that the threshold is not prohibitively restrictive.

Relaxing the threshold enlarges this subset dramatically whilst re-

taining high accuracy: at s ¼ 0:80, we cover 90% of examples with

accuracy over 95% (Supplementary Section S4).

For coding regions, the best model uses six feature groups, reaching

88.0% accuracy (Supplementary Table S8). Again, conservation fea-

tures are most informative, along with proximity to genomic features

and nucleotide sequence features (Supplementary Section S3). Cautious

classification achieves peak accuracy of 98% at s ¼ 0:97

(Supplementary Fig. S2). This highest-confidence subset again comprises

nearly 40% of examples; at s ¼ 0:80, it includes 80% of examples

with accuracy above 94.0%. We use these peak accuracy thresholds

(0.96 for non-coding, 0.97 for coding) in subsequent analyses.

We compared FATHMM-XF with four genome-wide SNV pre-

diction methods: CADD (Kircher et al., 2014), DANN (Quang

et al., 2014), FATHMM-MKL (Shihab et al., 2015) and GAVIN

(van der Velde et al., 2017). When we compared FATHMM-MKL

LOCO-CV test results with competitors evaluated on the same data,

FATHMM-XF achieved the highest accuracy of all, at 93%

(Supplementary Section S5). In coding regions, FATHMM-XF and

its closest competitor, GAVIN, yielded similar accuracy (88 and

89%, respectively). As reported earlier, FATHMM-XF yielded ex-

ceptionally high accuracy in cautious classification on these data,

whilst consistently yielding predictions for nearly 40% of examples.

To evaluate how well FATHMM-XF will generalise, we tested

all methods on test sets we assembled from ClinVar data (Landrum

et al., 2014) (Supplementary Section S5). After removing any

ClinVar examples found in our training sets, the test sets comprised

31 099 non-coding and 62 884 coding SNVs. In non-coding regions,

FATHMM-XF matches or outperforms other methods, reaching

89% accuracy and 0.97 area under the ROC curve (AUC, Table 1,

top). FATHMM-MKL yields comparable accuracy, but tends to

under-perform the new model. GAVIN achieves higher MCC and

PPV scores at the expense of lower accuracy. In cautious classifica-

tion, FATHMM-XF yields exceptionally high scores, covering

30.9% of examples. In coding regions, it reaches 88% accuracy and

0.96 AUC (Table 1, bottom). GAVIN yields nominally higher accur-

acy (and, notably, 26% higher than CADD, upon which it is based),

but at lower MCC and PPV. With cautious classification,

FATHMM-XF again yields exceptional performance, covering

42.4% of examples. FATHMM-XF at its default threshold covers

100% of test examples, as do the other methods tested.

4 Discussion

At default thresholds, FATHMM-XF matches or outperforms com-

peting methods using an eclectic mixture of data sources. Even when

all methods are optimised, FATHMM-XF yields substantially higher

accuracy in all of our tests (Supplementary Figs S7–S10). Under cau-

tious classification, accuracy exceeds 95%, whilst producing predic-

tions for up to 80% of positions genome-wide. While the proposed

classifiers achieve high accuracy, further improvement seems pos-

sible. Notably, all methods exhibit low PPV on non-coding data ex-

cept for FATHMM-XF’s cautious classification. Analysis of these

variants (Supplementary Fig. S1) reveals differences in the propor-

tions of intron and UTR variants represented in the training and test

sets. Hence region-specific models may improve performance in non-

coding regions, just as GAVIN’s gene-specific thresholding improves

accuracy for CADD scores—by up to 26 percentage points in our

tests. We will explore these approaches in future work. The

FATHMM-XF web server for GRCh37/hg19 is available at

fathmm.biocompute.org.uk/fathmm-xf, and as tracks on the Genome

Tolerance Browser (gtb.biocompute.org.uk; Shihab et al., 2017a).

Table 1. FATHMM-XF yields state-of-the-art accuracy on unseen

ClinVar examples in both non-coding regions and coding regions.

Non-coding regions

Method Acc. AUC Sens. Spec. MCC PPV

FATHMM-XF 0.89 0.97 0.95 0.84 0.53 0.36

Cautious (s ¼ 0:96) 0.96 0.99 0.99 0.93 0.87 0.82

FATHMM-MKL 0.88 0.95 0.94 0.82 0.49 0.33

GAVIN 0.87 — 0.82 0.93 0.61 0.52

CADD (v1.3) 0.64 0.95 0.98 0.30 0.18 0.12

DANN 0.61 0.95 0.99 0.23 0.15 0.11

Coding regions Acc. AUC Sens. Spec. MCC PPV

FATHMM-XF 0.88 0.96 0.84 0.92 0.76 0.83

Cautious (s ¼ 0:97) 0.97 0.99 0.94 1.00 0.96 0.99

GAVIN 0.89 — 0.90 0.87 0.74 0.76

FATHMM-MKL 0.80 0.90 0.91 0.70 0.56 0.58

CADD (v1.3) 0.63 0.91 0.98 0.29 0.30 0.38

DANN 0.60 0.89 0.99 0.20 0.25 0.36

Note: (Top) FATHMM-XF yields the highest accuracy on unseen ClinVar

examples for non-coding regions, outperforming its nearest competitor,

FATHMM-MKL. Cautious classification yields exceptionally high scores,

yielding predictions for 31% of examples. (Bottom) FATHMM-XF yields

higher accuracy, AUC, MCC and PPV scores than competitors on unseen

ClinVar examples in coding regions. The lone exception is GAVIN, with

nominally higher accuracy. Cautious classification again achieves extremely

high scores, yielding predictions for more than 42% of test examples.
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