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Abstract

Scan pattern analysis has been discussed as a promising tool in the context of real-time

gaze-based applications. In particular, information-theoretic measures of scan path predict-

ability, such as the gaze transition entropy (GTE), have been proposed for detecting rele-

vant changes in user state or task demand. These measures model scan patterns as first-

order Markov chains, assuming that only the location of the previous fixation is predictive of

the next fixation in time. However, this assumption may not be sufficient in general, as

recent research has shown that scan patterns may also exhibit more long-range temporal

correlations. Thus, we here evaluate the active information storage (AIS) as a novel informa-

tion-theoretic approach to quantifying scan path predictability in a dynamic task. In contrast

to the GTE, the AIS provides means to statistically test and account for temporal correlations

in scan path data beyond the previous last fixation. We compare AIS to GTE in a driving sim-

ulator experiment, in which participants drove in a highway scenario, where trials were

defined based on an experimental manipulation that encouraged the driver to start an over-

taking maneuver. Two levels of difficulty were realized by varying the time left to complete

the task. We found that individual observers indeed showed temporal correlations beyond a

single past fixation and that the length of the correlation varied between observers. No effect

of task difficulty was observed on scan path predictability for either AIS or GTE, but we

found a significant increase in predictability during overtaking. Importantly, for participants

for which the first-order Markov chain assumption did not hold, this was only shown using

AIS but not GTE. We conclude that accounting for longer time horizons in scan paths in a

personalized fashion is beneficial for interpreting gaze pattern in dynamic tasks.

Introduction

In the context of driving, visual scanning behavior must be organized such as to obtain rele-

vant information for the driving task just in time. This organization includes not only choos-

ing the right location but also the right order and timing of fixations for extracting visual
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P (2021) Measuring inter- and intra-individual

differences in visual scan patterns in a driving

simulator experiment using active information

storage. PLoS ONE 16(3): e0248166. https://doi.

org/10.1371/journal.pone.0248166

Editor: Feng Chen, Tongii University, CHINA

Received: November 9, 2020

Accepted: February 20, 2021

Published: March 18, 2021

Copyright: © 2021 Wiebel-Herboth et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data cannot be

shared publicly because the original data contains

sensitive information with the potential of

identifying study subjects, and because the authors

lack a consent of the participants that allows for the

publication of this data. Data are available from the

Honda Research Institute Europe GmbH

Institutional Data Access/Ethics Committee.

Contact via Julian Eggert (julian.eggert@honda-ri.

de) for researchers who meet the criteria for

access to confidential data.

https://orcid.org/0000-0002-7105-5207
https://doi.org/10.1371/journal.pone.0248166
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248166&domain=pdf&date_stamp=2021-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248166&domain=pdf&date_stamp=2021-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248166&domain=pdf&date_stamp=2021-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248166&domain=pdf&date_stamp=2021-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248166&domain=pdf&date_stamp=2021-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248166&domain=pdf&date_stamp=2021-03-18
https://doi.org/10.1371/journal.pone.0248166
https://doi.org/10.1371/journal.pone.0248166
http://creativecommons.org/licenses/by/4.0/
mailto:julian.eggert@honda-ri.de
mailto:julian.eggert@honda-ri.de


information. Quantifying the intra- and inter-individual variance of this scanning behavior

might have the potential to discover driving-relevant attributes, such as changes in driver state

[1], but also individual driver characteristics. As a consequence, the analysis of visual scanning

behavior might allow for a detailed characterization of individual driving behavior, and even-

tually the fine-tuning of adaptive driver assistance systems. In the context of human-vehicle

cooperation, the development of driving assistance systems that can adapt its functionalities in

order to support the driver in demanding situations or according to the driver’s individual

needs has been put forward as an important topic, lately [2]. For such adaptations to be useful

one important prerequisite is usually to identify relevant changes in user states or user behav-

ior and to evaluate the effects of the adaptation on the user. In the context of driving, physio-

logical markers such as EEG (e.g., [3]), fMRI (e.g., [4]), gaze behavior (e.g., [5]) or heart rate

(e.g., [6]) as well as measures of the driving behavior (e.g., [7, 8]) have been investigated

among others for assessing the driver state or to evaluate the impact of contextual changes.

Chen et al. [4] for example investigated the effect of decorated side walls in tunnels on the

driver. Here, we want to extend previous research on the potential of visual scanning behavior

as an unobtrusive measure for assessing differences in driver states and driving behavior.

In the analysis of visual scanning behavior, information-theoretic measures have been

introduced as a powerful tool to detect changes in observer states. For example, the gaze transi-

tion entropy (GTE) has been introduced to quantify the regularity of scan patterns [9, 10] and

has been shown to change under variations in task demand or observer state (see [11] for a

review). However, the GTE assumes that fixation sequences can be sufficiently modeled by a

Markov chain of order one, such that the location of a fixation depends only on its immediate

past fixation, while dependencies over longer time horizons are not accounted for. However,

recent findings suggest that including such long-range dependencies when modeling scanning

behavior is beneficial in describing individual viewing behavior [12–14].

In the present work, we therefore evaluate an alternative information-theoretic approach

for quantifying scan path regularity in a dynamic driving task, the active information storage

(AIS) [15]. In contrast to the GTE, the AIS optimizes the time span of past fixations being

informative for the predictability of the next fixation and thus entering the computation of

scan path regularity. To evaluate whether this representation of scan paths is beneficial in the

context of human state estimation in a dynamic task like driving, we compare the two mea-

sures on data from a driving simulator experiment.

Related work

Visual scanning behavior is shaped by both bottom-up information such as low-level image

features, as well as top-down processes such as high-level cognitive systems or prior knowledge

that modulate gaze behavior to solve a task at hand (e.g., [16–18]). In recent years, the study of

sequences of fixations or scan paths, as one aspect of viewing behavior, has substantially gained

interest [16, 19]. One popular tool for quantitatively describing scan paths as well as their

intra- and inter-individual differences, are entropy measures [11], in particular the stationary

gaze entropy (SGE) and the gaze transition entropy (GTE) [9, 10]. The SGE is a measure of

overall spatial dispersion of gaze locations in a given time window, where high values of SGE

indicate a highly equiprobable distribution of gaze points across all predefined areas of interest

(AOI), and low values indicate a more concentrated distribution of gaze points. On the other

hand, the GTE is defined as the entropy of the gaze transitions within a given time window.

Low GTE values indicate a high regularity in gaze transitions and high values indicate more

random or erratic transitions [10]. The GTE has also been interpreted as the overall predict-

ability of scan patterns [11].
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The SGE and GTE were first systematically applied to scan path data by Krejtz et al. to com-

pare scan paths between individuals viewing different types of art works [9, 10]. Further stud-

ies have successfully applied both measures, in particular to detect changes in user states, e.g.,

due to differences in workload [20], drowsiness [5], alcohol consumption [11], or increased

levels of anxiety [21, 22] (for a review see Shiferaw et al. [11]). Measures have also been used to

evaluate teaching [23] or advertisement material [24], and have been proposed as potential

online markers for attentional shifts in driving [1].

Importantly, existing information-theoretic approaches to scan path analysis such as the

GTE, assume that scan paths can be modelled as Markov chains of order one, such that the

probability of the next gaze point only depends on the single prior gaze point in time, while all

earlier fixations do not exhibit an influence on future gazing behavior. This assumption is

often not tested in studies employing the GTE and has been challenged by a series of more

recent findings. Krejtz et al. [9, 10] explicitly tested the Markov assumption based on a proce-

dure proposed by Besag and Mondal [25] and found that the assumption was valid for most

participants, but not for all. A number of studies using modelling approaches other than infor-

mation-theoretic measures, e.g., successor representation models from reinforcement learn-

ing, have found evidence for a longer lasting influence of past fixations on future gaze behavior

[12, 13, 19, 26]. In particular, individual differences in gaze behavior were shown to be better

reflected when accounting for a longer temporal horizon in scan paths [12, 13]. Such an

approach allowed for example to explain up to 40% of the variance in viewer intelligence,

working memory capacities, and speed of processing [12, 19]. Moreover, Hoppe et al. [27] pro-

vided first quantitative evidence that humans are capable of planning eye movements beyond

the next fixation.

Current study

In sum, previous findings suggest that more long-term correlations in scan paths exist, and

challenge the assumption that scan paths can be sufficiently modelled by first-order Markov

chains. As a result, existing approaches making use of this assumption, may underestimate the

true regularity of gaze patterns and may fail to estimate the total predictability of scan paths.

The resulting non-optimal assessment of a scan path’s predictability may in turn lead to erro-

neous conclusions about changes in gaze behavior. Such misclassifications may have an espe-

cially detrimental effect when using entropy measures in gaze-based applications, for example,

driving assistance [1, 28]. Therefore, we here propose to extend existing information-theoretic

approaches to quantitative scan path analysis by both, testing and accounting for long-term

dependencies in gaze behavior.

In particular, we set out to test the following hypotheses:

1. H1: In a dynamic task such as driving, the assumption of scan paths being sufficiently

described by a first-order Markov chain is not generally valid, instead, fixations can exhibit

a longer-lasting influence on gaze patterns.

2. H2: Individuals can differ in the time horizon of past fixations being predictive for future

gaze behavior.

3. H3: An individually optimized scan path representation accounting for potential long-

range dependencies in gaze behavior will result in a better distinctiveness of different user

states.

To test our hypotheses, we here use a novel approach for measuring the predictability of

scan paths by estimating the AIS [14, 15] using a recently proposed estimation algorithm
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[29, 30]. AIS quantifies the predictability of a time series by measuring how much information

the past of a sequence provides about its next state and has been successfully applied in a vari-

ety of applications, e.g., complex systems analysis [31], neuroscience [32], and biology [33].

The applied estimation algorithm optimizes the past state used for AIS calculation in a data-

driven fashion and thus allows to account for long-range temporal dependencies as well as

inter-individual differences.

We apply the proposed approach to gaze data recorded during a driving simulator experi-

ment and evaluate whether both GTE and AIS are equally sensitive to changes in driver view-

ing behavior during different driving tasks and difficulties. Supporting our hypotheses, our

results suggest that in some participants the general assumption of scan paths following a first-

order Markov chain does not hold, and that for these participants, the GTE is not as sensitive

to changes in scan path predictability as is the AIS. As a result, we propose AIS as a promising

tool in the description of viewing behavior, which may have the potential to discover changes

in driver state that are relevant in gaze-based applications [1, 11], and may be missed by exist-

ing scan path measures.

Prior evidence that AIS is suitable for detecting changes in user state, was recently provided

in a proof-of-concept study, where we estimated AIS from eye tracking data recorded during a

simple visual search task under two experimental manipulations intended to vary user states

[14]. We here extend this work by directly comparing AIS and GTE in their ability to detect

changes in user states during a dynamic task.

Materials and methods

The data reported here were recorded as part of a larger study. Details on the entire experiment

can be found in [34, 35].

Participants

13 participants took part in the entire experiment (12 males, mean age 33 [24 to 43]) [34, 35].

Nine of the participants were categorized as highly experienced drivers while four were catego-

rized as little-to medium experienced drivers based on the driven kilometers per year. Two

participants were excluded from the analysis reported here due to technical failures during the

eye tracking recording. The experiment was approved by our Institutional Review Board (HG

Bioethics Committee) in line with the Declaration of Helsinki. All participants gave their writ-

ten informed consent before taking part in the experiment. All participants had normal or cor-

rected to normal vision.

Apparatus

The experiment took place in a static driving simulator running SILAB 5.1 (WIVW GmbH)

with real-vehicle controls for steering, braking and accelerating. The setup comprised three

display panels (50 inch diagonal, Resolution: 3 x 1080p, updated at 60 Hz) that offer approxi-

mately a 160˚ field of view. Front, side, and rear mirrors, as well as a simplified dashboard

were rendered into the driving scene.

The participant’s gaze behavior was recorded using a Pupil Labs eye tracker (Pupil Labs

GmbH, see [36]), using 120 Hz monocular eye tracking and 60 fps world camera recordings.

Gaze points were mapped to eight AOI on the simulator screens via the screen marker solution

implemented by Pupil Labs. AOI were defined based on their semantic meaning in the task,

including the rear mirror, the left side mirror, the right side mirror, the dashboard speedome-

ter, the ego lane in front of the ego car, the left lane in front of the ego car, the right lane in

front of the ego car and the remaining front shield view (Fig 1A). The eye tracker was

PLOS ONE Measuring inter- and intra-individual differences in visual scan patterns using active information storage

PLOS ONE | https://doi.org/10.1371/journal.pone.0248166 March 18, 2021 4 / 24

https://doi.org/10.1371/journal.pone.0248166


calibrated before the start of each experimental session. Details on the driving simulator setup

can be found in [34].

Experimental design & procedure

The participants’ task was to drive safely and to maintain a target velocity of 120 kph while

driving through a two-lane highway scenario. Participants completed three sessions in total,

where one session took approximately nine minutes. The data analyzed here were recorded as

part of a larger study that aimed at evaluating a tactile driving assistance system. We used only

data recorded during a final baseline drive without the assistive device, as we were not inter-

ested in the effect of the assistance system on eye movements. Participants had already com-

pleted two drives before this second baseline, hence, we considered participants as being well

trained on the task at this stage.

In order to reach the task goal of maintaining a speed of 120 kph, the experimental design

of the scenarios made it necessary to overtake cars in front from time to time. This was realized

by having the car in front of the ego car slowing down significantly. In total, twelve overtaking

events were attained, which were considered here as trials. The onset of each trial was defined

as the moment, where the front car started to slow down. The offset of each trial was defined

as the moment where the ego car completed an overtaking maneuver by passing the white lane

Fig 1. Definition of areas of interest (AOI) and experimental procedure. (A) AOI defined based on their semantic

meaning in the driving task. (B) Experimental procedure: Each trial comprises a baseline period of five fixations and

the task interval that starts with the deceleration of the car in front of the ego-car (grey). The task is split into the period

before lane change, between trial onset and changing onto the left lane (blue arrow and marker), and the period after
lane change, between changing onto the left lane and changing back onto the right lane (red arrow and marker).

https://doi.org/10.1371/journal.pone.0248166.g001
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marks from the left lane back to the right lane. The inter-trial interval was varied to ensure that

the onset of the situation was not predictable for the participants. Each trial or overtaking

maneuver was split into two periods, one from the beginning of the trial until the change from

the right onto the left lane (before lane change), and the second from the lane change until the

end of the trial, indicated by a change back to the right lane (after lane change). Before the start

of the actual experiment, all participants took part in several familiarization procedures (for

details see [34, 35]).

Trials were additionally varied in task demand: Half of the trials were defined as difficult
whereas the other half of the trials were defined as easy. Easy and difficult trials appeared in

randomized order. The level of difficulty was varied based on the time left for the ego car to

initialize a lane change once the car in front started to break. In the difficult trials this time was

reduced to approximate the minimum that would still allow a maneuver without creating a

crash with cars on the ego or left lane. In the easy trials, time left to start the lane change

maneuver was chosen to allow for a relaxed action. Subjective data from questionnaires after

the experiment as well as objective driving data indicated that participants did perceive differ-

ences in task difficulty throughout the experiment (see [34] for details).

In case participants did not manage to complete the overtaking scenario appropriately, i.e.

created a crash or the scenario did not develop correctly due to deviations from the target

velocity, trials were considered as invalid and did not enter any further analysis. Over the

eleven subjects entering further analysis, the mean number of fixations in each scan path was

865.70 ± 74.21 (1 SD).

Preprocessing

We first preprocessed the eye tracking recordings by mapping gaze points to eight AOI,

defined based on their relevance to the task (Fig 1A. Fixations were computed in Pupil Labs

using their default parameters. Fixations below 100 ms and above 1500 ms were excluded from

the data analysis, as well as data points with a confidence value below 0.9, where confidence

constitutes an assessment by the pupil detector on how reliably the pupil was tracked by the

eye tracker at this point in time (Pupil Labs GmbH, see [36]).

Information-theoretic data analysis

To quantify the predictability of gaze behavior, we estimated local variants of gaze transition

entropy (GTE) as well as active information storage (AIS) from the scan path. In the following,

we will formally introduce the two measures (see also [14]). To this end, we assume that a scan

path is an observed time series x = (x1, x2, . . ., xi, . . ., xN) that consists of realizations of individ-

ual random variables, X = (X1, X2, . . ., Xi, . . ., XN), indexed by time i 2 {1, . . ., N} and with

possible outcomes xi 2 AXi
¼ f1; 2; . . . ; 8g. We write p(xi) as a shorthand for p(xi = Xi), and

p(xi|xi−1) as a shorthand for p(Xi = xi|Xi−1 = xt−i).

Gaze transition entropy (GTE). The GTE measures the remaining uncertainty about the

location of a fixation, given knowledge of the immediate past fixation [10, 11]. GTE is calcu-

lated as the conditional entropy of the current fixation, Xt, given the previous fixation, X�t� 1
,

HðXtjXt� 1Þ ¼ HðXt;Xt� 1Þ � HðXt� 1Þ

¼ �
X

Xt� 1

pðXt� 1Þ
X

Xt

pðXtjXt� 1Þ log pðXtjXt� 1Þ

¼ �
X

Xt ;Xt� 1

pðXt;Xt� 1Þ log pðXtjXt� 1Þ:

ð1Þ
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The GTE is upper-bound by the joint entropy, H(Xt|Xt−1)�H(Xt, Xt−1), as well as the entropy

of the next fixation, H(Xt|Xt−1)�H(Xt).

Note that the GTE measures the remaining uncertainty in the next fixation, Xt given the

immediate past fixation, Xt−1, only. Hence, it does not take into account information that fixa-

tions further in the past, Xt−l, where l> 1, provide about Xt.

Active Information Storage (AIS). The AIS [15] quantifies how much information a pro-

cesses’ past state, X�t� 1
, contains or stores about its next value, Xt, and may be interpreted as the

predictability of Xt from its immediate past [15, 37]. AIS is calculated as the mutual informa-

tion (MI) between Xt and X�t� 1
,

AISðXtÞ ¼ IðX�t� 1
; XtÞ

¼ HðXtÞ � HðXtjX
�

t� 1
Þ ¼ HðX�t� 1

Þ � HðX�t� 1
jXtÞ

¼ HðXt;X
�

t� 1
Þ � HðXtjX

�

t� 1
Þ � HðX�t� 1

jXtÞ

¼
X

xt ;x�t� 1

pðxt; x
�

t� 1
Þ log

pðxtjx�t� 1
Þ

pðxtÞ
:

ð2Þ

Here, the past state X�t� 1
is defined as a collection of random variables, X�t� 1

selected from a set

of past variables fXt� 1; . . . ;Xt� tl
; . . . ;Xt� lmax

g (see next section).

The AIS is low for highly unpredictable processes or processes with low entropy. Processes

with low entropy visit few processes with high probability, i.e., contain little information to be

predicted. On the other hand, the AIS is high for processes that are highly regular or predict-

able and have high entropy, i.e., visit many different states with equal probability [15, 37]. AIS

is lower-bound by zero (for processes that store no information), 0� AIS(Xt), and it is upper-

bound by the entropy of either of the two variables involved, AISðXtÞ � HðXtÞ;HðX
�

t� 1
Þ, as

well as by the joint entropy AISðXtÞ � HðXt;X
�

t� 1
Þ (Eq 2).

The AIS is related to GTE by the entropy of the next fixation and the joint entropy of the

next and past fixation (Fig 2A). In cases, where the relevant past is defined or identified to

comprise only a single past fixation, i.e., X�t� 1
¼ Xt, the AIS and GTE are complementary such

that they sum up to the entropy of Xt,

HðXtÞ ¼ GTEðXtÞ þ AISðXtÞ ¼ HðXtjXt� 1Þ þ IðXt;Xt� 1Þ: ð3Þ

Accordingly, both measures are complementary in their interpretation—while the GTE mea-

sures the remaining uncertainty in the next fixation (Eq 1), the AIS (Eq 2) provides a more

Fig 2. Schematic illustration of AIS estimation and relationship with other information-theoretic measures. (A)

Schematic illustration of relationship between AIS (blue box), conditional entropy of the next fixation given the past

state (orange box) and the joint entropy between past state and next fixation (grey box). For X�t� 1
¼ Xt� 1, the

conditional entropy is equivalent to the GTE. (Adapted from [38]). (B) Schematic illustration of the non-uniform

embedding (modified from [14]). The blue box indicates all past variables up to a maximum lag, lmax, that are

considered during the optimization of the past state for AIS estimation. The red marker indicates the next fixation, Xt,

and blue markers indicate the variables selected by the optimization that comprise the optimized past state, X�t� 1
.

https://doi.org/10.1371/journal.pone.0248166.g002
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direct measure of predictability as it quantifies how much uncertainty in the next fixation can

be “resolved” from the fixation’s immediate past [37].

Local interpretation of information-theoretic measures. Information-theoretic quanti-

ties, such as the entropy or MI, are measures that describe average properties of random vari-

ables [38]. However, it has been noted that for these average quantities local counterparts exist

[39, 40], which estimate information-theoretic measures also for individual realizations of ran-

dom variables. In practice, local information-theoretic measures thus allow to quantify the

predictability or (conditional) information content of individual samples, e.g., individual fixa-

tions in a scan path. Examples for the application of local or point-wise information-theoretic

measures can be found in natural language processing (e.g., [41]), in complex systems analysis

[31, 42], biology [33, 43], or robotics [44].

The local variant of the AIS, the local active information storage (LAIS) [15], is obtained by

dropping the summation in Eq 2 and describes the information that a specific realization of

the past state, x�t� 1
, provides about a specific next state, xt,

LAISðxtÞ ¼ iðx�t� 1
; xtÞ ¼ log

pðxtjx�t� 1
Þ

pðxtÞ
; ð4Þ

where x�t� 1
and xt are realizations of X�t� 1

and Xt. The lower-case i denotes the local MI. Hence,

the AIS is obtained as the expected value of the LAIS over all realizations (xt, xt−1) (Eq 4), or it

can be calculated as the average LAIS over all samples observed [45],

AISðXtÞ ¼ hLAISðXtÞii: ð5Þ

Other than the AIS, the LAIS can take on negative values whenever pðxtjx�t� 1
Þ < pðxtÞ, i.e.,

the probability of xt occurring given x�t� 1
occurs, is lower than the a-priori probability of xt

occurring. Vice versa, if the probability of xt occurring given x�t� 1
occurs is greater than the a-

priori probability of xt occurring, i.e., pðxtjx�t� 1
Þ > pðxtÞ, the LAIS becomes positive. Intui-

tively, local AIS may be interpreted as individual values providing information about the

occurrence of the next value (positive LAIS), or as individual values being misinformative
about the next value. Note, however, that the LAIS always averages to a positive quantity.

Similarly, we can define the local conditional entropy [45] and similarly a local gaze transi-

tion entropy (LGTE) as

LGTEðXtÞ ¼ hðxtjxt� 1Þ ¼ � logpðxtjxt� 1Þ: ð6Þ

This local conditional entropy describes the information content of realization xt, given xt−1 is

observed. The local conditional entropy, similarly to its average, follows the chain rule,

hðxtjxt� 1Þ ¼ hðxt; xt� 1Þ � hðxtÞ; ð7Þ

and for an assumed past state X�t� 1
¼ Xt� 1, LGTE and LAIS sum to the local entropy or infor-

mation content of xt,

hðxtÞ ¼ LGTEðxtÞ þ LAISðxtÞ ¼ hðxtjxt� 1Þ þ iðx�t� 1
; xtÞ: ð8Þ

A last important point when considering local information measures is that even though

these measures describe information-theoretic properties of individual samples, their estima-

tion still requires to include all available samples. More formally, local measures are obtained

by evaluating probability distributions, p(�), used in calculating LGTE and LAIS (Eqs 4 and 6),

for individual realizations, xt. These probability distributions, p(�), still have to be estimated

from all available data points. Hence, estimates are local in a sense that they provide the
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information content or information contribution of an individual realizations, but they are

global as they require the consideration of all available observations to arrive at an estimate of

p(�).

Estimating LAIS from scan path data. Formally, AIS is defined as the MI between the

next state of a process and its whole semi-infinite past [15]. To apply and estimate AIS in prac-

tice, the semi-infinite past is replaced by a past state, X�t� 1
, that is designed to contain all rele-

vant past information about Xt, such that Xt is conditionally independent of all earlier

observations given X�t� 1
[15, 46, 47]. This approach assumes that the process can be modelled

as a higher-order Markov chain. Different approaches for constructing such a past state have

been proposed, where we here used a so-called non-uniform embedding for time series [47,

48], with an algorithmic realization proposed in [29, 30].

Formally, we define X�t� 1
such that pðXtjXt� 1;Xt� 2; . . . ;X0Þ ¼ pðXtjX

�

t� 1
Þ, i.e., the next

value, Xt, is conditionally independent of all past variables, Xt−l, l> lmax, given X�t� 1
. Here, lmax

is the maximum lag in X�t� 1
. A non-optimal choice for X�t� 1

may lead either to underestimation

of AIS if relevant information is not covered by X�t� 1
. Conversely, if non-relevant variables are

included in X�t� 1
, the AIS may be artificially inflated due to an increasingly large and thus

potentially undersampled past state.

To optimize X�t� 1
, we applied a recently proposed algorithm [29, 30] that uses a greedy for-

ward-selection approach to optimize the non-uniform embedding. The algorithm iteratively

includes past variables if they provide significant, additional information about Xt, conditional

on all already selected variables (see also [30]). In other words, a past variable is included if its

MI with Xt, conditional on all already selected variables, is significant. The algorithm termi-

nates if no variable provides any new information about Xt, hence providing an automatic

stopping criterion for constructing the past state.

The optimized embedding,

X�t� 1
¼ fXt� lg; l 2 ½1; lmax�; ð9Þ

contains all relevant information stored in the past of Xt, while being as small as possible such

as not to lead to an under-sampling of the past state. Here, variables up to a maximum lag lmax

are tested for inclusion, where lmax has to be provided by the user. For optimization of the past

state and estimation of LAIS and LGTE we used the IDTxl Python toolbox [29] with estimators

from the JIDT toolbox as backend [49].

All information-theoretic measures are estimated from discrete scan-path data using plug-

in estimators [50]. These estimators that are known to exhibit a bias due to finite sampling

(e.g., [51–53]). Hence, we use non-parametric permutation testing to test MI-estimates and

conditional MI-estimates for statistical significance [54]. In particular, the AIS estimation algo-

rithm applied in the present work uses a hierarchical permutation testing scheme to handle

estimator bias, while controlling the family-wise error rate during repeated testing [30]. This

test allows to determine whether past fixations carry information about future fixations at all.

Statistical testing using linear mixed models

To test for changes in gaze behavior related to changes in the driving task, as well as based on

trial-difficulty, we fitted a linear mixed-effects model (LMEM) [55] to normalized LAIS and

LGTE estimates, that were averaged per participant and trial period. We tested for an effect of

the factor difficulty with levels easy and hard, and for an effect of factor trial period with levels

baseline, before lane change, and after lane change, where the second two periods comprise the

actual task (see also Fig 1B). We further tested for an interaction of both factors and added
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participant as a random effect. We allowed for a variation of the intercept and the slope for

each participant.

We encoded factor trial period using a Helmert coding scheme with a comparison of base-
line vs before lane change, and a comparison of these two levels with after lane change, in order

to detect changes in scan pattern predictability in comparison to previous trial intervals. We

encoded factor difficulty using deviation coding, comparing the first factor level, easy, with the

grand mean.

We used the lme4-package [56] written in R for model fitting. In general, testing for the

significance of a fixed effect in LMEMs is not straightforward because it is not clear what the

denominator degrees of freedom for obtaining the p-values are. A common approach to evalu-

ate the statistical significance of fixed effects are likelihood-ratio test (e.g., [57]), however, this

test was reported to be anti-conservative for smaller sample sizes [58]. Hence, we here followed

the recommendation by Luke et al. [58] and for calculation of p-values used Satterthwaite’s

approximation of the degrees of freedom [59] as implemented in the lmerTest R-package

[60].

Results

Fixation statistics

Before analyzing gaze patterns using information-theoretic methods, we investigated whether

our experimental manipulation had an effect on the driver’s viewing behavior by investigating

basic eye movement statistics and their relationship with the experimental manipulations. If

the requirements of the driving task affected the driver’s viewing strategy, we would expect a

change in fixation measures according to the changes in the trial period and difficulty.

Proportion of fixated AOI. First, we inspected the relative proportion of fixated AOI in

the different trial periods. Fig 3A shows the relative proportion of fixations across all partici-

pants in the three trial periods (baseline, before lane change, and after lane change). As

expected, by far most of the fixations landed within AOI 8 (ego lane, Fig 1A), for all three trial

periods. Nevertheless we would expect to observe a higher proportion of fixations on the rear

mirrors and neighboring lanes during the preparation and overtaking procedure compared to

the baseline period. This was indeed the case. The highest proportion of fixations on the left

rear mirror was observed in the before lane change period, while the highest proportion of fixa-

tions on the right rear mirror was observed in the after lane change period.

Mean fixation duration. In a next step, we tested mean fixation duration for the three

trial periods and the two levels of difficulty (Fig 3B). We ran a 2x3 repeated measures ANOVA

with factors difficulty (easy versus hard) and trial period (baseline versus before lane change
versus after lane change). On average, mean fixation duration were longest in the baseline
period (m = 629.92 ms, SEM = 19.84 ms) compared to fixations during the trial, i.e., before lane
change (m = 530.59 ms, SEM = 20.33 ms) and after lane change (m = 501.48 mss, SEM = 20.03

ms). We observed a significant main effect for the factor task period (F(2) = 7.515, p< 0.01).

Post-hoc paired-sample t-tests revealed significant differences between the baseline period and

both task periods (after lane change (T = 2.59, p = 0.02) and before lane change (T = −2.29,

p = 0.03), uncorrected).

The manipulation of trial difficulty had only minor effects on the average fixation duration

(easy: m = 560.77 ms, SEM = 16.00 ms, hard: mean = 558.58 ms, SEM = 17.20 ms). Accord-

ingly, we did not find an effect of difficulty on mean fixation duration (F(1) = 0.242, p = 0.63),

nor did we find a significant interaction between difficulty and trial period (F(2) = 2.000,

p = 0.16).
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The results indicate that on average participants showed longer fixation duration in the

baseline period than during the overtaking maneuver, although differences were only margin-

ally significant after Bonferroni correction. Somewhat surprisingly our manipulation of diffi-
culty did not affect fixation duration. This stands in contrast to earlier results based on the

driving data [35] where we found that trial difficulty had a significant effect on the driving per-

formance, indicating that our experimental manipulation was still valid.

Robustness of inter-individual differences. Lastly, we analyzed the robustness of inter-

individual differences in mean fixation duration. To that end, we computed the spearman cor-

relation coefficients between the different experimental conditions across participants. Such

an approach has been previously suggested by Andrews et al. [61].

Mean fixation durations varied quite substantially between participants across all experi-

mental conditions (range: 427 ms to 682 ms). Fig 3C and 3D show the mean fixation duration

for the different trial periods and the two levels of difficulty as a function of participants. We

found a significant correlation between easy and hard trials across participants (r = 0.7,

p< 0.05), indicating that the inter-individual differences in mean fixation duration were con-

sistent across these two conditions. We did not observe significant correlations across partici-

pants between the task periods. This suggests that variations in mean fixation duration in these

conditions were differently affected by the experimental manipulation for individual partici-

pants, resulting in less consistent inter-individual differences in mean fixation duration.

Taken together, results on basic fixations statistics indicate that our experimental manipula-

tions had an effect on the participant’s eye movement behavior. We find differences in mean

fixation duration as well as on the overall dispersion of gaze depending on the driving task.

This suggests that our data are valid for further investigation.

Fig 3. Proportion of fixations and mean fixation duration. (A) Relative fixation proportions for each AOI across all

participants in the three different trial periods (LC = lane change). (B) Distribution of mean fixation duration across

participants for the three trial periods and two levels of difficulty including (whiskers indicate 95% confidence

intervals). (C) Mean fixation duration per participant for each trial period (error bars indicate 95% confidence

intervals). (D) Mean fixation duration per participant for both difficulty levels (error bars indicate 95% confidence

intervals).

https://doi.org/10.1371/journal.pone.0248166.g003
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Information-theoretic data analysis

After analyzing basic properties of gaze behavior, we proceeded to analyze the regularity of

scan paths using information-theoretic methods. In particular, we compared the effect of both

trial period as well as difficulty on the regularity of scan paths as measured by both the GTE

and AIS.

Optimized past states. For the estimation of AIS, we first identified relevant past fixations

by applying an estimation algorithm proposed in [29, 30]. We optimized the past states indi-

vidually for each participant while allowing the optimization procedure to test for dependen-

cies up to a maximum lag, lmax, of 5 previous fixations. This means that the optimal past state

(optimal number of lags) was estimated for each participant individually in a data-driven

fashion.

Through application of the estimation algorithm proposed in [29, 30] we tested hypotheses

H1 and H2, raised in the introduction: first, the estimation algorithm optimizes the past state

used for AIS estimation by identifying all past variables of a time series that jointly provide

information about the time series’ next state. Thus, the optimization returns whether only a

single previous fixation provides information about the next fixation or whether fixations with

larger time-lags are predictive of the next fixation. Hence, the algorithm directly tests the first

hypothesis that scan paths can not generally be modeled by a first-order Markov chain. Sec-

ond, the algorithm optimizes the past state in a data-driven fashion and can be applied individ-

ually for each participant. We thus tested our second hypotheses, which states that individuals

may differ in the time horizon of past fixations being predictive for future gazing behavior.

In accordance with our first two hypotheses, the optimization returned a wide variety of

selected past variables over participants, where in 4 out of 11 participants, variables with lags

greater one, l> 1, were selected and for one participant no significant AIS was found (Fig 4).

Fig 4. Selected past variables per participant. Lags, l, of past variables used for AIS estimation as identified by the

estimation algorithm for each participant.

https://doi.org/10.1371/journal.pone.0248166.g004
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For participants with lags l> 1, fixations prior to the last fixation provided significant informa-

tion about the next fixation and were relevant for quantifying the predictability of the scan

path. The result provides evidence that indeed the first-order Markov chain assumption does

not hold per se for each individual (H1). Furthermore, the variability in lags, l, provides evi-

dence for an inter-individual variance in viewing behavior, in particular the time horizon over

which fixation sequences are predictive of future fixations (H2).

Definition of experimental groups based on identified long-range dependencies. In a

next step, we tested our third hypothesis that an individually optimized scan path representa-

tion, which takes into account long-range dependencies in viewing behavior, should result in a

better distinctiveness of user states. To this end, we split participants into two groups based on

whether past state optimization, identified a significant information contribution of the single

past fixation only (l = 1), or whether the optimization returned a significant contribution of

variables with a greater lag (l> 1) (one participant was excluded from further analysis as no

significant relationship between past and next fixation had been found.).

For participants in both groups, we estimated both the GTE and AIS from individual scan

path data and analyzed whether predictability of gaze behavior changed as a function of diffi-
culty (easy, hard) and trial period (baseline, before lane change, after lane change). To make

optimal use of the available data, i.e., consider the maximum amount of data for estimation of

information-theoretic measures, we estimated the local variants of both measures, LGTE and

LAIS, from the complete consecutive scan path over the whole recording interval. To analyze

changes in scan path predictability during the trial periods within the recording, we performed

statistical tests on averaged local estimates within these periods. We thus tested whether the

predictability of fixations differed between the baseline interval and the overtaking maneuver,

and whether predictability varied between easy and hard trials.

Changes in information-theoretic measures as a function of trial period. For both

groups with optimized past states l> 1 and l = 1, we estimated LAIS as well as LGTE (Fig 5A,

5B, 5E and 5F). Note that both measures increased during the task periods compared to the

baseline, indicating a decrease in predictability for the GTE (more uncertainty in the next

Fig 5. Mean values of LGTE (orange), LAIS (blue), and joint entropy (gray) as a function of trial period. Mean per trial period for participants with lag

l> 1 for (A) LGTE, (B) LAIS, (C) joint entropy between next fixation and past fixation at t − 1 (fixations used for LGTE estimation), (D) joint entropy

between next fixation and past fixation at t − l (fixations used for LAIS estimation). Mean per trial period for participants with lag l = 1 for (E) LGTE, (F)

LAIS, (G) joint entropy between next fixation and past fixation at t − 1 (fixations used for LGTE estimation), (H) joint entropy between next fixation and

past fixation at t − l (fixations used for LAIS estimation). Error bars indicate the standard error of the mean.

https://doi.org/10.1371/journal.pone.0248166.g005
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fixation) and an increase in predictability for LAIS (more information in the next fixation is

predictable from its past).

Note that changes in predictability as measured by raw LAIS and LGTE were not comple-

mentary. However, complementary results can only be expected given constant entropy of the

involved variables in the compared conditions. Hence, an increase in both LAIS and GTE

between baseline and task interval, especially for the l = 1 group where Eq 3 applies directly,

indicates a higher entropy in the task than in the baseline, leading to a higher overall informa-

tion content to be predicted in the next fixation (see also Fig 2A). Indeed, we found such an

increase in the joint entropy of both the next fixation at time t and the respective past fixation

at either t − 1 or t − l (Fig 5C, 5D, 5G and 5H). Hence, for further analysis, we normalized the

mean LAIS and mean LGTE by the mean joint entropy for the respective trial period and

participant.

Effects of trial difficulty and trial period on normalized information-theoretic mea-

sures. To test for effects of both difficulty and trial period on the predictability of viewing

behavior, we fitted LMEMs [55] separately to both normalized mean LAIS and normalized

mean LGTE, as well as both groups, l> 1 and l = 1 (Tables 1 and 2).

For the l> 1 group we expected potential differences in the effects of trial period and diffi-
culty on normalized LAIS compared to normalized LGTE. In particular, in this group, the

first-order Markov chain assumption was violated. Therefore, LGTE estimates should presum-

ably reflect changes in predictability less accurately than LAIS estimates. The LAIS was

Table 1. Linear mixed-effect model results for normalized LAIS and LGTE estimates for participant group with past state l> 1.

Measure Predictor Estimate SE d̂f t p

hLGTEi/hHi difficulty -0.0011 0.0082 120.0 -0.139 0.8900

trial period:BLC 0.0583 0.0366 3.2 1.593 0.2050

trial period:ALC -0.0757 0.0369 3.8 -2.051 0.1130

hLAISi/hHi difficulty 0.0019 0.0104 3.3 0.186 0.8634

trial period:BLC -0.0028 0.0189 72.3 -0.150 0.8812

trial period:ALC 0.0620 0.0250 36.9 2.481 0.0178�

� p < 0.05;

��p< 0.01;

���p< 0.001.

https://doi.org/10.1371/journal.pone.0248166.t001

Table 2. Linear mixed-effect model results for mean normalized LAIS and LGTE estimates for participant group with past state l = 1.

Measure Predictor Estimate SE d̂f t p

hLGTEi/hHi difficulty -0.0053 0.0072 194.1 -0.736 0.4628

trial period:BLC 0.0057 0.0212 6.3 2.673 0.0354�

trial period:ALC -0.0093 0.0279 6.0 -3.321 0.0160�

hLAISi/hHi difficulty -0.0036 0.0061 190.0 -0.594 0.5530

trial period:BLC -0.0092 0.0141 190.0 -0.649 0.5174

trial period:ALC 0.0380 0.0182 190.0 2.085 0.0384�

� p < 0.05;

��p< 0.01;

���p< 0.001.

https://doi.org/10.1371/journal.pone.0248166.t002
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estimated based on the individually optimized past state beyond a single past fixation, while

the LGTE, by definition, was estimated only considering the last (presumably non-optimal)

fixation. Hence, the LGTE may underestimate the true predictability leading to a potentially

worse identification of changes in gaze behavior.

Indeed, for group l> 1 we did not find a significant effect of trial period on normalized

LGTE (Fig 6A), while we found a significant decrease in the normalized LAIS in the after lane
change interval compared to the previous intervals (t(36.9) = 2.481, p = 0.0178�, Fig 6B).

For the l = 1 group, on the other hand, we expected a similar outcome of the analysis for

both measures, as for this group both LAIS and LGTE are estimated only considering a single

past fixation (here, the first-order Markov chain assumption was not violated). Here, we found

differences for both measures between the after lane change interval compared to the previous

intervals, normalized LGTE decreased significantly (t(6.0) = −3.321, p< 0.05, Fig 6C) and nor-

malized LAIS increased significantly (t(190) = 2.085, p< 0.05, Fig 6D). Both results indicate

an increased predictability of viewing behavior in the second task interval. Also LGTE

increased in the before lane change interval compared to the baseline (t(6.3) = 2.673, p< 0.05),

indicating a decrease in predictability in the first task interval.

We did not find an effect of difficulty on either normalized LAIS or LGTE in any of the

groups. Hence, results on information-theoretic analysis of viewing behavior were consistent

with results on basic viewing statistics.

In sum, results are in line with our third hypothesis and provide evidence that accounting

for an individually optimized past state is beneficial for detecting changes in viewing behavior.

Furthermore, normalizing mean LGTE and LAIS by the joint entropy led to the expected com-

plementary behavior of both measures. Also, normalizing led to qualitative changes in the

effect of trial period on LGTE (overall decrease in normalized versus an increase in raw

LGTE), highlighting the importance of considering the total information present in the scan

path when evaluating relative changes in predictability of gaze behavior.

Fig 6. Predicted values of mean LGTE (orange) and mean LAIS (blue) by linear mixed-effects model (LMEM).

Error bars indicate confidence intervals. (A) Mean LGTE values normalized by mean joint entropy for l> 1, (B)

mean LAIS values normalized by mean joint entropy for l> 1, (C) mean LGTE values normalized by mean joint

entropy for l = 1, (D) mean LAIS values normalized by mean joint entropy for l = 1.

https://doi.org/10.1371/journal.pone.0248166.g006
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Discussion

The present work investigated the role of long-term dependencies between fixations in esti-

mating the predictability of scan paths during a dynamic driving task. We proposed to quan-

tify predictability in fixation sequences using active information storage (AIS), which is able to

account for more long-range influences between fixations. We demonstrated that the pro-

posed approach is able to detect changes in viewing behavior more reliably compared to the

commonly used gaze transition entropy (GTE). In particular, we found evidence supporting

three hypotheses raised in the beginning: 1) we showed that in a dynamic task the assumption

that scan path data are sufficiently modeled by first-order Markov chains does not hold in gen-

eral, 2) the time horizon of past fixations being predictive for the next fixation varies between

participants, and 3) accounting for detected long-range dependencies between fixations in a

personalized way is beneficial for the meaningful quantification of the predictability of scan

paths.

Using active information storage to quantify scan path predictability

We proposed to quantify predictability in scan path by estimating the active information stor-

age (AIS) [15] using a recently proposed estimation algorithm [29, 30]. The algorithm opti-

mizes the past fixations used for the estimation of AIS in a data driven fashion, and is thus able

to account for potential long-range dependencies in a personalized fashion.

By applying this approach to data recorded during a driving simulator experiment, we

showed that for a subset of the participants, fixations were predictive of future gaze behavior

with a delay of up to four fixations. These findings are in line with our earlier results applying

AIS to scan path data in a static viewing task [14]. We further showed that for these partici-

pants (l> 1), an increase in the predictability of gaze behavior during an overtaking maneuver

could only be detected in the AIS estimate while the gaze transition entropy (GTE) failed to

uncover these changes. In other words, changes in gaze behavior could only be detected when

discarding the first-order Markov assumption and accounting for the participants’ individual

longer time horizon over which fixations were predictive of future gaze behavior. As hypothe-

sized, attempting to quantify the scan path predictability using GTE while the first-order Mar-

kov assumption was violated, led to an underestimation of scan path predictability during the

task. For participants for which the optimization approach supported the assumption of a

first-order Markov chain (l = 1), both the LAIS and GTE were able to identify a significant

increase in predictability of gaze behavior, indicating that both measures arrived at converging

results if the first-order Markov assumption was met.

We want to highlight that in cases where the assumption of scan paths following a first-

order Markov chain fails, the GTE does not measure the total predictability of a scan path

from its past. Here, the AIS is a direct measure of the concept of predictability [15, 37, 62], in

particular when optimizing the past state used for its calculation such as to include all relevant

past information. While GTE has proven to be a valuable marker of gaze behavior in a variety

of tasks (e.g., [11]), it may miss long-range temporal relationships in scanning behavior, in par-

ticular during dynamic tasks such as driving, which require more planning by the observer.

In sum, we provide evidence that more long-range temporal relationships between fixations

should be accounted for in a personalized fashion when quantifying the predictability of gaze

behavior. This finding is in line with earlier findings using non-information-theoretic

approaches to describing scan path data (e.g., [12, 63], see also [14]). We here furthermore pre-

sented a flexible approach for estimating predictability in scan path data using AIS, which han-

dles long-range dependencies as well as their inter-individual variation.
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Relationship between predictability and scan path entropy

We found that the joint entropy of next and past fixation increased during the task compared

to the baseline driving. The increase in entropy means that participants fixated more AOI with

equal probability such that the visual space was more thoroughly explored. This result is in line

with our findings on proportions of fixations, where we found that almost 80% of the fixations

during baseline driving were in AOI 5 (dashboard) or AOI 8 (ego lane), while this proportion

was lower for the task intervals.

We normalized AIS and GTE by the joint entropy to exclude the possibility that changes in

AIS and GTE were solely due to a corresponding change in the scan path’s stationary entropy.

In the latter case, changes in raw AIS and GTE would reflect a change in the overall richness of

the visual scanning behavior, i.e., the total information to be predicted, but may not be due to

an actual change in the predictability of the scanning behavior. Hence, we want to point out

the importance of controlling for the overall predictability of the scan path under analysis (e.g.,

[37]), which is rarely done in the analysis of scan path predictability [11].

Indeed, we found an increase in predictability after normalizing GTE and AIS. Together

with the observed increase in joint entropy, these results indicate that gaze behavior became

both more dispersed and more regular during the task. In other words, gaze patterns became

richer in the overall information, but also followed a more regular trajectory through the visual

space, which indicates that the participants’ exploration of the visual space branched less often

and such that fixation sequences became more predictable.

Increased scan path predictability and task demand

Previous studies that investigated GTE as a marker for changes in task demand or user state

found mixed results. Gotardi et al. [64] showed that drivers showed more erratic viewing

behavior and thus higher visual entropy under conditions that induced anxiety during driving.

Similarly, Shiferaw et al. [5] for example found an increase in GTE in sleep deprived drivers.

Moreover, increases in stationary entropy were found in surgeons under higher task load [20,

65]. These results indicate that the regularity of scanning behavior can decline under condi-

tions in which observers feel under pressure or are suffering from context-driven cognitive

impairments, thus resulting in higher entropy values. On the other hand, a number of studies

report a decrease in GTE as a function of increasing task difficulty. Schieber et al. [66], for

example, found a decrease in GTE during driving when participants had to solve a visuo-spa-

tial task while driving. Similarly, decreases in GTE were demonstrated in a pattern-recognition

task with increasing task-difficulty [67] and in fighter pilots in high complexity emergency sit-

uations [68]. These results indicate that viewing behavior can become more deterministic

under conditions that require a high cognitive engagement, see [11] for a review. In line with

existing results, we expected to observe changes in GTE and likewise in AIS associated with

our experimental manipulations.

While driving, we observed an effect of the trial period on both fixation statistics and scan

path predictability. The regularity of the gaze behavior increased in particular during the sec-

ond overtaking period with respect to the previous trial periods. It could be argued that the

change from the left back onto the right lane poses a more difficult task that may impose more

stress, compared to previous trial intervals and therefore predictability should drop. For exam-

ple, [69] suggests that driving on straight motorways is considered an easier driving task com-

pared to winding or mountain roads. In the baseline condition, drivers were instructed to

maintain constant speed while remaining on the right lane, which requires only attention to

the vehicle in front of the ego car and a monitoring of the speed. The second trial period, before
lane change, required monitoring of the left lane and the car in front on the ego car, while the
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second part of the overtaking maneuver comprised of monitoring oncoming traffic from

behind, traffic in front, and identifying a gap on the right line while monitoring speed. Hence,

the last trial period required increased attention of the driver to traffic on both lanes as well as

the monitoring of the car that was overtaken. On the other hand, overtaking is also a highly

trained task that may require more cognitive resources but presumably also involves a highly

regular scheme of fixation sequences. In line with the results of [66–68], it seems therefore not

surprising that we find a significant increase in scan path predictability during the overtaking

maneuver compared to the baseline drive. It has been reported that in unknown routes, fixa-

tions are dispersed widely over the roadway with most fixations above and to the right of the

road [70]. This might additionally explain the more irregular scanning behavior in the baseline

period.

Somewhat surprisingly, for trial difficulty we did not find an effect on the regularity of gaze

patterns. It could have been assumed that in the difficult trial condition, predictability of the

scan paths would have dropped relative to the easy trial condition. We found an effect of trial

difficulty on driving relevant parameters for this experiment in an earlier work, indicating that

our experimental manipulation was generally valid ([35]). However, neither fixation statistics,

nor our quantification of scan path predictability revealed an effect. One reason for this could

be that participants were already highly trained on the task at this point of the experiment,

which could have led to an overall more similar gaze behavior independent of the trial diffi-

culty. Another potential reason is that both difficulty conditions can be generally classified as

rather demanding. Even though we included the additional differentiation in easy and hard tri-

als depending on the time left for initiating the overtaking maneuver without creating a crash,

both scenarios can be regarded as high criticality situations. This might explain why we find a

clear difference in the gaze behavior between baseline driving and the overtaking periods, but

not between the two difficulty levels.

Increased scan path predictability and top-down control

Shiferaw et al. [11] hypothesized that increased GTE is a result of an interaction between scene

complexity and task demand and constitutes an estimate for top-down modulation of gaze

control. More precisely, if scene complexity and task demand are high, more control is

required. Furthermore, if complexity and demand are held constant and only observer state is

manipulated, it is suggested that more engagement with the task, e.g., more top-down control

is accompanied by higher GTE (lower predictability).

We find higher entropy, i.e., a greater exploration of the scene, which may result from a

higher task demand that requires a more thorough visual exploration of the scene. However,

opposed to the hypothesis formulated in [11], we do not find an increase in GTE, i.e., a lower

predictability with highest task demand. Instead, the observed increase in predictability could

hint at the execution of a high-level behavior plan necessary to realize the overtaking task. In

fact, only recently it was compellingly illustrated in a visual search task that fixation sequences

can be planned ahead [27]. In line with these results, it can be hypothesized that in a highly

trained task like our overtaking scenario, drivers execute fixation planning leading to a higher

predictability of scanning behavior.

However, based on the present experimental design we can not draw final conclusions on

whether the observed increase in scan path predictability is a direct result of increased top-

down influence. Scanning behavior is not only driven by top-down influences, but also by

properties of the visual input, e.g., visual saliency, such that scan path predictability may even

depend on the predictability of the location of salient objects. To disentangle both top-down

and bottom-up effects on scanning behavior, a careful manipulation of saliency and task
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demand would be required. Alternatively, one may differentiate between predictability due to

regularity in the input and due to the capacity of the system to store information, by calculat-

ing AIS while conditioning on the system’s input, as proposed in [71]. However, such an inves-

tigation is beyond the scope of this work and is subject to future investigation.

In summary, in line with previous work, our results suggest that a measure of scan path reg-

ularity, like the AIS, is an interesting candidate feature to detect changes of user states. Extend-

ing previous studies, we show that AIS is able to detect such changes also in dynamic tasks like

driving. To interpret how changes in predictability relate to viewer behavior and states in a

real-world application, additional work is necessary, which goes beyond the present experi-

mental setup. Here, future work should aim at a more fine-grained correlation of driving

behavior or other variables related to the viewer’s state to scan pattern predictability as mea-

sured by AIS.

Inter-individual differences in scan path predictability

Applying a novel algorithm for the estimation of AIS [29, 30], we individually optimized the

past time horizon considered for the estimation of scan path predictability. We demonstrated

that this time horizon, that represents past fixations being predictive for the next fixation, var-

ied between participants. Moreover, we showed that accounting for these differences had a sig-

nificant impact on the interpretation of the observed scanning behavior. These results are in

line with previous work showing that inter-individual differences in scan paths were better

explained by a model incorporating a longer temporal horizon in the past, than only the previ-

ous last fixation ([12, 13]). Here, a clear advantage of our proposed approach to estimate AIS

using state-of-the-art estimation techniques, is that the optimized past states allow for a direct

interpretation of the length of the observed temporal dependencies in units of the observed

time series. This was not possible in modelling approaches commonly used in previous work,

i.e., the successor representation model [12], which uses a hyperparameter to represent tempo-

ral dependencies that is not directly interpretable.

Future work may further investigate whether inter-individual history lengths are task-

dependent or whether inter-individual differences remain constant over tasks. Furthermore

the length of the time horizon itself may be a valuable feature in predicting task success

because it may reflect the ability to maintain and exploit visual information over longer time

spans. Again, future work should investigate whether increases in predictability reflect

increases in top-down modulation and planned behavior.

Potential of local information-theoretic measures for scan path analysis in

real-time applications

In the present work, we used local variants of both AIS and GTE that were estimated from the

whole available sequence of fixations and were evaluated for periods of interest (task). We

chose this approach to utilize a maximum amount of data for the estimation of scan path

predictability while still being able to analyze scan path predictability locally in time. Further-

more, we believe local variants of information-theoretic measures to be a promising tool for

the realization of real-time systems that make use of scan patterns, e.g., driver assistance sys-

tems [1]. Our findings are a promising step towards such an application as it suggests that

local AIS and local GTE, despite being estimated from the full scan path, still allow for the

detection of local changes in gaze behavior.

Using local information-theoretic measures may be advantageous in real-world scenarios,

where a clear distinction into a baseline versus a task of interest is not available. Here, localized
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measures allow to evaluate predictability for a few fixations and even on the single-fixation

level. On the other hand, the underlying probability distributions may be estimated from all

available data and may even be estimated using online-learning [72]. Moreover, probability

distributions may even be estimated offline to allow for an immediate use in an online system.

A similar approach has been previously proposed for measuring AIS in neural systems [73].

Using all available data may allow for more robust estimates as for example estimates of aver-

aged measures from binned data (e.g., [5]).

In sum, our results suggest that it is possible to estimate probability distributions from all

available data and use them to detect local changes in gaze behavior. Future work may further

explore the suitability of localized measures for online-assistance and prediction. We here

present a promising step towards using entropy measures in real-time application, such as

driving assistance, that typically require the detection or prediction of events on a finer tempo-

ral scale.

Conclusion

In the present work, we evaluated a novel approach to measuring predictability of scanning

behavior as a marker of changes in observer states during a dynamic driving task. We com-

pared our proposed approach to existing measures of scan path predictability and showed that

accounting for long-range temporal dependencies in scan patterns was beneficial in describing

observer states. Future studies may extend the present study by validating the proposed mea-

sure in further dynamic tasks. One limitation of the current study is the small sample size. In

particular, to further assess the relation between the proposed method and interindividual dif-

ferences in gaze behavior, an application to larger and diverse groups of participants would be

desirable. Furthermore, additional work may aim at a detailed description of how changes in

scan path predictability relate to manipulations of task demand and user state, as well as inter-

actions of both. We believe that this study is an important step towards gaining novel insights

into the dynamics of viewing behavior, which may be used in gaze-based applications such as

driver assistance.
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