
Proteomics 2014, 14, 685–688 685DOI 10.1002/pmic.201300281

TECHNICAL BRIEF

The jmzQuantML programming interface and validator

for the mzQuantML data standard

Da Qi, Ritesh Krishna and Andrew R Jones

Institute of Integrative Biology, University of Liverpool, UK

The mzQuantML standard from the HUPO Proteomics Standards Initiative has recently
been released, capturing quantitative data about peptides and proteins, following analysis
of MS data. We present a Java application programming interface (API) for mzQuantML
called jmzQuantML. The API provides robust bridges between Java classes and ele-
ments in mzQuantML files and allows random access to any part of the file. The API
provides read and write capabilities, and is designed to be embedded in other soft-
ware packages, enabling mzQuantML support to be added to proteomics software tools
(http://code.google.com/p/jmzquantml/). The mzQuantML standard is designed around a
multilevel validation system to ensure that files are structurally and semantically correct for
different proteomics quantitative techniques. In this article, we also describe a Java software
tool (http://code.google.com/p/mzquantml-validator/) for validating mzQuantML files, which
is a formal part of the data standard.

Keywords:

Bioinformatics / Java API / mzQuantML / Proteomics Standards Initiative / XML

Received: July 9, 2013
Revised: November 20, 2013

Accepted: December 20, 2013

The two most common tasks performed in proteomic re-
search are the identification or quantification of proteins or
peptides, using MS followed by data analysis. The Proteomics
Standards Initiative (PSI) has been working for a number of
years to develop data standards to assist data sharing, software
development, and database submissions for the different data
types produced in these typical workflows. The PSI has re-
leased mzML for raw MS data or peak lists [1], mzIdentML
for peptide and protein identification, for example exported
from a search engine [2], TraML [3] for encoding transition
lists and associated metadata, and, recently, mzQuantML for
quantitative data [4]. The model is developed as an Extensible
Markup Language (XML) Schema Definition file, accompa-
nied by controlled vocabulary (CV) terms and definitions as
part of the PSI-MS CV [5], also used in mzML, mzIdentML,
and TraML. The use of correct CV terms within the schema
is governed by a mapping file, defining the terms that MUST,
SHOULD, or MAY (formal keywords) used at particular loca-
tions within a file.

Correspondence: Dr. Da Qi, Biosciences Building, Institute of In-
tegrative Biology, University of Liverpool, Crown Street, L69 7ZB,
Liverpool, United Kingdom
E-mail: D.Qi@liverpool.ac.uk
Fax: +44-151-795-4410

Abbreviations: API, application programming interface; CV,
controlled vocabulary; PSI, Proteomics Standards Initiative; XML,
Extensible Markup Language

Four quantitative proteomics techniques are currently
supported in mzQuantML version 1.0: (i) intensity-based
(MS1) label free, (ii) MS1 label-based (such as SILAC or
N15), (iii) MS2 tag-based (iTRAQ or tandem mass tag),
and (iv) spectral counting. A review on software support
for quantitative proteomics can be found in [6]. All the
latest example files can be found in http://code.google
.com/p/mzquantml/source/browse/#svn/trunk/examples/
version1.0. The support for SRM is in progress and will be
soon submitted as an update to the current specifications.
Each of these techniques is represented using the same
core mzQuantML structures, but the types of structures that
must be used for each technique are governed by a set of
“semantic rules.” The semantic rules are written in natural
language and define the elements that MUST, SHOULD, or
MAY appear in the file for each technique along with some
conditions.

The jmzQuantML application programming interface
(API) is developed by following a similar design as jmzML [7]
and jmzIdentML [8]. It is developed in Java, thus making
it platform independent, using open source frameworks
such as Java architecture for XML binding (JAXB), Maven 2,
Log4j, and JUnit. The API is copyrighted under the Apache
Software License 2.0 (http://www.apache.org/licenses/
LICENSE-2.0.html). The two recommended ways for using
jmzQuantML are by downloading the Java Archive (JAR) file
and manually importing the JAR into a new Java project,
or by exploiting Maven’s dependency mechanism (details

C© 2014 The Authors. Proteomics published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.

http://code.google.com/p/jmzquantml/
http://code.google.com/p/mzquantml-validator/
http://code.google.com/p/mzquantml/source/browse/#svn/trunk/examples/version1.0
http://code.google.com/p/mzquantml/source/browse/#svn/trunk/examples/version1.0
http://code.google.com/p/mzquantml/source/browse/#svn/trunk/examples/version1.0
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://creativecommons.org/licenses/by/3.0/


686 D. Qi et al. Proteomics 2014, 14, 685–688

Figure 1. Diagram of the steps
for marshalling and unmar-
shalling mzQuantML files us-
ing the jmzQuantML API, 250 ×
129 mm (300 × 300 DPI).

can be found in http://code.google.com/p/jmzquantml/).
Full Java documentation of the API is available from http://
jmzquantml.googlecode.com/svn/trunk/src/docs/api/index.
html.

Proteomic data represented in mzQuantML can produce
large files, since the format is able to capture quantita-
tive data about proteins or protein groups, peptides, and
features (regions of 2D LC-MS space), as well as all ref-
erences between these elements to ensure a full trace of
the steps performed by analysis software is retrievable.
As such, if software packages attempted to load complete
mzQuantML files into memory, they would run into mem-
ory overload problems. A technique called the xxIndex
(http://code.google.com/p/pride-toolsuite/wiki/XXIndex) is
employed in jmzQuantML to allow random access to any
XML element in an mzQuantML file via its XPath (the hierar-
chy and location of an element within an XML file). With this
technique, which is also used in jmzML and jmzIdentML,
jmzQuantML API can extract individual elements via the
xxIndexer (an index recording both start and end byte posi-
tions of each element) from large files stored on disk quickly,
and use a low memory overhead. The same technique can
also be used to build large files.

Reference resolving is another important feature of the
API. Many elements within mzQuantML files contain refer-
ences to other objects via a unique identifier. The handling
of references within jmzQuantML is controlled by a config-
uration file. The initial stages of reference resolving are per-
formed at the same time when the xxIndexer scans the file
for creating the XPath-based index. Depending on the user
preference stored in the configuration file, the API decides
whether to resolve a reference by creating a full Java object
of the referenced element (called autoRefResolving), or store
only the unique (String) identifier of the referenced element
(called idMapped). There is a default configuration file in the
API where the reference resolving is enabled for all the objects
by default. It may be desirable for memory saving purpose

to turn off the reference resolving mechanism for elements
expected to contain a large number of references to another
object, such as <PeptideConsensus> elements (representing
peptides quantified across replicates) referencing <Feature>
elements (representing 2D regions of LC-MS space that have
been quantified).

We have generated some example code to demonstrate
how to use jmzQuantML for marshalling and unmarshalling
mzQuantML files, which is available from http://code
.google.com/p/jmzquantml/w/list. The API implements
two main functions for mzQuantML files: marshalling and
unmarshalling. Marshalling is the process of writing Java
objects as XML fragments to an mzQuantML file stored on
the disk, whereas unmarshalling is the reverse—reading
XML fragments from an mzQuantML file into memory
as Java objects. These functions are provided as two main
classes: MzQuantMLMarshaller and MzQuantMLUn-
marshaller. These classes provide more than one way of
performing marshalling and unmarshalling operations in
order to give more flexibility to users. Figure 1 illustrates the
work-flow of marshalling and unmarshalling. Marshalling
an mzQuantML object to a file is more straightforward
than unmarshalling. The user first creates an MzQuantML-
Marshaller object, then must follow one of two different
paths: via the MzQuantML object (Path A in the Marshall
flowchart in Fig. 1) or FileWriter (Path B in Fig. 1). Path
A requires the user to create an empty MzQuantML object
as the root element to which all other element objects are
attached. The element objects are generated by the JAXB
compiler directly from the mzQuantML schema definition
file. Each element object provides setter and getter methods
for populating data into correct and valid attribute types.
The relationship between the mzQuantML elements and the
Java objects is illustrated in Fig. 2. All the required element
objects are added to the root object before marshalling the
whole object to an mzQuantML file. This method is only
recommended for marshalling small files, as the entire object

C© 2014 The Authors. Proteomics published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com

http://code.google.com/p/jmzquantml/
http://jmzquantml.googlecode.com/svn/trunk/src/docs/api/index.html
http://jmzquantml.googlecode.com/svn/trunk/src/docs/api/index.html
http://jmzquantml.googlecode.com/svn/trunk/src/docs/api/index.html
http://code.google.com/p/pride-toolsuite/wiki/XXIndex
http://code.google.com/p/jmzquantml/w/list
http://code.google.com/p/jmzquantml/w/list


Proteomics 2014, 14, 685–688 687

Figure 2. An example illustrating the relationship between the <ProteinList> element in the XML Schema Definition and the ProteinList
object class in jmzQuantML, 99 × 70 mm (600 × 600 DPI).

tree becomes loaded into memory. For large file, API users
are recommended to follow the FileWriter method (Path B).
By using a FileWriter, no memory issues occur and files of
almost any size can be produced. The marshalling process in
Path B functions via writing each required blocks of elements
direct to file, for example the process starts by writing a start
tag (MzQuantMLMarshaller.createMzQuantMLStartTag)
and finishes by writing closing tag (MzQuantMLMar-
shaller.createMzQuantMLClosingTag). This method for
file writing requires API users to be aware of the order of
elements that must be written to create a valid mzQuantML
file. The recommended order can be found inspecting
the mzQuantML XML Schema. For jmzQuantML users
following Path A, the order of element writing is not
important.

The unmarshalling workflow is shown in left panel
of Fig. 1. An MzQuantMLUnmarshaller object must be
created to read from the given file. The class equips the
user with some useful functions to explore an mzQuantML
file (e.g. getMzQuantMLId, getMzQuantMLName, and
getMzQuantMLVersion). The unmarshal method can
be invoked from one of three parameter types: (i) via
a named object type within the MzQuantMLElement

class (e.g. MzQuantMLElement.AuditCollection), an
XPath string describing the location of the element
in the file (e.g. /MzQuantML/AnalysisSummary),
or the class name of an element object (e.g.
uk.ac.liv.jmzqml.model.mzqml.CvList.class), and it re-
turns a Java object wrapping the element type and attributes
from the values in the file. For objects that appear in multiple
occurrences in a file, jmzQuantML provides a method
(unmarshalCollectionFromXpath) for retrieving a list of
objects that can be iterated over. Through any of these
options, jmzQuantML processes the data in the file, return-
ing Java objects to the user of the API for onward processing
in the local application.

Although mzQuantML version 1.0 has only been a PSI
standard since March 2013, there are already several software
packages supporting the format, which use jmzQuantML in-
ternally, such as ProteoSuite (http://www.proteosuite.org/),
x-Tracker (http://www.x-tracker.info/) and the Progenesis
Post-Processor [9]. A tutorial describing how to develop soft-
ware using PSI standards can be found in [10].

There is no guarantee that an mzQuantML file created by
the jmzQuantML API is semantically valid, as the schema is
designed with flexibility and future extensibility in mind and

C© 2014 The Authors. Proteomics published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com

http://www.proteosuite.org/
http://www.x-tracker.info/


688 D. Qi et al. Proteomics 2014, 14, 685–688

mzQuantML requires multilevel validation, which is outside
the scope of a typical API. Specifically, as part of the formal
mzQuantML standard, we require formal validation software
to check three levels of validation: (i) a file is valid against the
XML Schema, (ii) correct CV terms are used in the correct
locations of the file, and (iii) the semantic rules are correctly
fulfilled.

As an example of the CV validation requirement, the
<AnalysisSummary> element in each file must contain
a CV term specifying the quantitative technique used for
the experiment, e.g. “LC-MS label-free quantitation analysis”
(MS:1001834) or “MS1 label-based analysis” (MS:1002018).
These CV mapping rules are captured in an XML file as a
formal part of the standard, defining which CV terms MUST,
SHOULD, or MAY be present at each location in the file that
has the potential to be parameterized. As an example of a se-
mantic rule—for an MS2 tagging-style file (e.g. iTRAQ data)—
“If PeptideConsensusList is present there MUST be a Fea-
tureList present and there MUST be an MS2AssayQuantlayer
present.” The rule states the general mzQuantML structures
that must be present in an iTRAQ-style file and if they are
absent a fatal error will result.

We have developed an mzQuantML validator (http://code
.cgoogle.om/p/mzquantml-validator/) to ensure that soft-
ware packages export data in a consistent way. The validator
checks if an mzQuantML file is syntactically and semanti-
cally valid and has used appropriate CV terms. The validator
is implemented using jmzQuantML and the PSI validator
framework [11]. The validator comes with a basic graphical
interface, as it is intended as a tool for developers rather
than laboratory scientists. When a user loads a file, the val-
idator will process the file against the different rules, and
export messages at different levels of severity. Since XML
schema validation (using any known method) can be slow
for very large mzQuantML files, the validator allows the user
to skip schema validation and process semantic validation
rules only if desired. We have tested the validator with file
sizes up to 150 MB, which takes approximately 1 min on a
standard desktop PC without schema validation and several
hours with schema validation. The validator is particularly
relevant for software developers adding mzQuantML export
capabilities to data analysis software; since the mzQuantML
specifications are large and complex and without robust val-
idation software, there is a danger of producing invalid files.
We also produced valid and invalid test files in our repository
for users to test. The header of each file contains informa-
tion about the expected errors. We encourage users to try the
validator on these files and see how the validator reports the
errors encountered.

We present two Java-based open source resources, named
the jmzQuantML API and the mzQuantML validator, to sup-
port the new mzQuantML standard from the HUPO-PSI. The
jmzQuantML API follows the successful design pattern em-
ployed in APIs for other PSI standards that are now in com-
mon use in a variety of software toolkits, enabling rapid devel-
opment of import and export capabilities. The mzQuantML

validator will be an essential resource for all developers wish-
ing to add mzQuantML export capabilities to their software
packages.

This work was funded by BBSRC grants to A.R.J.
(BB/I00095X/1, BB/H024654/1, and BB/K004123/1) and the
EU FP7 project “ProteomeXchange” (grant number 260558). We
also thank the help from Jun Fan, Gerhard Mayer, and Faviel
Gonzalez for testing the API and reporting bugs.

The authors have declared no conflict of interest.

References

[1] Martens, L., Chambers, M., Sturm, M., Kessner, D. et al.,
mzML—a community standard for mass spectrometry data.
Mol. Cell. Proteomics 2011, 10, R110.000133.

[2] Jones, A. R., Eisenacher, M., Mayer, G., Kohlbacher, O.
et al., The mzIdentML data standard for mass spectrometry-
based proteomics results. Mol. Cell. Proteomics 2012, 11,
M111.014381.

[3] Deutsch, E. W., Chambers, M., Neumann, S., Levander, F.
et al., TraML–a standard format for exchange of selected
reaction monitoring transition lists. Mol. Cell. Proteomics
2012, 11, R111 015040.

[4] Walzer, M., Qi, D., Mayer, G., Uszkoreit, J. et al., The
mzQuantML data standard for mass spectrometry-based
quantitative studies in proteomics. Mol. Cell. Proteomics
2013, 12, 2332–2340.

[5] Mayer, G., Montecchi-Palazzi, L., Ovelleiro, D., Jones, A. R.
et al., The HUPO proteomics standards initiative- mass
spectrometry controlled vocabulary. Database 2013, 2013,
bat009.

[6] Gonzalez-Galarza, F. F., Lawless, C., Hubbard, S. J., Fan, J.
et al., A critical appraisal of techniques, software packages,
and standards for quantitative proteomic analysis. Omics
2012, 16, 431–442.

[7] Cote, R. G., Reisinger, F., Martens, L., jmzML, an open-source
Java API for mzML, the PSI standard for MS data. Proteomics
2010, 10, 1332–1335.

[8] Reisinger, F., Krishna, R., Ghali, F., Rios, D. et al., jmzIdentML
API: a Java interface to the mzIdentML standard for pep-
tide and protein identification data. Proteomics 2012, 12,
790–794.

[9] Qi, D., Brownridge, P., Xia, D., Mackay, K. et al., A software
toolkit and interface for performing stable isotope label-
ing and top3 quantification using Progenesis LC-MS. Omics
2012, 16, 489–495.

[10] Gonzalez-Galarza, F. F., Qi, D., Fan, J., Bessant, C., Jones,
A. R., A tutorial for software development in quantitative
proteomics using PSI standard formats. Biochimica et Bio-
physica Acta 2014, 1844, 88–97.

[11] Montecchi-Palazzi, L., Kerrien, S., Reisinger, F., Aranda, B.
et al., The PSI semantic validator: a framework to check
MIAPE compliance of proteomics data. Proteomics 2009, 9,
5112–5119.

C© 2014 The Authors. Proteomics published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com

http://code.google.com/p/mzquantml-validator/
http://code.google.com/p/mzquantml-validator/

