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Abstract: Currently, little is known about the genetic background of restrictive cardiomyopathy
(RCM). Herein, we screened an index patient with RCM in combination with atrial fibrillation
using a next generation sequencing (NGS) approach and identified the heterozygous mutation
DES-c.735G>C. As DES-c.735G>C affects the last base pair of exon-3, it is unknown whether putative
missense or splice site mutations are caused. Therefore, we applied nanopore amplicon sequencing
revealing the expression of a transcript without exon-3 in the explanted myocardial tissue of the index
patient. Western blot analysis verified this finding at the protein level. In addition, we performed
cell culture experiments revealing an abnormal cytoplasmic aggregation of the truncated desmin
form (p.D214-E245del) but not of the missense variant (p.E245D). In conclusion, we show that
DES-c.735G>C causes a splicing defect leading to exon-3 skipping of the DES gene. DES-c.735G>C
can be classified as a pathogenic mutation associated with RCM and atrial fibrillation. In the future,
this finding might have relevance for the genetic understanding of similar cases.

Keywords: restrictive cardiomyopathy; skeletal myopathy; desmin; intermediate filaments; desmosomes;
cardiovascular genetics

1. Introduction

Desmin, encoded by the DES gene, is the major specific intermediate filament (IF)
protein. Mutations in DES cause different cardiac and skeletal myopathies [1,2] or combi-
nations of both [3]. Although the exact incidence of pathogenic DES mutations is unknown,
desminopathy is a rare disease with an estimated incidence of less than 1 in 2000 [4].
Desmin consists of an α-helical rod domain flanked by non-helical head and tail domains.
It forms coiled-coil dimers, which anneal antiparallel into tetramers [5]. Eight antiparallel
tetramers form unit-length filaments (ULFs), which are the essential building blocks of
intermediate filaments [4].

Desmin filaments connect different cell organelles and multi-protein complexes, like
the cardiac desmosomes, costameres, and Z-bands, and are, therefore, highly relevant for
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the structural integrity of cardiomyocytes [6]. The majority of known pathogenic DES
mutations are missense mutations or small in-frame deletions that potentially change the
physical properties of desmin [4,7,8]. Since prolines destabilize α-helices, many pathogenic
DES missense mutations leading to an exchange against proline have been described [9].
DES mutations interfere at different stages within the filament assembly process leading to
an abnormal cytoplasmic desmin aggregation [10]. Heterozygous splice site mutations or
other loss of function mutations in the DES gene are rare [11,12].

Herein, we describe an index patient with a heterozygous in-frame exon skipping
desminopathy who developed severe restrictive cardiomyopathy (RCM) in combination
with atrial fibrillation and, finally, underwent heart transplantation (HTx). The majority of
RCM associated mutations have been described in genes encoding sarcomeric proteins, like
cardiac troponins or filamin-C [13–17]. Since several different genes are associated with
RCM, we performed NGS analysis revealing the heterozygous DES-c.735G>C mutation,
which is most likely disease causing within the described family. Several other family
members were affected by skeletal or cardiac myopathies. DES-c.735G>C might cause the
exchange of glutamate against aspartate at position 245 (p.E245D).

However, the mutant nucleotide is the last one of exon-3. Previously, Clemen et al.
demonstrated in skeletal muscle tissue that in addition to the missense exchange (p.E245D)
an exon skipping is induced by this mutation [18]. This exon skipping leads to an in-frame
deletion of 96 base pairs (32 amino acids). However, the ratio of the missense and the
deletion mutations in the human heart remains unknown. Therefore, we investigated
by nanopore sequencing the myocardial expression levels of mutant and wild-type DES
transcripts. Of note, these experiments revealed skipping of the DES exon-3 but excluded
p.E245D transcripts.

Additionally, we generated expression constructs of the missense mutation and of
the in-frame deletion (p.D214-E245del) resulting from exon-3 skipping and analysed the
filament assembly in cell culture in combination with confocal microscopy revealing an
abnormal cytoplasmic aggregation of the in-frame exon deletion but not of the missense
mutation as previously described for several other DES mutations [19–21]. Immunohisto-
chemistry (IHC) confirmed likewise desmin aggregates and degraded sarcomeres in the
explanted myocardial tissue of the index patient.

In conclusion, we demonstrated by nanopore sequencing that an in-frame exon skip-
ping is caused by DES-c.735G>C leading to a filament assembly defect of the mutant
desmin, which is likely causative for RCM.

2. Materials and Methods
2.1. Clinical Description of the Index Patient (III-9)

The index patient presented decompensated right heart failure at the age of 41 years
and was admitted with edema of the legs, hepatomegaly, shortness of breath (NYHA III),
nycturia, and palpitations. Electrocardiogram (ECG) analyses revealed atrial fibrillation.
Transthoracic echocardiography (TTE) analyses revealed moderate to severe tricuspid valve
regurgitation and massive dilation of the right atrium (RA) with associated spontaneous
echo contrast. Slight dilation of the right ventricle (RV) but excluded left-ventricular (LV)
dilation (Figure 1A,B).
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catheterization (20 h after levosimendan therapy): PCWP 15 mmHg, CI 1,4 l/min/m2), the 
patient was listed for highly urgent HTx). He finally underwent orthotopic HTx at the age 
of 43. In total, the clinical presentation of III-9 is in good agreement with the diagnosis of 
RCM. 

 
Figure 1. Clinical findings in index patient III-9 with RCM and persistent atrial fibrillation. (A) 2D transthoracic echocar-
diography. Apical four chamber view. Note enlargement of both atria with relatively small ventricles. A small amount of 
pericardial effusion is also visible. (B) Transthoracic echocardiography. Apical four chamber view, PW-Doppler of the 
mitral valve inflow. (C-E) Cardiac magnetic resonance imaging of III-9. (C,D) End-diastolic cine steady-state free-preces-
sion acquisitions. (E) Early 3D inversion-recovery T1-weighted fast gradient-echo for thrombus detection. (RA = right 
atrium; LA = left atrium; RV = right ventricle; and LV = left ventricle. A wall-adherent thrombus in the RA (34 × 25 × 17 
mm) is marked with a white arrow head. Pericardial effusion (orange arrow head) was present, and pleural effusion (as-
terisk) was detected. (F,G) Immunohistology analysis of a right ventricular biopsy revealed myocardial inflammation. 
(200× magnification) (F) CD68 staining revealed increased number of macrophages. (G) CD45R0 staining revealed in-
creased number of activated T-cells. 

Figure 1. Clinical findings in index patient III-9 with RCM and persistent atrial fibrillation. (A) 2D transthoracic echocar-
diography. Apical four chamber view. Note enlargement of both atria with relatively small ventricles. A small amount
of pericardial effusion is also visible. (B) Transthoracic echocardiography. Apical four chamber view, PW-Doppler
of the mitral valve inflow. (C–E) Cardiac magnetic resonance imaging of III-9. (C,D) End-diastolic cine steady-state
free-precession acquisitions. (E) Early 3D inversion-recovery T1-weighted fast gradient-echo for thrombus detection.
(RA = right atrium; LA = left atrium; RV = right ventricle; and LV = left ventricle. A wall-adherent thrombus in the RA
(34 × 25 × 17 mm) is marked with a white arrow head. Pericardial effusion (orange arrow head) was present, and pleural
effusion (asterisk) was detected. (F,G) Immunohistology analysis of a right ventricular biopsy revealed myocardial inflam-
mation. (200×magnification) (F) CD68 staining revealed increased number of macrophages. (G) CD45R0 staining revealed
increased number of activated T-cells.

While systolic left-ventricular ejection fraction (LVEF) was preserved mitral inflow
signal analysis revealed severe diastolic dysfunction. In addition, a wall-adherent thrombus
in the RA was diagnosed. Cardiac magnetic resonance imaging (MRI) verified intense
dilation of the RA (end-diastolic area about 60 cm2) and moderate dilation of the LA
(end-diastolic area 34 cm2) (Figure 1C–E and Supplementary Material Video S1).
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The LV diameters were normal (LV-EDD 39 mm and LV-ESD 26 mm) and the RV
diameters were slightly increased (RV-EDD 35 mm and RV-ESD 22 mm RV myocardial
biopsies revealed an increased number (>7 cells/mm2) of activated T-cells (CD45R0) and
macrophages (CD68) indicating myocardial inflammation (Figure 1F,G) [22]. Due to pro-
gressive clinical worsening (Ergospirometry: VO2max 9.81 mL/kgKG/min; right-heart
catheterization (20 h after levosimendan therapy): PCWP 15 mmHg, CI 1.4 L/min/m2),
the patient was listed for highly urgent HTx). He finally underwent orthotopic HTx at the
age of 43. In total, the clinical presentation of III-9 is in good agreement with the diagnosis
of RCM.

2.2. Genetic Analyses

The family anamnesis of the index patient (III-9, Figure 2) revealed five further family
members with skeletal and/or cardiac myopathies. His father (II-5) was deceased by an
unclassified cardiomyopathy, and two uncles (II-1 and II-3) and a cousin (III-5) developed
skeletal myopathy. Of note, II-1 additionally developed cardiomyopathy and underwent
HTx. Furthermore, the grandmother (I-2) developed an unspecified cardiomyopathy.
Detailed clinical data of the affected family members were not available.
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Figure 2. Pedigree of the described family. Circles represent females, squares represent males, and rhombs represent
unknown gender. Black-filled symbols indicate a cardiac or skeletal muscle phenotype. Diagonal slashes indicate deceased
people. The index patient (III-9) is marked with an arrow and carries DES-c.735G>C. CM = Cardiomyopathy; HTx = Heart
transplantation; SM = Skeletal myopathy; and RCM = Restrictive cardiomyopathy.

After identification of significant family history of skeletal and cardiac myopathies,
we applied the TrueSight Cardio NGS panel (Illumina, San Diego, CA, USA) covering the
most likely cardiomyopathy associated genes (see the Appendix A for a complete gene list)
to investigate the putative underlying mutations in the index patient (III-9). The MiSeq
system (Illumina) was used for NGS. No genomic DNA was available from further family
members to perform co-segregation analysis within the family. A minor allele frequency
(MAF) < 0.001 was used for filtering of identified sequence variants. Sanger sequencing
was used to verify DES-c.735G>C using appropriate primers (Table 1).
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Table 1. Overview of the used oligonucleotides 1.

Name Sequence (5′-3′) Application

DES_3F GGAAGAAGCAGAGAACAATTTGGC Sanger sequencing

DES_3R ACCTGGACCTGCTGTTCCTG Sanger sequencing

oligo(dT)18 TTTTTTTTTTTTTTTTTT Reverse transcription

DES_for ATGAGCCAGGCCTACTCGTC RT-PCR

DES_rev GAGCACTTCATGCTGCTGCTG RT-PCR

DES_E245D_for TAAGAAAGTGCATGAAGACGAGATCCGTGAGTTGCAG SDM

DES_E245D_rev CTGCAACTCACGGATCTCGTCTTCATGCACTTTCTTA SDM

DES_E3_Del_for GCTGCCTTCCGAGCGGAGATCCGTGAGTTG SDM

DES_E3_Del_rev CAACTCACGGATCTCCGCTCGGAAGGCAGC SDM
1 All oligonucleotides were purchased from Microsynth (Balgach, Switzerland). RT-PCR = reverse transcription polymerase chain reaction,
and SDM = site directed mutagenesis.

2.3. Reverse Transcription Polymerase Chain Reaction

The total RNA was extracted from about 30 mg myocardial tissue from the index pa-
tient (III-9) and a rejected donor heart (non-failing, NF) using the RNeasy Mini Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions. We transcribed 1.2 µg
total RNA into cDNA using SuperScript II reverse transcriptase (Thermo Fisher Scientific,
Waltham, MA, USA) in combination with oligo(dT)18 primers (Table 1) according to the
manufacturer’s instructions. Reverse transcription polymerase chain reaction (RT-PCR)
was performed using the appropriate primers (Table 1, 1 µM), Phusion DNA polymerase,
and HF buffer (Thermo Fisher Scientific). The annealing temperature was 60 ◦C, and
35 cycles were used for PCR amplification. The full-length PCR products were purified
with the GeneJET Gel Extraction Kit (Thermo Fisher Scientific) and were processed to
nanopore sequencing.

2.4. Amplicon Nanopore Sequencing

DES cDNA was sequenced using the SQK-LSK109 kit on a GridION with 9.4.1. flow-
cells (Oxford Nanopore Technologies, Cambridge, UK). Base calling was carried out with
guppy v5.0.11 and the super-accurate base call model. Fastq data was adapter trimmed
using porechop v0.2.4 (https://github.com/rrwick/Porechop, accessed on 28 July 2021)
and mapped on the human reference genome hg38 using minimap2 v2.10-r761 with the -x
splice parameter [23].

Alignment sorting and bam conversion was carried out using samtools v1.11. Isoform
analysis was carried out using FLAIR v1.5.1. with the align, correct, collapse, and quantify
steps [24]. Isoforms with less than 1% of reads supported were discarded.

2.5. Immunohistochemistry

Explanted septal, left-, and right–ventricular myocardial tissue was fixed in 4% Roti
Histofix (Carl Roth, Karlsruhe, Germany) and was embedded in paraffin. We prepared
5 µm sections using a microtome (Leica, Wetzlar, Germany) that were deparaffinized using
xylene and ethanol as described [25]. Bovine serum albumin (5% in phosphate buffered
saline, PBS) was used for blocking (30 min, room temperature). Polyclonal goat anti-desmin
antibodies (15 µg/mL, #AF3844, R&D Systems, Minneapolis, MN, USA) were used in
combination with secondary anti-goat antibodies conjugated to Cy3 (1:100, #C2821, Sigma-
Aldrich, St. Louis, MO, USA) for desmin labelling. We used 4′,6-diamidino-2-phenylindole
(DAPI, 1 µg/mL) for nuclei staining (5 min, RT). Myocardial tissue was embedded using
Fluorescent Mounting Medium (Dako, Glostrup, Denmark). Confocal microscopy was
performed as previously described [26].

https://github.com/rrwick/Porechop
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2.6. Plasmid Generation

The plasmid pEYFP-N1-DES was previously described [27]. The QuikChange Light-
ning Site-Directed Mutagenesis (SDM) Kit was used according to the manufacturer’s in-
struction to insert the missense variant DES-p.E245D and the deletion DES-p.D214-E245del
into this plasmid using appropriate oligonucleotides (Table 1). The DES encoding sequences
of all three plasmids were verified using Sanger sequencing (Macrogen, Amsterdam,
The Netherlands). For details, see the Figure S1 in the Supplementary Materials.

2.7. Cell Culture and Confocal Microscopy

The cell line SW13 does not express any cytoplasmic IF proteins and is, therefore,
frequently used to investigate the effects of DES mutations [28]. SW13 cells were cultured
in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% fetal calf serum
and penicilline/streptomycine under standard conditions (37 ◦C, 5% CO2). Cells were
cultured in µSlide chambers (ibidi, Martinsried, Germany) and were transfected using
Lipofectamin 3000 according to the manufacturer’s instruction (Thermo Fisher Scientific).
After 24 h of transfection, the cells were washed with PBS and fixed for 10 min with 4%
Roti Histofix (Carl Roth, Karlsruhe, Germany) at RT.

Afterwards, the cells were washed gently with PBS and were incubated with 0.1%
Triton-X-100 for 15 min at RT. Phalloidin conjugated with Texas-Red-X (1:40, # T7471,
Thermo Fisher Scientific) and DAPI (1 µg/mL) were used for the costaining of F-actin and
the nuclei. Confocal microscopy was performed as described [29]. Approximately 100 cells
were analyzed in each transfection experiment (n = 4).

2.8. Western Blot Analysis

About 50 mg left-ventricular myocardial tissue from a control sample (NF) and the
index patient III-9 were homogenized and lysed in RIPA lysis buffer [30] supplemented
with proteinase inhibitors. Protein concentrations were determined using the Pierce 660 nm
Protein Assay (Thermo Fisher Scientific) in combination with the Infinite M1000 plate
reader (Tecan, Männedorf, Switzerland). Western blot analysis was performed using
chemiluminescence measurement as previously described [27].

2.9. Statistical Analysis

About 100 cells per independent transfection experiment (n = 4) were analyzed by
counting the percentage of aggregate forming cells. A non-parametric Mann–Whitney
test was used for analysis using GraphPad Prism 8.3 (GraphPad Software, San Diego, CA,
USA). p-values ≤ 0.05 were considered as significant.

3. Results

The index patient (III-9, Figure 2) developed severe RCM and received HTx at the
age of 43. Family anamnesis revealed five further family members (I-2, II-1, II-3, II-5,
and III-5, Figure 1) affected by cardiomyopathy and/or skeletal myopathy indicating an
autosomal-dominant mode of inheritance.

We performed a genetic analysis using a broad NGS gene panel revealing heterozygous
DES-c.735G>C as the most likely pathogenic variant. The MAFs of all other identified
variants were higher than the estimated prevalence of RCM. Interestingly, DES-c.735G>C
changes the last base pair of DES exon-3 (Figure 3A). Sanger sequencing confirmed the
presence of this DES mutation (Figure 3B).
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nopore sequencing to identify the myocardial DES transcripts in the index patient. In ad-
dition to the wild-type form, additional transcripts without the DES exon-3 were found in 
the patient sample but not in the non-failing control sample (Figure 4). Notably, we were 
unable to detect significant transcripts leading to the amino acid exchange p.E245D indi-
cating that exon-3 skipping is the underlying pathomechanism. 

 
Figure 4. (A) Schematic overview of the DES gene. Arrow heads indicate the localization of the oligonucleotides used for 
amplification. Exons 1−9 are shown as blue boxes. Amplicon analysis of a control sample (B) and of the index patient III-
9 (C). In addition to the regular transcript (NM_001927.4), a transcript missing exon-3 was found in III-9 (red arrow) but 

Figure 3. Genetic analysis of the index patient (III-9). (A) Integrated genome view of DES exon-3
revealed DES-c.735G>C in the gDNA from III-9 (red arrow). Cytosine was detected in 291 reads
(53%, 131+, 160−), and guanosine was detected in 258 reads (47%, 119+. 139−). Reads are shown in
grey. (B) Electropherogram of DES-c.735G>C generated by Sanger sequencing using gDNA from
III-9 (red arrow). Of note, this missense mutation changes the last nucleotide in exon-3.

Since the affected last base pair of exon-3 is part of a relatively conserved splice site, it
is possible that this mutation causes a splicing defect (p.D214-E245del) and/or an amino
acid exchange (p.E245D). To address this issue, we used RT-PCR in combination with
nanopore sequencing to identify the myocardial DES transcripts in the index patient. In
addition to the wild-type form, additional transcripts without the DES exon-3 were found
in the patient sample but not in the non-failing control sample (Figure 4). Notably, we
were unable to detect significant transcripts leading to the amino acid exchange p.E245D
indicating that exon-3 skipping is the underlying pathomechanism.

To verify the results of the nanopore sequencing at the protein level, we performed
western blotting (Figure 5). The skipping of exon-3 causes an in-frame deletion leading to a
truncated protein (p.D214-E245del). Accordingly, we detected, in addition to the wild-type
desmin (~55 kDa), a second smaller band (~50 kDa) using left-ventricular myocardial tissue
from the index patient III-9 but not in case of the control sample (Figure 5).
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Figure 4. (A) Schematic overview of the DES gene. Arrow heads indicate the localization of the oligonucleotides used for
amplification. Exons 1−9 are shown as blue boxes. Amplicon analysis of a control sample (B) and of the index patient III-9
(C). In addition to the regular transcript (NM_001927.4), a transcript missing exon-3 was found in III-9 (red arrow) but not
in the control sample. Of note, transcripts encoding the missense variant p.E245D were absent in both samples indicating
that DES-c.735G>C causes an in-frame exon skipping but not a missense variant in the myocardial tissue from the index
patient III-9 (A:44; C:44; G:7523; T:8).
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Figure 5. Western blotting analysis using myocardial tissue from a control sample (NF) and the index
patient III-9. Of note, in the case of the index patient, two bands were observed, which correspond to
wild-type desmin (black arrow head) and desmin-p.D214-E245del (red arrow head).

In the next step, we introduced p.E245D and p.D214-E245del into expression plas-
mids (Supplementary Materials) and performed transfection experiments in SW13 cells,
which do not express any cytoplasmic intermediate filament proteins. Analyses using
confocal microscopy revealed for wild-type and p.E245D intermediate filaments, whereas
the expression of desmin-p.D214-E245del induced an abnormal cytoplasmic aggregation
indicating a severe filament assembly defect (Figure 6A). Quantification revealed that
all cells expressing mutant desmin-p.D214-E245del were positive for these cytoplasmic
aggregates (Figure 6B).
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In addition, we performed IHC analyses using explanted tissue from all three myo-
cardial layers revealing sarcomeric structures with irregular desmin signals as well as des-
min positive aggregates in the heart of the index patient (III-9). Notably, desmin staining 
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aggregation (white arrows), whereas wild-type and desmin-p.E245D form intermediate filaments (green arrows). Desmin is
expressed as a fusion protein with EYFP (shown in green). F-actin is stained using phalloidin conjugated with Texas-Red
(red) and nuclei are stained using DAPI (shown in blue). Scale bars represent 10 µm. (B) Quantification of desmin aggregate
formation in transfected cells. About 100 cells have been analyzed per transfection experiment (n = 4). Error bars represent
SD. Non-parametric Mann–Whitney-U-test was used for statistical analysis. n.s. = not significant; * indicate p-values < 0.05.

In addition, we performed IHC analyses using explanted tissue from all three myocar-
dial layers revealing sarcomeric structures with irregular desmin signals as well as desmin
positive aggregates in the heart of the index patient (III-9). Notably, desmin staining at the
intercalated disc was not observed in the myocardial tissue from III-9 (Figure 7).
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Figure 7. Immunohistochemistry analysis of explanted myocardial tissue from the index pa-
tient III-9. LV = left ventricular myocardial tissue; RV = right ventricular myocardial tissue; and
S = septal myocardial tissue. Scale bars represent 50 µm. Desmin is shown in red. Nuclei were
stained using DAPI and are shown in blue. Of note, desmin-positive aggregates were present in
all three layers (white arrows). In addition, desmin-negative areas were present (yellow arrows)
representing fibroblast or other non-cardiomyocyte cell types.
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4. Discussion

DES mutations cause a broad spectrum of myopathies and different cardiomyopathies [31],
including RCM [1,32–34]. Most of these DES mutations cause single amino acid exchanges,
which interfere with desmin filament assembly at different molecular stages [10,28]. In this
study, using an NGS approach, we identified the desmin mutation DES-c.735G>C in an
index patient from a family, in which several members developed skeletal myopathies or
cardiomyopathies.

Since we do not have gDNA from further family members, we were unable to perform
a co-segregation analysis of DES-c.735G>C in the family. However, DES-c.735G>C is
absent in the Genome Aggregation Database (gnomAD, https://gnomad.broadinstitute.
org/, 6 August 2021) and in the NHLBI GO Exome Sequencing Project (https://evs.gs.
washington.edu/, 6 August 2021). According to the guidelines of the American College of
Medical Genetics and Genomics (ACMG) absence from controls is a moderate criterion for
pathogenicity (PM2, ACMG guidelines) [35].

Notably, this mutation has been previously classified as a pathogenic variant found in
patients with RCM in combination with atrial fibrillation [36], patients with distal myopathy
in combination with cardiac conduction disease [18,37], or in patients with hypertrophic
cardiomyopathy (HCM) in combination with cardiac conduction disease [38]. Classifying
genetic mutations as ‘pathogenic’ in the literature without independent evaluation is a
supportive criterion (PP5, ACMG guidelines). DES-c.735G>C is changing the last base
pair of exon-3. Therefore, a damaging effect arising from a putative missense mutation
(p.E245D) or a splice defect might be causative.

Previously, Clemen et al. performed RT-PCR in combination with cloning and
Sanger sequencing and revealed the expression of both mutant forms (p.E245D and
p.D214-E245del) in the skeletal muscle of their patients [18]. However, whether the
DES-c.735G>C mutation also leads to the expression of both mutant desmin species in the
myocardial tissue is unknown. Therefore, we performed full length RT-PCR in combination
with nanopore amplicon sequencing.

As expected due to the heterozygous status of the index patient III-9, these experi-
ments revealed the expression of the wild-type form as well as of DES-r.640-735del. How-
ever, transcripts encoding for DES-p.E245D have not been found in significant quantity.
These experiments indicate that the truncated desmin caused by skipping of exon-3 is the
pathogenic desmin species in the myocardial tissue. To verify these findings, we performed
western blotting corroborating the expression of desmin-p.D214-E245del at the protein
level. Changes in the protein length due to in-frame deletions are a moderate criterion for
pathogenicity (PM4, ACMG guidelines) [35].

Most of the pathogenic DES mutations cause an abnormal cytoplasmic desmin ag-
gregation [27,39]. Therefore, we inserted DES-p.D214-E245del and DES-p.E245D into
expression plasmids and analyzed the filament assembly in transfected SW13 cells. These
experiments revealed an abnormal cytoplasmic desmin aggregation of the truncated form
but not of the missense mutation p.E245D when compared to wild-type desmin. Previously,
Bär et al. showed that desmin-p.E245D forms regular intermediate filaments in transfected
SW13 cells and does not interfere significantly with filament assembly using recombinant
mutant desmin [10].

According to our cell culture experiments, we have found typical desmin-positive
aggregates also in the explanted myocardial tissue of III-9. In general, functional studies
are a strong criterion (PS3, ACMG guidelines) for pathogenicity according to the ACMG
guidelines [35]. Therefore, DES-c.735G>C fulfills this criterion, as we have shown that
the truncated desmin-p.D214-E245del causes an abnormal cytoplasmic aggregation as
previously described for several other pathogenic DES mutations. In addition, this mu-
tation is localized in the rod domain of desmin, which is a hot spot for pathogenic DES
mutations [31], which is a moderate criterion (PM1, ACMG guidelines) for pathogenicity.
Interestingly, several other pathogenic mutations affecting the donor splice-site of DES
exon-3 have been previously described [40–43].

https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
https://evs.gs.washington.edu/
https://evs.gs.washington.edu/
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In summary, we have shown here that DES-c.735G>C causes a splicing defect in
cardiac muscle leading to skipping of exon-3 and the expression of truncated desmin-
p.D214-E245del, which is unable to form regular intermediate filaments in transfected cells.
DES-c.735G>C fulfills one strong (PS3), one supportive (PP5), and three moderate criteria
(PM1, PM2, and PM4) for its pathogenicity classification. In consequence, DES-c.735G>C
has to be classified according to the ACMG guidelines as a pathogenic mutation associated
with RCM.

5. Conclusions

By using an NGS approach, we identified the pathogenic DES-c.735G>C mutation in
a patient with RCM. Using nanopore sequencing, we demonstrated that DES-c.735G>C
causes a skipping of the third DES exon. Genetic and molecular analyses support pathogenic-
ity of the caused splice site defect rather than a putative missense mutation p.E245D. In the
future, our genetic and functional findings might be helpful for the genetic understanding
of similar cases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biomedicines9101400/s1, Figure S1: Plasmid maps of pEYFP-N1-DES-WT/-p.E245D and
pEYFP-N1-DES-p.D214-E245del. Video S1: MRI video file.
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Appendix A

Overview about the used NGS gene panel: ABCC9, ABCG5, ABCG8, ACTA1, ACTA2,
ACTC1, ACTN2, AKAP9, ALMS1, ANK2, ANKRD1, APOA4, APOA5, APOB, APOC2,
APOE, BAG3, BRAF, CACNA1C, CACNA2D1, CACNB2, CALM1, CALR3, CASQ2, CAV3,
CBL, CBS, CETP, COL3A1, COL5A1, COL5A2, COX15, CREB3L3, CRELD1, CRYAB, CSRP3,
CTF1, DES, DMD, DNAJC19, DOLK, DPP6, DSC2, DSG2, DSP, DTNA, EFEMP2, ELN,
EMD, EYA4, FBN1, FBN2, FHL1, FHL2, FKRP, FKTN, FXN, GAA, GATAD1, GCKR, GJA5,
GLA, GPD1L, GPIHBP1, HADHA, HCN4, HFE, HRAS, HSPB8, ILK, JAG1, JPH2, JUP,
KCNA5, KCND3, KCNE1, KCNE2, KCNE3, KCNH2, KCNJ2, KCNJ5, KCNJ8, KCNQ1,
KLF10, KRAS, LAMA2, LAMA4, LAMP2, LDB3, LDLR, LDLRAP1, LMF1, LMNA, LPL,
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LTBP2, MAP2K1, MAP2K2, MIB1, MURC, MYBPC3, MYH11, MYH6, MYH7, MYL2, MYL3,
MYLK, MYLK2, MYO6, MYOZ2, MYPN, NEXN, NKX2- 5, NODAL, NOTCH1, NPPA,
NRAS, PCSK9, PDLIM3, PKP2, PLN, PRDM16, PRKAG2, PRKAR1A, PTPN11, RAF1,
RANGRF, RBM20, RYR1, RYR2, SALL4, SCN1B, SCN2B, SCN3B, SCN4B, SCN5A, SCO2,
SDHA, SEPN1, SGCB, SGCD, SGCG, SHOC2, SLC25A4, SLC2A10, SMAD3, SMAD4,
SNTA1, SOS1, SREBF2, TAZ, TBX20, TBX3, TBX5, TCAP, TGFB2, TGFB3, TGFBR1, TGFBR2,
TMEM43, TMPO, TNNC1, TNNI3, TNNT2, TPM1, TRDN, TRIM63, TRPM4, TTN, TTR,
TXNRD2, VCL, ZBTB17, ZHX3, ZIC3.
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