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Abstract

Wepresent a Deep Learning framework for the prediction of chronological age from struc-

tural magnetic resonance imaging scans. Previous findings associate increased brain age

with neurodegenerative diseases and higher mortality rates. However, the importance of

brain age prediction goes beyond serving as biomarkers for neurological disorders. Specifi-

cally, utilizing convolutional neural network (CNN) analysis to identify brain regions contrib-

uting to the prediction can shed light on the complex multivariate process of brain aging.

Previouswork examinedmethods to attribute pixel/voxel-wise contributions to the predic-

tion in a single image, resulting in “explanation maps” that were found noisy and unreliable.

To address this problem, we developed an inference scheme for combining these maps

across subjects, thus creating a population-based, rather than a subject-specific map. We

applied this method to a CNN ensemble trained on predicting subjects' age from raw T1

brain images in a lifespan sample of 10,176 subjects. Evaluating themodel on an untouched

test set resulted inmean absolute error of 3.07 years and a correlation between chronolog-

ical and predicted age of r = 0.98. Using the inference method, we revealed that cavities

containing cerebrospinal fluid, previously found as general atrophymarkers, had the highest

contribution for age prediction. Comparing maps derived from different models within the

ensemble allowed to assess differences and similarities in brain regions utilized by the

model. We showed that this method substantially increased the replicability of explanation

maps, converged with results from voxel-based morphometry age studies and highlighted

brain regionswhose volumetric variability correlated themostwith the prediction error.
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1 | INTRODUCTION

The human brain undergoes complex structural changes across the

lifespan (Sowell, Thompson, & Toga, 2004). These include widespread

synaptic pruning and myelination from early life through puberty and

neurodegenerative processes, such as ventricle expansion and cortical

Tammy Riklin Raviv and Galia Avidan have contributed equally to this work.

Data used in preparation of this article were partially obtained from the Alzheimer's Disease

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) and the Australian Imaging Biomarkers

and Lifestyle flagship study of ageing (AIBL) funded by the Commonwealth Scientific and Industrial

ResearchOrganisation (CSIRO). As such, the investigators within ADNI and AIBL contributed to the

design and implementation of ADNI and AIBL and/or provided data but did not participate in

analysis or writing of this report. A complete listing of ADNI and AIBL investigators can be found at

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf and

at www.aibl.csiro.au.

Received: 11 November 2019 Revised: 27 February 2020 Accepted: 7 April 2020

DOI: 10.1002/hbm.25011

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.

Hum Brain Mapp. 2020;41:3235–3252. wileyonlinelibrary.com/journal/hbm 3235

https://orcid.org/0000-0002-5520-3556
mailto:gidonle@post.bgu.ac.il
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://www.aibl.csiro.au
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/hbm


thinning that peaks with aging. The course and extent of these

changes are not uniformly distributed across the brain (Storsve

et al., 2014). Thus, for example in healthy aging, higher atrophy rates

were reported in the hippocampus, while regions like the early visual

cortex remain relatively intact (but see Lemaitre et al., 2012). Never-

theless, studies that examined the correspondence between brain

structure and chronological age provide inconsistent findings. Such

inconsistencies may be related to the specific parcellation schemes

employed (Mikhael & Pernet, 2019), surface-based structural mea-

surements (Lemaitre et al., 2012), global volume covariates (Jäncke,

Mérillat, Liem, & Hänggi, 2015), or specific statistical assumptions

regarding the changes of brain-aging rate across lifespan (e.g., linear,

polynomial; Ziegler et al., 2012). These concerns add to discrepancies

due to the usage of relatively small samples and different statistical

procedures, which together impede the attempts to characterize the

relation between aging and structural changes in the brain.

Studying brain aging has important implications for differentiating

typical and pathological aging. Alzheimer's disease (AD), the most preva-

lent type of dementia, affects about 22% of the population over the age

of 75 (in the United States, 2010; Hebert, Weuve, Scherr, &

Evans, 2013). AD patients exhibit extensive cell loss in cortical and sub-

cortical regions, but such findings are also evident in typical aging (Barnes

et al., 2009; Ledig, Schuh, Guerrero, Heckemann, & Rueckert, 2018).

Moreover, behavioral manifestations such as cognitive decline and mem-

ory deficits that accompany AD are also apparent in aging in the absence

of AD (Cardenas et al., 2011; Koen & Yonelinas, 2014). Thus, a reliable

measure of typical brain aging may be beneficial in order to better distin-

guish between the two (Lorenzi, Pennec, Frisoni, & Ayache, 2015).

1.1 | Predicting age from structural brain imaging
using machine learning

Recent growth in data availability and advancements in the field of

machine learning (ML), applied to the analysis of structural imaging, have

allowed addressing regression problems such as brain age prediction based

on preselected sets of anatomical features or regions of interest (ROIs).

Predicting age from brain anatomy enables to estimate a measure of “brain

age” which is independent of one's chronological age. Different studies

generally reveal that an over-estimation of that measure is associated with

neurodegenerative diseases and various clinical conditions and might even

predict mortality (Cole et al., 2018). Hence, brain age estimation could be

used as a potential biomarker for brain health (Cole & Franke, 2017).While

ML methods were shown to provide a mean error of ~5 years (Cole &

Franke, 2017), age predictions are largely dependent upon the selection of

features that would be used as input to the algorithm.

1.2 | Application of deep convolutional neural
network for predicting “brain age”

Deep convolutional neural network (CNN) has enabled a major leap

in many applications including neuroimaging analysis, among others,

by learning the features, or representation from the raw data, that is,

an image or a volume (Goodfellow, Bengio, & Courville, 2016). CNNs

are biologically inspired algorithms in which the connectivity

between the different neurons implements a convolution operation.

The neurons are ordered in stacked layers in a hierarchical deep for-

mation and hence they are termed deep CNN (LeCun, Bottou,

Bengio, & Haffner, 1998). CNN-based models achieved state-of-the-

art results in serval neuroimaging tasks including cortical segmenta-

tion and tumor detection (Kamnitsas, Chen, & Ledig, 2015; Pereira,

Pinto, Alves, & Silva, 2016) and were recently applied to age predic-

tion from raw T1 magnetic resonance imaging (MRI) images (Cole

et al., 2017). Nonetheless, significant improvement can still be

achieved by substantially increasing the sample size and utilizing

practices such as prediction based on an ensemble of models. Both

of these approaches were shown to produce a remarkable improve-

ment in other visual task domains (Lee, Purushwalkam, Cogswell,

Crandall, & Batra, 2015).

1.3 | Model interpretability—Which brain regions
underlie a given prediction?

A major limitation of studies utilizing CNNs pertains to the issue of

the model interpretability. While CNNs have provided high accuracy

for age prediction (Cole & Franke, 2017; Qi, Du, Zhuang, Huang, &

Ding, 2018), it is typically difficult to identify the features that enabled

a given prediction. Several recent studies attempted to identify or

visualize intermediate representations of the CNN (Olah et al., 2018),

but still, the size and complexity of the networks make it a challenging

task. In the context of structural neuroimaging analysis, there might

be an advantage to focus on the input level since it could be directly

related to specific brain structures. Knowing which image parts, or in

the current research, brain regions or neural attributes, contribute

most to the prediction have theoretical, as well as translational value.

A possible approach to this issue is the usage of “saliency maps” or

“explanation maps” indicating the influence of each voxel in the input

volume on the model's prediction. Such a map can be generated by

calculating the partial derivative of each voxel in the input volume

with respect to the model's output (Simonyan, Vedaldi, &

Zisserman, 2013; Springenberg, Dosovitskiy, Brox, &

Riedmiller, 2014). However, local gradients in nonlinear functions such

as CNN were previously shown to be noisy. Recent work has demon-

strated that this could be partially addressed by repeatedly calculating

and averaging several explanation maps derived from the same input

after adding random noise to it (Smilkov, Thorat, Kim, Viégas, &

Wattenberg, 2017). Nevertheless, these explanation maps are typi-

cally created on a single sample, hence they provide only a subject-

specific, rather than a population-based explanation (Yang,

Rangarajan, & Ranka, 2018; but see Bermudez et al., 2019; Wang

et al., 2019). In a task or a model where large variability exists in these

explanation maps, that is, if different subject-level maps highlight dif-

ferent regions, any translational or theoretical conclusion could only

be subject-specific.
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1.4 | The current study

In light of the limitations outlined above, we aimed to examine brain

aging using a CNN model for “brain age” prediction and identify the

brain structures that supported this prediction. Therefore, this study

has two important contributions. The first is the prediction model,

which is composed of an ensemble of multiple CNNs trained to predict

individuals' age from minimally processed T1 MRI scans. The model

was trained and tested on an aggregated lifespan sample of 10,176

subjects. These were collected from several large-scale open-access

databases (n = 15) in order to produce a result that is more robust to

scanner's type, field strength, and resolution. Second, we provided and

validated a novel scheme for identifying the importance of the various

anatomical brain regions to the age prediction by aggregating multiple

subject-level explanation maps, creating a population-based map. Com-

bining subject-level maps into a population-based map is done by image

realignment after training the model, thus no special preprocessing or

architecture modification is required, as opposed to previous work (Ito

et al., 2018). We empirically show that this significantly improves the

explanation maps and allows the inference from the model back to the

brain's anatomy. Finally, we demonstrate how the usage of an ensem-

ble of CNNs which increases the prediction accuracy, also allows to

evaluate the diversity or similarity of independently trained models, to

asses model uncertainty, and to examine the extent to which different

models exploit similar brain regions for the age prediction.

2 | MATERIALS AND METHODS

2.1 | Datasets

To train a model that would be more robust to different sites and

scanning protocols, we collected a sample of 10,176 T1w MRI brain

scans of individuals ranging between 4 and 94 years old from various

open databases (n = 15), acquired at different locations, scanners, and

scanning parameters. To examine whether the trained model presents

a dataset-specific bias, that is, over or under-estimated age within a

specific set, we examined the mean signed error for each study. The

analysis was conducted within the test set and was limited for studies

with more than 15 test samples (4 excluded, 11 remained). Several

databases from longitudinal studies consist of brain scans acquired at

several time-points. For these databases, we only used scans of the

first time point to avoid data leakage between the train and valida-

tion/test sets. Three exclusion criteria were applied to all subjects:

missing age report, major artifacts in a visual inspection of the T1 vol-

ume and diagnosis of AD or another form of dementia. The complete

list of studies, age, and gender distributions are reported in Table 1.

2.2 | Data preprocessing

To minimize the model reliance on preprocessing steps such as

image realignment and registration that are both computationally

intensive and time-consuming, we designed a minimal preprocessing

procedure. To ensure that the model “brain age” estimation would

rely solely on regions within the skull, the only substantial

preprocessing step was the removal of extra-cranial regions from the

volume. Thus, the preprocessing procedure included four stages:

applying a coarse (90�) rotation so that all the volumes would appear

in similar L–R, A–P, S–I orientation (FSL fslreorient2std tool;

Woolrich et al., 2009), skull removing tool (ROBEX; Iglesias, Liu,

Thompson, & Zhuowen, 2011), volume resize to standard size

(90, 126, 110) and volume standardization (μ = 0, σ = 1). Resizing of

each volume was implemented by applying an identical scaling factor

to all three dimensions, such that brain voxels (intensity >0) would

occupy the maximum portion within the final volume (90, 126, 110).

For each volume, voxels' intensities were standardized by a subtrac-

tion of the volume's mean intensity followed by division by the

intensity's SD.

2.3 | Data augmentation

Head orientation, the field of view and the level of signal to noise

ratio may differ between scans even if they were acquired by the

same machine and are of the same subject. To improve the robust-

ness of the models to these variations, we augmented the training

data by randomly manipulating the head position, size, and noise

level. This procedure was previously shown to improve generaliza-

tion and avoid overfitting (Simard, Steinkraus, & Platt, 2003). Specifi-

cally, the series of transformation to the brain image included a

rotation in the x/y/z-axis unif(−10�, 10�), shifting unif(−5, 5) voxels,

scaling N 0,0:1ð Þ and an addition of random noise N 0,0:015ð Þ . Data

augmentation was applied only during training and was not used for

validation/test. The optimal augmentation parameters were chosen as

the ones that maximized the validation accuracy using a random

hyperparameter search.

2.4 | CNN architecture

The CNN models were implemented using Keras (François Chollet

and contributors, 2015) with TensorFlow (Abadi et al., 2016) backend.

Each 3D CNN model was trained separately to predict age from a T1

MRI. The input for each network was a 3D volume, of size [90,

126, 110] and the output was a single scalar representing chronologi-

cal age (years). The model was composed of two blocks, each with a

batch normalization layer (Ioffe & Szegedy, 2015) followed by two 3D

convolutional layers and a max-pooling layer. The two blocks were

followed by two fully connected layers (FC). All layers, but the last

fully connected one were followed by a ReLU nonlinear activation

(Nair & Hinton, 2010). To reduce overfitting, we added dropout layers

after the convolutional layer and before the last layer for the training

stage (see Figure 1a for the complete architecture). The loss function

for each CNN was the mean squared error between the real and

predicted age. The network architecture was designed using random
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hyperparameters search and was chosen as the one that maximized

the accuracy within the validation set.

2.5 | The ensemble model

The ensemble in the current work included multiple 3D CNNs

(m = 10) each trained separately to predict age from a T1 MRI. As in

previous work utilizing CNNs (Lakshminarayanan, Pritzel, &

Blundell, 2017; Lee et al., 2015), ensemble models differ only in their

random weight initialization. Hence, they had identical architecture

and were trained on the same samples. We picked m = 10 due to con-

sideration of training time given the large number of parameters in a

3D CNN and the large training set. After each network was indepen-

dently trained, a linear regression model for age prediction is learned

from the outputs of the 10 networks using the same training set (see

Figure 1b). The similarity of prediction error among models was tested

using the signed error correlation between each two networks within

the test set.

2.6 | Performance metrics

All databases were randomly divided into training (90%), validation

(5%), and test (5%) sets. The training set was used to train each net-

work separately and to find the optimal ensemble weights. The valida-

tion set was used for hyperparameters tuning, for example,

augmentation and network's architecture parameters, and to assess

over-fitting. All performance measures were calculated on the

untouched test set. The prediction was evaluated using mean absolute

error (MAE) and the Pearson correlation coefficient between the net-

work prediction and the chronological age values.

TABLE 1 List of all studies which comprise the dataset

Study/database N Age M (±SD) Gender (F;M)

Consortium for Reliability and Reproducibility (CoRR;

Zuo et al., 2014)

1,378 26.0 (±15.8) 693; 685

Alzheimer's Disease Neuroimaging Initiative (ADNI;

Jack et al., 2008)

1,476 73.0 (±7.0) 563; 912

Brain Genomics Superstruct Project (GSP; Buckner,

Roffman, & Smoller, 2014)a
1,099 21.5 (±2.9) 630; 469

Functional Connectomes Project (FCP; Biswal

et al., 2010)

1,067 28.9 (±13.9) 594; 473

Autism Brain Imaging Data Exchange (ABIDE; Di

Martino et al., 2014)

1,053 17.1 (±8.1) 153; 900

Parkinson's Progression Markers Initiative (PPMI;

Marek et al., 2011)

702 61.7 (±10.2) 260; 442

International Consortium for Brain Mapping (ICBM;

Mazziotta, Toga, Evans, Fox, & Lancaster, 1995)

641 30.6 (±12.2) 293; 348

Australian Imaging, Biomarkers and Lifestyle (AIBL;

Ellis et al., 2009)

616 72.9 (±6.6) 342; 273

Southwest University Longitudinal Imaging

Multimodal (SLIM; Liu, Wei, Chen, Yang, &

Meng, 2017)

574 20.1 (±1.3) 320; 252

Information extraction from Images (IXI; Heckemann

et al., 2003)

563 48.2 (±16.5) 312; 252

Open Access Series of Imaging Studies (OASIS;

Marcus, Fotenos, Csernansky, Morris, &

Buckner, 2010; Marcus et al., 2007)

402 51.6 (±24.9) 257; 145

Consortium for Neuropsychiatric Phenomics (CNP;

Poldrack et al., 2016)

252 33.3 (±9.3) 112; 153

Center for Biomedical Research Excellence (COBRE;

Mayer et al., 2013)

146 37.0 (±12.8) 37; 109

Child and Adolescent NeuroDevelopment Initiative

(CANDI; Frazier et al., 2008)

103 10.8 (±3.1) 46; 57

Brainomics (Pinel et al., 2012) 89 24.7 (±6.8) 47; 42

Overall 10,174 39.4 (±23.8) 4,659; 5,511

Note: For each study, the number of available subjects (N), the mean and SD of the age and gender distribution are provided.
aTo prevent participant identification in the GSP study age was rounded to the closest 2 years bin.
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2.7 | Ensemble variability and uncertainty
estimation

A recent work by Lakshminarayanan et al. (2017) pointed out that

prediction variability within an ensemble could be utilized to evaluate

uncertainty in neural networks. Here for each subject, uncertainty

was quantified as the SD of the signed prediction error within the

ensemble. In all analysis, uncertainty was evaluated within the test

set. To compare uncertainty to available training sample and predic-

tion error in different age ranges, we divided the 5–85 age range to

16 bins of 5 years each. Then, for each age range, we calculated the

training sample size, mean uncertainty within the test set and the

mean absolute error.

2.8 | Individual explanation maps

We employed the SmoothGrad method (Smilkov et al., 2017) that

was implemented using iNNvestigate (Alber et al., 2018). This is a

gradient-based method in which a given input image is first dis-

torted with random noise from a normal distribution N(μ = 0,

σ = 0.1), then the partial derivative of each voxel is computed with

respect to the trained model's output. This was repeated several

times (k = 32), then the produced gradient maps were averaged.

We used partial derivative following Adebayo et al. (2018) work

that demonstrated that it best captures the CNN's training

process.

2.9 | Aggregating explanation maps across samples

First, the models preprocessed input was transformed into the raw

anatomical space using FSL FLIRT (Jenkinson, Bannister, Brady, &

Smith, 2002) followed by surface-based nonlinear registration to the

MNI space using Freesurfer (Greve & Fischl, 2009). The transforma-

tions were computed on the T1 images, then applied to the explana-

tion maps. The complete pipeline was created using Nipype

(Gorgolewski et al., 2011). Next, each volume was standardized (μ = 0,

σ = 1), and smoothed with a 3D Gaussian using Scikit-image (Full

width at half maximum = 4; van der Walt et al., 2014). Finally, all vol-

umes were averaged to create population-based explanation maps. In

line with previous work, we used the absolute value of the resulting

maps (Ancona, Ceolini, Öztireli, & Gross, 2017). To identify regions

with the highest contribution to the model's prediction, we threshold

the map, keeping only 1% of the voxels with the highest gradient

value (see Figure 2—for the inference scheme). To create an ensemble

population-based map, we aggregate these population-based maps

generated for each of the 10 CNN by taking the median of each voxel

across the 10 maps. We will refer to the statistics obtained for these

explanation maps, which is the standardized partial derivative, as an

explanation score (ES).

2.10 | Assessing the similarity of explanation maps
within the ensemble

To assess the diversity among independently trained CNNs, or the

extent to which different CNNs utilize different brain regions for the

prediction, we examined the similarity among their explanation maps.

Specifically, the similarity between each pair of population-based

explanation maps (n = 100) was evaluated with two measures: Dice

similarity (Zou et al., 2004) and the modified Hausdorff distance

(MHD; Dubuisson & Jain, 2002) on the threshold maps. Maps

thresholding was generated by taking the absolute value of each

population-based map, computing the fifth percentile of the ES within

the brain mask and creating a binarized map for super-threshold

values: f xð Þ=
1 if xj j> threshold

0otherwise

(
. For each pair of binarized maps, the

Dice coefficient was defined as Dice = 2 jX\Yj
Xj j+ jYj, where jX\Yj is the num-

ber of overlapping super-threshold voxels in both maps, and |X| and

|Y| are the number of super-threshold voxels for maps X and Y, respec-

tively. MHD was derived by first finding the surface for each cluster of

super-threshold voxels within each map by using a gradient-based

F IGURE 1 Network architecture for age prediction. (a) The
detailed architecture of the network used for age prediction from 3D
T1 MRI volume. BatchNorm = batch normalization,
Conv = convolutional layer, ReLU = rectified linear unit, FC = fully
connected layer. (b) The ensemble procedure combining the output of
10 separately trained CNNs (Γ1–10) using linear regression to create
the final age prediction
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edge detector. Then, the MHD, or the symmetric average surface dis-

tance was calculated as follows:

ASD X,Yð Þ= 1
Mx

XMx

k =1

minid xk ,yið Þ

MHD X,Yð Þ= 1
2

ASD X,Yð Þ+ASD Y,Xð Þð Þ

where d is the Euclidian distance, Mx is the number of voxels in the

surface map X and x and y are points on the surface in maps X and Y,

respectively. Both the MHD and Dice coefficients were calculated for

each pair of maps creating a distance/similarity matrix. The mean dis-

tance/similarity was calculated by taking the mean over the lower tri-

angle of that matrix.

2.11 | Relating contribution to specific tissues and
brain structures

To obtain a general view of the features utilized by the model, we first

segmented the brain volume to four classes of tissue type: cerebrospi-

nal fluid (CSF) and choroid plexus, white matter (WM), subcortical

gray matter (GM), and cortical GM. These were determined by apply-

ing the Desikan–Killiany Atlas (Desikan et al., 2006) using Freesurfer

on the MNI template. Taking the calculated ensemble population-

based explanation map, we devised a volume-normalized class ES by

dividing the mean ES in each class by the total class volume. The

resulting class scores were reported as a percentage of the sum of

class scores. Next, to identify the specific brain regions that contrib-

uted the most to age prediction, we identified clusters of voxels in the

threshold map (first percentile) using FSL cluster (Woolrich

et al., 2009). For each cluster, we report the name of the brain region,

its MNI coordinates, the cluster size and peak ES within the cluster.

Brain regions were identified by locating the pick value of each cluster

in the Desikan–Killiany Atlas for GM structures and with the ICBM-

DTI-81 Atlas (Mori, Wakana, Van Zijl, & Nagae-Poetscher, 2005) for

WM structures. Since many of the clusters were located within CSF

spaces, whose subparts are poorly delineated in most parcellation, we

manually identified subdivisions of the cisterns and ventricles. The

unthresholded population-based maps for each of the 10 CNN and

the ensemble map are available at Neurovault (Gorgolewski

et al., 2015; https://neurovault.org/collections/5552/).

2.12 | Validating the population-based inference
scheme

2.12.1 | Replicability of the produced explanation
map as a function of sample size

To examine whether creating explanation maps based on a larger pop-

ulation would increase the split-sample similarity, two population-level

explanation maps were created by sampling m subjects (m = 1, 6, 11,

…, 101) with replacement from two groups. The groups were created

by randomly splitting to half, a sample of 200 subjects from the test

and validation sets. Each map was thresholded, binarized (see Sec-

tion 2.8) and the Dice similarity and the MHD were calculated

between the two maps as a function of the sample size m. The proce-

dure was repeated 100 times, and for each iteration, the 200 subjects

were randomly assigned to the two groups. This test was repeated

independently for each population-based explanation map derived

from the 10 CNNs.

2.12.2 | Similarity between explanation maps and
voxel-based morphometric meta-analysis

To examine whether the derived explanation map elicits similar

regions to those detected with established methods, we compared it

with a baseline obtained from studies that use voxel-based morphom-

etry (VBM; Ashburner & Friston, 2000) to test structural age-related

changes. Briefly, in the VBM method, a mass-univariate test between

the tissue composition of any voxel in the brain and a given external

F IGURE 2 A layout of the inference scheme. For a subset of n subjects, an explanation map was computed, representing the contribution of
each voxel to the model's output. Each saliency map was first registered to the subject anatomical image, then it was transformed to the MNI
space. Next, each volume was smoothed with a 3D Gaussian. Finally, all the volumes were averaged to create a population-based
explanation map
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variable (age) is conducted. To address the differences in brain posi-

tion and anatomy, all brain volumes were normalized to a common

space and then smoothed by a Gaussian kernel to account for small

registration differences. In the current study, we used a published

activation likelihood estimation (ALE) meta-analysis of age VBM stud-

ies (Vanasse et al., 2018). Here, by utilizing peak reported coordinates

from several VBM studies (n = 43), the ALE analysis assigns each voxel

the probability that it lies within a reported peak (Laird, Bzdok, Kurth,

Fox, & Eickhoff, 2011). The ALE value across all the superthreshold

(first percentile) voxels in the ensemble population-based explanation

map was averaged. This empirical value was compared to a null distri-

bution created by randomly sampling 1% of the voxels within the

brain mask.

2.12.3 | Specificity of the regions obtained in the
analysis to the employment of the current model

To evaluate the contribution of the regions discovered using the

population-based explanation map to the prediction of the current

model, we examined how variability in their age-controlled volume

correlated with the model's prediction error. Regional volumes of

cortical and subcortical areas were extracted using the Desikan-

Killiany atlas (Desikan et al., 2006) computed using Freesurfer fol-

lowing by regressing out the total intracranial volume (Voevodskaya

et al., 2014). Next, subjects' chronological age was further regressed

out from these values to produce the age-normalized volume. Pre-

diction error was formulated as the signed difference between the

chronological age and the predicted age. The test was conducted

separately for each anatomical ROI in the parcellation. Specific ROIs

within the Desikan–Killiany parcellation, such as WM hyper-

intensities and the fifth ventricle, exist for only some of the subjects

(n = 619; from the test/validation sets), and thus were subsequently

excluded (9 excluded, 98 remained; see Figure S6 for the com-

plete list).

3 | RESULTS

We start by presenting the model's ensemble performance for

predicting subject chronological age from their T1 structural images

on an unseen test set (N = 526). Then, using a novel inference scheme,

we locate the anatomical regions that contributed the most to the

model's prediction. We validate the robustness of our inference

scheme in three ways. First, we demonstrate that it substantially

increases reliability compared to previous methods, creating more

coherent and localized explanation maps. Second, we quantitatively

compare these explanation maps to age voxel-based morphometric

studies, demonstrating significant overlap with a simple baseline

model. Finally, we demonstrate that this approach enables to gain

specific insights about the model by identifying brain regions for

which the model exhibits the highest correlation to inter-subject volu-

metric variability.

3.1 | Estimating “brain age”

Several attempts were previously made to identify the relation

between chronological age and brain structure, using various feature

extraction techniques, advanced preprocessing methods and a rela-

tively limited sample size (Irimia, Torgerson, Goh, & Van Horn, 2015;

Kandel, Wolk, Gee, & Avants, 2013; Shamir & Long, 2016). Here, we

build upon recent progress in utilizing CNNs for predicting chronologi-

cal age from raw structural brain imaging (Cole & Franke, 2017) and

introduce substantial improvements using an ensemble of models. In

the current work, 10 randomly initialized CNNs were separately

trained. The mean MAE across networks was 3.72 years (±0.17), and

the Pearson correlation between the predicted and the chronological

age was 0.97 (±0.001). Next, a simple linear regression model was

trained on the output of each network to find an optimal linear combi-

nation between them, yielding an MAE of 3.07 and a Pearson correla-

tion of 0.98 to the chronological age (Figure 3; see Figure S1 for

evaluation per dataset). To demonstrate the prediction similarity

among all CNNs, evident in the ensemble prediction gain, we tested

the signed error correlation between each two networks within the

test set. The mean correlation coefficient value was 0.73 and the SD

was 0.09 (see Figure S8). A model dataset-specific bias was found

only for the SLIM dataset, in which age was over-estimated in 1 year

F IGURE 3 Regression plot of the chronological age compared to
the model's prediction for the test set. The main plot depicts the
Pearson correlation coefficient between the chronological and the
predicted age; the Pearson correlation coefficient (r) and the mean
absolute error (MSE) are indicated on the plot. The data points are
presented with partial transparency thus overlapping points are
shown in darker gray. The top and right panels of the figure depict
histograms and kernel density plots of the distribution of the
chronological age and the predicted age (respectively) obtained in the
test set
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(t = 2.61, p = .01). All other datasets did not present such bias (all

t's < 1.51, all p's > .14; see Figure S9). An analysis of MAE as a func-

tion a training sample and age range is included in the supplementary

section (Figures S10 and S11, respectively).

3.2 | Ensemble variability and uncertainty
estimation

Apart from a prediction gain, the use of an ensemble provides a simple

way to evaluate prediction uncertainty (Lakshminarayanan

et al., 2017). Model uncertainty can be viewed as the lack of confi-

dence in the prediction made, given the inability of the model to cap-

ture the true data generating process. Here, uncertainty was

measured by calculating the prediction variability within the ensemble.

Since the uncertainty metric aims to evaluate the lack of confidence

in the prediction, it is expected to be correlated with the prediction

error (Kendall & Gal, 2017). Accordingly, we found a significant corre-

lation between the MAE and uncertainty (r = 0.398, p < .001;

Figure S12). We additionally examined whether uncertainty would be

higher for age ranges where less training data is available (Gal &

Ghahramani, 2016). We found the maximum uncertainty in the 30–35

age range where the availability of data samples was more limited.

The opposite was found for the 10–25 and the 65–75 age ranges that

had the largest sample size (see Figure S11).

3.3 | From the model to the brain—A novel
inference scheme

Building upon previous attempts to assign pixel-wise (or voxel-wise)

explanation measures to a model's prediction (Smilkov et al., 2017),

we propose that creating explanation maps based on a population,

rather than on a specific sample, may substantially improve the coher-

ence and reliability of these maps. We create these maps for each of

the 10 independently trained CNNs and examine their similarity.

Then, using an aggregated map across all 10 networks we present the

brain regions that contributed the most to predicting age.

3.3.1 | Assessing the similarity of explanation
maps within the ensemble

Explanation maps for the 10 CNNs, averaged across 100 subjects

from the test/validation set were produced to create a population-

based map (see Section 2.7; Figure S2). First, to assess the similarity

between each pair of these produced maps among the 10 indepen-

dently trained networks, each map was thresholded (fifth percentile)

and binarized, then the Dice coefficient similarity measure was com-

puted for each pair of maps (Figure S3). We found a significant Dice

similarity across all 45 possible pairs (Dice coefficient: m = 0.17,

SD = 0.058; binomial test: p < .001). Since Dice similarity fails to cap-

ture the relation between two maps that are adjacent in the Euclidean

space but nonoverlapping, we additionally computed the MHD

(Dubuisson & Jain, 2002), taking the symmetric average surface dis-

tance, among all pairs. We found that the mean MHD among all possi-

ble pairs was 6.44 mm (SD = 1.22). Thus, even though these different

population-based maps were derived from independently trained net-

works, there is a moderate, significant, overlap between them. The

fact that this overlap is merely moderate coincides with the prediction

differences that allow the accuracy gain in ensemble prediction.

3.3.2 | Mapping the anatomical regions underlying
“brain age” prediction

After estimating the similarity among the different explanation maps

for the 10 CNNs, we created an ensemble population-based map by

taking the median value for each voxel across all networks. We report

how the ES is distributed among different tissue types, and among dif-

ferent anatomical regions in order to examine their contribution for

age prediction. Testing the volume-normalized contribution of each

tissue type, we found that cavities containing CSF and choroid plexus

had the highest contribution (35.62%), followed by subcortical GM

(27.66%), WM (19.49%), and finally, cortical GM (17.23%) which con-

tributed the least. Table 2 presents the location of clusters (>100

voxels) in the threshold explanation map (first percentile). We found

that the structures contributing most to age prediction in our model

were the ventricles, subarachnoid cisterns, and their borders (see

Figure 4). Specifically, the fourth ventricle, the ambient cistern bilat-

eral to the midbrain, the superior cerebellar cistern, the bilateral

Sylvian cistern, the lateral ventricles, the interpeduncular cistern, and

the right parahippocampal fissure. WM tracks that were found impor-

tant for age prediction were the bilateral tapetum, the right anterior

limb of the internal capsule and the left medial lemniscus. Finally, the

bilateral thalamus and the right precentral gyrus were the GM regions

that contributed most to the prediction. Both of these analyses sup-

port the notion that age prediction in the current model is largely

based on age-related morphological changes in the cavities

containing CSF.

3.4 | Validating the population-based inference
scheme

To validate the suggested approach for detecting regional contribu-

tion to a CNNs ensemble, we conducted three tests. First, we tested

the importance of sample size to the explanation maps replicability by

testing the half-split similarity of these maps as a function of the pop-

ulation size. Second, to test whether these results coincide with data

from other studies, we tested the extent of the similarity between the

produced maps and a meta-analysis of VBM studies. Lastly, to confirm

the specificity of these results to the current model, we examined

whether the produced maps highlight the particular brain regions for

which the model exhibits the highest correlation to inter-subject volu-

metric variability.
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3.4.1 | Replicability of the produced explanation
map as a function of sample size

It is not clear to what extent an explanation map derived from a sin-

gle sample would indeed represent the entire population. To exam-

ine this issue, we tested the split-sample similarity of the explanation

maps with a gradually increasing sample size obtained from two sep-

arate groups. In each test repetition (k = 100), the groups were cre-

ated by randomly half-splitting a sample of 200 subjects (see

Section 2.10). We report the Dice similarity and the MHD among

these maps as a function of the sample size drawn from them (see

Figure 3). Across all 10 networks, we found an increase of the Dice

similarity and a decrease of the MHD as a function of the sample

size, ranging from a single sample to 101 samples (mean Dice = 0.19,

mean MHD = 3.73; mean Dice = 0.74, mean MHD = 1.00; respec-

tively) (Figure 5a,b). The relative improvement in the replicability of

these maps asymptotes at 40–60 subjects, such that adding more

samples had little further impact. Figure 5c shows 2D glass brain

projections of the population-based maps to illustrate the change as

a function of the sample size, resulting in a visually apparent increase

in coherence and a decrease in noise. These results suggest that

whether due to noise or fundamental differences in subject-specific

maps, an explanation produced from a single sample rather than a

population has low replicability.

3.4.2 | The similarity between explanation maps
and voxel-based morphometric meta-analysis

To quantitatively assess whether the regions detected in the current

inference scheme coincide with previous findings, we compared the

resulting explanation maps to data obtained from VBM studies testing

structural age-related changes. The VBM method has the desired prop-

erty of allowing to test the relation between the estimated tissue com-

position of each voxel and any given relevant variable, age in the

present case. In contrast, other methods are limited to a specific set of

ROIs or a given brain parcellation that often fails to properly parcellate

non-GM regions. We used a published activation likelihood estimation

(ALE) meta-analysis of age VBM studies (n = 15, Vanasse et al., 2018) in

which each voxel is assigned with a probability for its location in a

reported peak coordinate in one of the studies (Laird et al., 2011). Using

this map, we examined whether that ALE value is significantly higher

within the regions identified using the threshold explanation map with a

permutation test. The mean ALE value within the super-threshold (first

percentile) explanation map was higher than any set of randomly

selected voxels in the permutation test (k = 10,000; meta-analysis:

empirical mean ALE: 0.003, p < .0001; see Figure S4). Interestingly, both

methods highlighted regions surrounding the lateral and third ventricles,

subcortical areas, and the bilateral insula/Sylvian cistern, as opposed to

cortical regions that appeared only in the ALE map (see Figure S5).

TABLE 2 Anatomical location of
clusters in the threshold explanation map

MNI coordinates

Region Cluster size x y z Peak ES

4th ventricle and ambient cistern 5,531 -2 −43 −39 4.71

Superior cerebellar cistern 4,619 −3 −55 0 2.54

R tapetum 1,984 27 −43 18 1.35

L Sylvian cistern 1,409 −45 −16 11 1.62

R lateral ventricle 1,115 6 1 8 1.42

R Sylvian cistern 1,105 41 −20 0 1.56

R lateral ventricle 1,024 30 −49 2 1.83

R anterior limb of internal capsule 847 11 6 2 1.48

3rd ventricle 787 0 −26 11 1.89

L lateral ventricle 740 −28 −52 4 2.08

Interpeduncular cistern 446 1 −17 −22 2.09

R Sylvian cistern 440 39 12 −20 1.23

L medial lemniscus 307 −2 −36 −41 1.25

L thalamus 303 −12 −18 11 0.993

L ambient cistern 238 −12 −34 −13 1.18

Tapatum left 231 −26 −49 15 0.989

R thalamus 212 13 −17 −2 0.925

L ambient cistern 171 −16 −24 −21 1.17

R precentral gyrus 127 50 11 29 0.958

Perihippocampal fissure 110 32 −9 −26 1.06

Note: MNI coordinates of clusters in the ensemble population-based explanation map threshold for the first percentile. Cluster size is reported in terms of

the number of voxels, and the peak ES is the maximum ES within the cluster.
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F IGURE 4 The threshold explanation map shown on a midsagittal (top left), a coronal (top row left) and 3 axial (bottom row) slices.
Aggregated explanation map across 100 subjects and the 10 networks, thresholded for the first percentile of the ES. Abbreviations:
ant. = anterior, cis. = cistern, g. = gyrus, fis. = fissure, ven. = ventricle. For each image, the slice number in the MNI template is indicated on the
left upper corner. The color bar indicates the values of the ES

F IGURE 5 The split-sample similarity of the explanation maps as a function of sample size. The similarity of two maps produced from an
increased sample size from two separate groups (n = 100 for each group) was measured using (a) Dice coefficient and (b) MHD (mm). The results
are reported for all 10 CNNs and each is presented in a separate color. (c) A visual illustration of an explanation map for network 1 produced by
increasing the sample size (from top to bottom, N = 1,510,100). The error bars represent a 95% confidence interval
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3.4.3 | Specificity of the regions obtained in the
analysis to the employment of the current model

Prediction errors could result from the inability of the model to cap-

ture the complexity of the brain aging process or due to the natural

variability in brain morphology within the population. Exploiting the

latter, in the current analysis, we aimed to examine whether predic-

tion error would correlate with volumetric variability of specific brain

regions. Specifically, by applying the Desikan–Killiany atlas using

Freesurfer, we tested whether age-controlled volume of the ventricles

and cisterns that were highlighted by the inference scheme were cor-

related with the CNNs ensemble prediction error. Indeed, we found a

significant correlation between the age-normalized volume and the

prediction error for the ventricles excluding the fourth ventricle, the

choroid plexus and nonventricular CSF (n = 619; for all 9 regions but

fourth ventricle: r > 0.13, p < .002). This correlation was higher in

these regions than in any other brain region in the parcellation

supporting the specificity of the results to the regions obtained using

the population-based explanation maps (see Figure 6). Interestingly,

this specificity was not apparent when examining the correlation

between regional volume and chronological age, in which significant

correlation is seen in almost all regions (>93% of the ROI; see

Figure S7). Put differently, while the volume of almost all regions cor-

related with age, deviance from the age norm in the ventricles and

CSF, detected using the population-based maps, best reflected the

prediction error. This suggests that the current inference scheme not

only detected regions that are altered in aging, but it also detected

the distinct regions that had the highest contribution to the current

prediction, attesting to the high specificity of this method to the

applied model.

4 | DISCUSSION

In the current study, we examined whether individuals' chronological

age could be predicted from T1 MRI scan and whether it is possible

to localize the underlying brain regions that allow such prediction.

Using a large aggregated sample of 10,176 subjects we trained and

validated an ensemble of 3D CNN models, and showed that “brain

age” could be estimated from raw T1 MRI with MAE of ~3.1 years.

We demonstrated that the use of an ensemble of models rather than

a single estimator reduces the MAE in more than 6 months and pro-

vided evidence that such gain is due to the difference in the features

or brain regions that are utilized by each model. Models ensemble

additionally allowed a simple estimation of model uncertainty. We

found that model uncertainty correlated with prediction error and

was higher in age ranges where less training data was available. Brain

age was previously shown to be indicative of neurodegenerative dis-

eases and other clinical conditions (Cole & Franke, 2017), thus

improving the precision, confidence estimation, as well as the inter-

pretability of this biomarker, could be an important step toward inte-

grating it in clinical use.

F IGURE 6 Deviation in volume from age norm and prediction error. (a) Graphs of five ROIs, detected with the current inference scheme,
showing the correlation between the age-controlled volume and the signed prediction error. Age-normalized volume was computed by regressing
out subjects chronological age from the measured volume. Volume was determined according to the Desikan-Killiany atlas fitted with Freesurfer.
Prediction error was formulated as the chronological age minus the predicted age. Note that for the sake of brevity, in the upper five plots, the
volume of the lateral ventricles and choroid plexus was computed as the sum of their subparcellations. (b) The bar graph depicts the correlation
between the age normalized volume and the signed prediction error for all the 98 regions in the parcellation. Positive correlations are presented
in blue and negative in orange for simple magnitude comparison. As shown, the age-controlled volume of cavities containing CSF and the choroid
plexus (L/R Lateral Ventricle, L/R inferior Lateral Ventricle, 3rd ventricle, nonventricles CSF, L/R choroid plexus), except for the 4th ventricle, had
the largest correlation with the model's prediction error compared with all other WM/GM regions (see Figure S6 for the full labels)
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4.1 | Identifying the brain regions underlying age
prediction using population-based explanation maps

Drawing from previous studies aiming at identifying regional contribu-

tions to the model's prediction, we aimed to locate the brain regions

that governed our brain age estimation. Here we presented a novel

approach to aggregate multiple explanation maps from several sub-

jects, thus creating a population-based map. This was achieved by

deriving a series of transformations warping the 3D volumes pres-

ented to the CNN into the MNI space. We then applied those trans-

formations to the computed explanation maps, thus allowing to

average different explanation maps in a common space. This approach

precludes the need for pre-registration to a common template in the

training stage, as done previously (Ceschin et al., 2018), a step that is

error-prone, time-consuming and might result in the loss of relevant

structural information (Iscan et al., 2015). Thus, these maps are

obtained without compromising predictive accuracy, since the model's

training objective is not altered.

To validate our method, we tested how it affects three important

aspects. First, we quantitatively assessed how sample size in

population-based maps improved their reproducibility. We reported a

substantial improvement in split-sample similarity as moving from a

map based on a single subject to a map based on a population of

40–60 subjects. The low split-sample similarity of single-subject maps

emphasized the need to apply such practices when analyzing these

explanation maps. Next, we demonstrated that despite the methodo-

logical differences, the proposed map exhibited significant similarity

to ALE maps obtained from an age VBM meta-analysis study (Vanasse

et al., 2018), attesting to its convergence validity. Finally, using

regional volumetric measures, we demonstrated that the brain regions

highlighted by our method were those with the highest correlation to

the model's prediction error, indicating the specificity of the derived

maps to the current model.

4.2 | Reducing noise or averaging over true
relevant population differences?

Comparing our approach for deriving population-based explanation

maps to an approach based on a single sample as in Smilkov

et al.'s (2017) paper, we demonstrate an increase in reproducibility

and a distinct visual improvement in the coherence of these maps.

We therefore discuss possible mechanisms that may account for

these findings. In their study, Smilkov et al. (2017) demonstrated that

the derivative of CNNs are highly noisy, and averaging explanation

maps obtained from several noised samples of the same input can

improve these maps. Here, after applying the Smilkov et al. (2017)

method, we further averaged multiple explanation maps derived

from different inputs, that is, brain volumes of different subjects. A

possible explanation to the apparent reproducibility improvement is

that sampling from the true input distribution (brain volumes of dif-

ferent individuals), rather than mere noised samples of the same

input, would result in estimation that is more robust to local gradient

noise. A second, nonexclusive possible account might be that the

model was trained on brain volumes from a heterogenic population.

Differences in brain aging trajectory were found both at the individ-

ual level (Raz, Ghisletta, Rodrigue, Kennedy, & Lindenberger, 2010)

and among different populations, for example, in relation to gender

(Jäncke et al., 2015). Thus, it is possible that the model extracts dif-

ferent features due to relevant structural variability in different

populations.

4.3 | The ventricles and cisterns as biomarkers for
brain aging

Aging is accompanied by multiple processes affecting the human

brain, manifested in structural changes that could in part be quantified

by neuroimaging (see Lorio et al., 2016). Accordingly, a wealth of liter-

ature reported a complex pattern of morphological changes evident

across all brain regions, but arguably more apparent in some areas

such as the frontal lobes, insular cortices, and the hippocampus (Fjell

et al., 2009). Previous work that examined the predictive value of

voxel-wise feature maps reported that features derived from GM,

compared to nonbrain tissue, served as better age predictors (Monté-

Rubio, Falcón, Pomarol-Clotet, & Ashburner, 2018). Interestingly, in

our model, the ventricles and cisterns were highlighted as most rele-

vant for age prediction. Several possible reasons might account for

this finding. First, CSF volume was found to increase already from

young adulthood (Courchesne et al., 2000), thus it may constitute an

early aging biomarker. Since CSF pressure remains relatively constant

and even decreases in old age (Fleischman et al., 2012), it is likely that

CSF expansion reflects a decrease in WM/GM volumes rather than an

increase in CSF pressure. Thus, CSF volume changes might be a surro-

gate for general brain atrophy, as suggested in previous work (De Vis

et al., 2016). In line with this account, CSF volume was previously

found as a better aging marker compared to WM/GM/hippocampal

volume (Vinke et al., 2018). Notably, CNN representations are learned

from the raw data and can potentially identify morphological alter-

ations in these regions that facilitate aging prediction. In contrast, pre-

vious models (Liem et al., 2016; Valizadeh, Hänggi, Mérillat, &

Jäncke, 2017) exclusively based on regional volumetric measurements

presented substantially lower accuracy. It is important to stress that

the created explanation maps do not directly highlight regions that are

indicative of age. Instead, given a specific model and a set of images,

the maps highlight regions that are likely to contribute to the model's

prediction. Accordingly, it has been previously suggested that neural

networks present an inductive bias to more simple or parsimonious

solutions (Neyshabur, Tomioka, & Srebro, 2015). Thus, it is possible

that although brain regions other than the ventricular system are

indicative of age, the saliency of the ventricles and cisterns, due to

their high contrast, allows their capture by the network. These possi-

ble reasons could be tested in future work but nevertheless, the ability

to generate new biologically relevant hypotheses from a deep learning

predictive model is a desirable practice supported here by our novel

inference scheme.
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4.4 | Ensemble diversity among models'
population-based explanation maps

Evidence suggests that prediction based on a set of learning algo-

rithms instead of a single algorithm will result in an accuracy gain

(Sagi & Rokach, 2018) that increases as these models are more accu-

rate and diverse (Breiman, 2001; Kuncheva & Whitaker, 2003). Learn-

ing diverse models could be achieved by changes in architecture

(Singh, Hoiem, & Forsyth, 2016) or introducing different subsets of

the training data to each model (Benou, Veksler, Friedman, & Riklin

Raviv, 2017). In the context of deep CNN, as opposed to convex or

shallow learning algorithms, it has been shown that models that differ

only in their random weight initializations, constitute an ensemble that

is not only adequately diverse, but performs better than models

exposed to different subsets of the data (Lakshminarayanan

et al., 2017; Lee et al., 2015). In the current work, we examined the

similarity among pairs of population-based explanation maps derived

from different models within such an ensemble. Although within each

model population maps showed high reliability, on average, pairs of

models exhibit only moderate similarity. This supports the notion that

random weight initializations generate diverse models that utilized dif-

ferent parts of the input, that is, different brain regions. This might

explain the observed improvement in prediction accuracy when using

an ensemble. The apparent variability of explanation maps within the

ensemble could be additionally considered in terms of uncertainty.

Ensembles were previously utilized to evaluate uncertainty for regres-

sion and classification problems (Lakshminarayanan et al., 2017), for

evaluating actions in reinforcement learning (Gal &

Ghahramani, 2016) and in estimating voxel-wise uncertainty in diffu-

sion imaging super-resolution (Tanno et al., 2019). In line with this, we

suggest that the variability of voxel-wise explanation maps could be

similarly viewed as confidence in the importance of various regions

for a given model architecture and a training set. Thus, regions such as

the ambient and cerebellar cisterns, consistently utilized across all

models, could be viewed as important for the prediction with higher

confidence. Overall, it seems that general conclusions regarding the

contribution of different brain regions to age prediction should be

made based on maps converging from multiple models.

4.5 | Limitations

This study has a number of limitations. First, it is unclear whether the

trained model is fully invariant to variables such as scanning site or

acquisition parameters. When testing for bias in the dataset level,

each dataset with its own scanning parameters, we found evidence

for a systematic prediction bias in only one of 11 studies. It is still pos-

sible, however, that the network could distinguish between scans

based on their acquisition statistics and utilize such information for

the prediction. This issue should be further examined in future work

(see Tzeng, Hoffman, Saenko, & Darrell, 2017 for domain invariance

in machine learning). Second, since the model was trained solely on

cross-sectional data, it only gained information on between-subjects

aging variability. Incorporating longitudinal data can allow to model

individuals' aging trajectories. Finally, CNNs are complex functions

with hundreds of thousands of parameters and multiple layers with

nonlinearities, thus they could not be fully reduced to a set of local

contributions. CNNs are likely to entail complex multivariate interac-

tions that are not necessarily local. Hence it is important to state that

our maps, based on partial derivatives, are merely an approximation of

the significance of various input regions.

4.6 | Population-level explanation maps: Future
directions

Computing population-based explanation maps allow examining group

differences in maps produced from different populations. For exam-

ple, one might ask whether a CNN model would extract different

aging biomarkers for men versus women or for healthy elderly versus

individuals diagnosed with AD. These tests could be applied on maps

derived from two identical models separately trained on different

populations or within the same model trained on both populations. In

the latter case, subjects' group affiliation could be explicitly intro-

duced to the model as an input. Alternatively, it will be possible to test

whether a distinction among populations in the form of explanation

maps differences, would arise without introducing such an input.

Hence, explanation maps obtained from a population of subjects, reg-

istered to the same template could allow harnessing known neurosci-

ence statistical procedures based on voxel or regional wise

comparison of within compared to between-group variability. Another

possible extension of the current work is the adoption of population-

level explanation maps to other neuroimaging prediction problems. An

example of such potential usage could be a deep learning decoding

model of neural activity (Beliy et al., 2019), a model predicting the

presence of a neurological condition (Li, Liu, Sun, Shen, &

Wang, 2018), or any machine learning application based on a differen-

tiable function. This, of course, would require a pre-trained model for

a given task, and relies on the assumption that the model exploits

regional features for the prediction.

4.7 | Conclusions

Incorporating deep learning for analysis of neuroimaging data requires

improvement in both the accuracy of these predictive models and the

ability to interpret them, as we aimed to address in the context of age

prediction. Respectively, in the current work, we demonstrated that

an individual's chronological age could be estimated with a MAE of

3.1 years from their raw T1 images, yielding a robust biomarker across

several datasets. We further showed that aggregating multiple expla-

nation maps substantially increases their reproducibility and allow to

create a coherent and localized map depicting and quantifying the

contribution of different brain regions to age prediction. From these

maps, we conclude that the ventricles and cisterns govern these pre-

dictions. We argue that this ability to pinpoint specific brain areas is a
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key step for utilizing these models as possible brain health

biomarkers.

ACKNOWLEDGMENTS

This research was supported by an Internal funding grant for interdis-

ciplinary research in Ben Gurion University of the Negev to GA and

IS. Our project would not have been possible without several open

databases and groups that invested considerable resource and efforts

to support neuroimaging data sharing. We wish to acknowledge those

study groups and funding agencies: CORR—Data were provided in

part by the Consortium for Reliability and Reproducibility (http://

fcon_1000.projects.nitrc.org/indi/CoRR/html/index.html). ADNI—

Data collection and sharing for this project was funded by the

Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Insti-

tutes of Health Grant U01 AG024904) and DOD ADNI (Department

of Defense award number W81XWH-12-2-0012). ADNI is funded by

the National Institute on Aging, the National Institute of Biomedical

Imaging and Bioengineering, and through generous contributions from

the following: AbbVie, Alzheimer's Association; Alzheimer's Drug Dis-

covery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-

Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Phar-

maceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La

Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE

Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research &

Development, LLC.; Johnson & Johnson Pharmaceutical Research &

Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso

Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies;

Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging;

Servier; Takeda Pharmaceutical Company; and Transition Therapeu-

tics. The Canadian Institutes of Health Research is providing funds to

support ADNI clinical sites in Canada. Private sector contributions are

facilitated by the Foundation for the National Institutes of Health

(www.fnih.org). The grantee organization is the Northern California

Institute for Research and Education, and the study is coordinated by

the Alzheimer's Therapeutic Research Institute at the University of

Southern California. ADNI data are disseminated by the Laboratory

for Neuro Imaging at the University of Southern California. GSP—Data

were provided in part by the Brain Genomics Superstruct Project of

Harvard University and the Massachusetts General Hospital, (Principal

Investigators: Randy Buckner, Joshua Roffman, and Jordan Smoller),

with support from the Center for Brain Science Neuroinformatics

Research Group, the Athinoula A. Martinos Center for Biomedical

Imaging, and the Center for Human Genetic Research. Twenty individ-

ual investigators at Harvard and MGH generously contributed data to

GSP. FCP—Data were provided in part by the Functional Con-

nectomes Project (https://www.nitrc.org/projects/fcon_1000/).

ABIDE—Primary support for the work by Adriana Di Martino, and

Michael P. Milham and his team was provided by the NIMH

(K23MH087770), the Leon Levy Foundation, Joseph P. Healy and the

Stavros Niarchos Foundation to the Child Mind Institute, NIMH award

to MPM (R03MH096321), National Institute of Mental Health (NIMH

5R21MH107045), Nathan S. Kline Institute of Psychiatric Research),

Phyllis Green and Randolph Cowen to the Child Mind Institute.

PPMI—Data used in the preparation of this article were obtained from

the Parkinson's Progression Markers Initiative (PPMI) database

(www.ppmi-info.org/data). For up-to-date information on the study,

visit www.ppmi-info.org. PPMI—a public-private partnership—is

funded by the Michael J. Fox Foundation for Parkinson's Research

and funding partners, including [list of the full names of all of the

PPMI funding partners can be found at www.ppmi-info.org/

fundingpartners]. ICBM—Data used in the preparation of this work

were obtained from the International Consortium for Brain Mapping

(ICBM) database (www.loni.usc.edu/ICBM). The ICBM project

(Principal Investigator John Mazziotta, M.D., University of California,

Los Angeles) is supported by the National Institute of Biomedical

Imaging and BioEngineering. ICBM is the result of efforts of co-

investigators from UCLA, Montreal Neurologic Institute, University

of Texas at San Antonio, and the Institute of Medicine, Juelich/

Heinrich Heine University—Germany. AIBL—Data used in the prepa-

ration of this article was obtained from the Australian Imaging Bio-

markers and Lifestyle flagship study of aging (AIBL) funded by the

Commonwealth Scientific and Industrial Research Organization

(CSIRO) which was made available at the ADNI database (www.loni.

usc.edu/ADNI). The AIBL researchers contributed data but did not

participate in analysis or writing of this report. AIBL researchers are

listed at www.aibl.csiro.au. SLIM—Data were provided by the South-

west University Longitudinal Imaging Multimodal (SLIM) Brain Data

Repository (http://fcon_1000.projects.nitrc.org/indi/retro/

southwestuni_qiu_index.html). IXI—Data were provided in part by

the IXI database (http://brain-development.org/). OASIS—OASIS is

made available by Dr. Randy Buckner at the Howard Hughes Medical

Institute (HHMI) at Harvard University, the Neuroinformatics

Research Group (NRG) at Washington University School of Medi-

cine, and the Biomedical Informatics Research Network (BIRN). Sup-

port for the acquisition of this data and for data analysis was

provided by NIH grants P50 AG05681, P01 AG03991, P20

MH071616, RR14075, RR 16594, U24 RR21382, the Alzheimer's

Association, the James S. McDonnell Foundation, the Mental Illness

and Neuroscience Discovery Institute, and HHMI. CNP—Data used

in the preparation of this article were obtained from the Consortium

for Neuropsychiatric Phenomics (NIH Roadmap for Medical

Research grants UL1-DE019580, RL1MH083268, RL1MH083269,

RL1DA024853, RL1MH083270, RL1LM009833, PL1MH083271,

and PL1NS062410). This data was obtained from the OpenfMRI

database. Its accession number is ds000030. COBRE—Data were

provided by the Center for Biomedical Research Excellence (COBRE)

(http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html). CANDI—

Data were provided in part by the Child and Adolescent Neuro-

Development Initiative (CANDI; Kennedy et al., 2012)—

Schizophrenia Bulletin 2008 project. Brainomics—Data were pro-

vided in part by the Brainomics project (http://brainomics.cea.fr/).

NITRC—Data used in this manuscript was partially accessed through

the Neuroimaging Informatics Tools and Resources Clearinghouse.

NITRC is funded by the NIH Grant numbers: 2R44NS074540 and

1U24EB023398a. IDA—Data used in this manuscript was partially

accessed through the LONI Image and Data Archive. IDA is funded

3248 LEVAKOV ET AL.

http://fcon_1000.projects.nitrc.org/indi/CoRR/html/index.html
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/index.html
http://www.fnih.org
https://www.nitrc.org/projects/fcon_1000/
http://www.ppmi-info.org/data
http://www.ppmi-info.org
http://www.ppmi-info.org/fundingpartners
http://www.ppmi-info.org/fundingpartners
http://www.loni.usc.edu/ICBM
http://www.loni.usc.edu/ADNI
http://www.loni.usc.edu/ADNI
http://www.aibl.csiro.au
http://fcon_1000.projects.nitrc.org/indi/retro/southwestuni_qiu_index.html
http://fcon_1000.projects.nitrc.org/indi/retro/southwestuni_qiu_index.html
http://brain-development.org/
http://nrg.wustl.edu/
http://www.nbirn.net/
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
http://brainomics.cea.fr/


by the NIH and the NIBIB grant numbers P41EB015922

U54EB020406.

DATA AVAILABILITY STATEMENT

All the datasets used for the model's training, validation and testing

were acquired from open-access data sharing projects. The results of

the main analysis, the unthresholded population-based maps for each

of the ten CNN and the ensemble map are available at Neurovault

(Gorgolewski et al., 2015; https://neurovault.org/collections/5552/).

ORCID

Gidon Levakov https://orcid.org/0000-0002-5520-3556

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., …
Zheng, X. (2016). TensorFlow: Large-scale machine learning on hetero-

geneous distributed systems. https://doi.org/10.1038/nn.3331

Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., & Kim, B.

(2018). Sanity checks for saliency maps. Advances in Neural Information

Processing Systems, 9505–9515.
Alber, M., Lapuschkin, S., Seegerer, P., Hägele, M., Schütt, K. T.,

Montavon, G., … Kindermans, P.-J. (2018). iNNvestigate neural net-

works! ArXiv. Retrieved from http://arxiv.org/abs/1808.04260

Ancona, M., Ceolini, E., Öztireli, C., & Gross, M. (2017). A unified view of

gradient-based attribution methods for Deep Neural Networks. In

31st Conference on Neural Information Processing Systems (NIPS 2017)

(pp. 1–16). ETH Zurich.

Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry—The

methods. NeuroImage, 11(6 I), 805–821. https://doi.org/10.1006/

nimg.2000.0582

Barnes, J., Bartlett, J. W., van de Pol, L. A., Loy, C. T., Scahill, R. I., Frost, C.,

… Fox, N. C. (2009). A meta-analysis of hippocampal atrophy rates in

Alzheimer's disease. Neurobiology of Aging, 30, 1711–1723. https://
doi.org/10.1016/j.neurobiolaging.2008.01.010

Beliy, R., Gaziv, G., Hoogi, A., Strappini, F., Golan, T., & Irani, M. (2019).

From voxels to pixels and back: Self-supervision in natural-image

reconstruction from fMRI. Advances in Neural Information Processing

Systems, 6514–6524. Retrieved from. http://www.wisdom.weizmann.

ac.il/~vision/ssfmri2im/

Benou, A., Veksler, R., Friedman, A., & Riklin Raviv, T. (2017). Ensemble of

expert deep neural networks for spatio-temporal denoising of

contrast-enhanced MRI sequences. Medical Image Analysis, 42,

145–159. https://doi.org/10.1016/J.MEDIA.2017.07.006

Bermudez, C., Plassard, A. J., Chaganti, S., Huo, Y., Aboud, K. S.,

Cutting, L. E., … Landman, B. A. (2019). Anatomical context improves

deep learning on the brain age estimation task. Magnetic Resonance

Imaging, 62, 70–77. https://doi.org/10.1016/j.mri.2019.06.018

Biswal, B. B., Mennes, M., Zuo, X.-N., Gohel, S., Kelly, C., Smith, S. M., …
Milham, M. P. (2010). Toward discovery science of human brain func-

tion. Proceedings of the National Academy of Sciences of the United

States of America, 107(10), 4734–4739. https://doi.org/10.1073/pnas.
0911855107

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
https://doi.org/10.1023/A:1010933404324

Buckner, R. L., Roffman, J. L., & Smoller, J. W. (2014). Brain genomics Sup-

erstruct project (GSP). Harvard Dataverse, 10. https://doi.org/10.

7910/DVN/25833

Cardenas, V. A., Chao, L. L., Studholme, C., Yaffe, K., Miller, B. L.,

Madison, C., … Weiner, M. W. (2011). Brain atrophy associated

with baseline and longitudinal measures of cognition. Neurobiology of

Aging, 32(4), 572–580. https://doi.org/10.1016/j.neurobiolaging.

2009.04.011

Ceschin, R., Zahner, A., Reynolds, W., Gaesser, J., Zuccoli, G., Lo, C. W., &

Gopalakrishnan, V. (2018). A computational framework for the detec-

tion of subcortical brain dysmaturation in neonatal MRI using 3D con-

volutional neural networks. NeuroImage, 178, 183–197. https://doi.
org/10.1016/j.neuroimage.2018.05.049

Cole, J. H., & Franke, K. (2017). Predicting age using: Neuroimaging: Inno-

vative brain ageing biomarkers. Trends in Neurosciences, 40(12), 681–
690. https://doi.org/10.1016/j.tins.2017.10.001

Cole, J. H., Poudel, R. P. K., Tsagkrasoulis, D., Caan, M. W. A., Steves, C.,

Spector, T. D., & Montana, G. (2017). Predicting brain age with deep

learning from raw imaging data results in a reliable and heritable bio-

marker. NeuroImage, 163, 115–124. https://doi.org/10.1016/j.

neuroimage.2017.07.059

Cole, J. H., Ritchie, S. J., Bastin, M. E., Hernández, M. V., Maniega, S. M.,

Royle, N., … Wray, N. R. (2018). Brain age predicts mortality. Molecular

Psychiatry, 23(5), 1385–1392.
Courchesne, E., Chisum, H. J., Townsend, J., Cowles, A., Covington, J.,

Egaas, B., … Press, G. A. (2000). Normal brain development and aging:

Quantitative analysis at in vivo MR imaging in healthy volunteers.

Radiology, 216(3), 672–682. https://doi.org/10.1148/radiology.216.3.
r00au37672

De Vis, J. B., Zwanenburg, J. J., van der Kleij, L. A., Spijkerman, J. M.,

Biessels, G. J., Hendrikse, J., & Petersen, E. T. (2016). Cerebrospinal

fluid volumetric MRI mapping as a simple measurement for evaluating

brain atrophy. European Radiology, 26(5), 1254–1262. https://doi.org/
10.1007/s00330-015-3932-8

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C.,

Blacker, D., … Killiany, R. J. (2006). An automated labeling system for

subdividing the human cerebral cortex on MRI scans into gyral based

regions of interest. NeuroImage, 31(3), 968–980. https://doi.org/10.
1016/j.neuroimage.2006.01.021

Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., …
Milham, M. P. (2014). The autism brain imaging data exchange:

Towards a large-scale evaluation of the intrinsic brain architecture in

autism. Molecular Psychiatry, 19(6), 659–667. https://doi.org/10.

1038/mp.2013.78

Dubuisson, M.-P., & Jain, A. K. (2002). A modified Hausdorff distance for

object matching. In Proceedings of 12th International Conference on Pat-

tern Recognition (Vol. 1, pp. 566–568). Washington, DC: IEEE Com-

puter Society Press.

Ellis, K. A., Bush, A. I., Darby, D., De Fazio, D., Foster, J., Hudson, P., …
Snaith, R. P. (2009). The Australian imaging, biomarkers and lifestyle

(AIBL) study of aging: Methodology and baseline characteristics of

1112 individuals recruited for a longitudinal study of Alzheimer's dis-

ease. International Psychogeriatrics, 21(4), 672–687. https://doi.org/

10.1017/S1041610209009405

Fjell, A. M., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., …
Walhovd, K. B. (2009). High consistency of regional cortical thinning in

aging across multiple samples. Cerebral Cortex, 19(9), 2001–2012.
https://doi.org/10.1093/cercor/bhn232

Fleischman, D., Berdahl, J. P., Zaydlarova, J., Stinnett, S., Fautsch, M. P., &

Allingham, R. R. (2012). Cerebrospinal fluid pressure decreases with

older age. PLoS One, 7(12), e52664. https://doi.org/10.1371/journal.

pone.0052664

François Chollet and contributors. (2015). keras. Retrieved from https://

github.com/fchollet/keras

Frazier, J. A., Hodge, S. M., Breeze, J. L., Giuliano, A. J., Terry, J. E.,

Moore, C. M., … Makris, N. (2008). Diagnostic and sex effects on limbic

volumes in early-onset bipolar disorder and schizophrenia. Schizophrenia

Bulletin, 34(1), 37–46. https://doi.org/10.1093/schbul/sbm120

Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian approximation:

Representing model uncertainty in deep learning. In 33rd International

Conference on Machine Learning, ICML 2016 (Vol. 3, pp. 1651–1660).
Retrieved from http://www.jmlr.org/proceedings/papers/v48/gal16.

html

LEVAKOV ET AL. 3249

https://neurovault.org/collections/5552/
https://orcid.org/0000-0002-5520-3556
https://orcid.org/0000-0002-5520-3556
https://doi.org/10.1038/nn.3331
http://arxiv.org/abs/1808.04260
https://doi.org/10.1006/nimg.2000.0582
https://doi.org/10.1006/nimg.2000.0582
https://doi.org/10.1016/j.neurobiolaging.2008.01.010
https://doi.org/10.1016/j.neurobiolaging.2008.01.010
http://www.wisdom.weizmann.ac.il/~vision/ssfmri2im/
http://www.wisdom.weizmann.ac.il/~vision/ssfmri2im/
https://doi.org/10.1016/J.MEDIA.2017.07.006
https://doi.org/10.1016/j.mri.2019.06.018
https://doi.org/10.1073/pnas.0911855107
https://doi.org/10.1073/pnas.0911855107
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.7910/DVN/25833
https://doi.org/10.7910/DVN/25833
https://doi.org/10.1016/j.neurobiolaging.2009.04.011
https://doi.org/10.1016/j.neurobiolaging.2009.04.011
https://doi.org/10.1016/j.neuroimage.2018.05.049
https://doi.org/10.1016/j.neuroimage.2018.05.049
https://doi.org/10.1016/j.tins.2017.10.001
https://doi.org/10.1016/j.neuroimage.2017.07.059
https://doi.org/10.1016/j.neuroimage.2017.07.059
https://doi.org/10.1148/radiology.216.3.r00au37672
https://doi.org/10.1148/radiology.216.3.r00au37672
https://doi.org/10.1007/s00330-015-3932-8
https://doi.org/10.1007/s00330-015-3932-8
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1038/mp.2013.78
https://doi.org/10.1038/mp.2013.78
https://doi.org/10.1017/S1041610209009405
https://doi.org/10.1017/S1041610209009405
https://doi.org/10.1093/cercor/bhn232
https://doi.org/10.1371/journal.pone.0052664
https://doi.org/10.1371/journal.pone.0052664
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.1093/schbul/sbm120
http://www.jmlr.org/proceedings/papers/v48/gal16.html
http://www.jmlr.org/proceedings/papers/v48/gal16.html


Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge,

MA: Mit Press. Retrieved from. http://www.deeplearningbook.org

Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O.,

Waskom, M. L., & Ghosh, S. S. (2011). Nipype: A flexible, lightweight

and extensible neuroimaging data processing framework in python.

Frontiers in Neuroinformatics, 5, 13. https://doi.org/10.3389/fninf.

2011.00013

Gorgolewski, K. J., Varoquaux, G., Rivera, G., Schwarz, Y., Ghosh, S. S.,

Maumet, C., … Margulies, D. S. (2015). NeuroVault.org: A web-based

repository for collecting and sharing unthresholded statistical maps of

the human brain. Frontiers in Neuroinformatics, 9, 8. https://doi.org/10.

3389/fninf.2015.00008

Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image align-

ment using boundary-based registration. NeuroImage, 48(1), 63–72.
https://doi.org/10.1016/J.NEUROIMAGE.2009.06.060

Hebert, L. E., Weuve, J., Scherr, P. A., & Evans, D. A. (2013). Alzheimer dis-

ease in the United States (2010–2050) estimated using the 2010 cen-

sus. Neurology, 80(19), 1778–1783. https://doi.org/10.1212/WNL.

0b013e31828726f5

Heckemann, R. A., Hartkens, T., Leung, K. K., Zheng, Y., Hill, D. L. G.,

Hajnal, J. V, & Daniel, R. (2003). Information extraction from medical

images: Developing an e–science application based on the Globus

toolkit. In Proceedings of UK e-Science all Hands Meeting.

Iglesias, J. E., Liu, C.-Y., Thompson, P. M., & Zhuowen, T. (2011). Robust

brain extraction across datasets and comparison with publicly available

methods. IEEE Transactions on Medical Imaging, 30(9), 1617–1634.
https://doi.org/10.1109/TMI.2011.2138152

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep net-

work training by reducing internal covariate shift. Retrieved from

http://arxiv.org/abs/1502.03167

Irimia, A., Torgerson, C. M., Goh, S.-Y. M., & Van Horn, J. D. (2015). Statis-

tical estimation of physiological brain age as a descriptor of senes-

cence rate during adulthood. Brain Imaging and Behavior, 9(4),

678–689. https://doi.org/10.1007/s11682-014-9321-0
Iscan, Z., Jin, T. B., Kendrick, A., Szeglin, B., Lu, H., Trivedi, M., …

DeLorenzo, C. (2015). Test-retest reliability of freesurfer measure-

ments within and between sites: Effects of visual approval process.

Human Brain Mapping, 36(9), 3472–3485. https://doi.org/10.1002/

hbm.22856

Ito, K., Fujimoto, R., Huang, T.-W., Chen, H.-T., Wu, K., Sato, K., … Aoki, T.

(2018). Performance Evaluation of Age Estimation from T1-Weighted

Images Using Brain Local Features and CNN. In 2018 40th Annual

International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC) (pp. 694–697). Piscataway, NJ: IEEE.

Jack, C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G.,

Harvey, D., … Weiner, M. W. (2008). The Alzheimer's disease neuroim-

aging initiative (ADNI): MRI methods. Journal of Magnetic Resonance

Imaging, 27(4), 685–691. https://doi.org/10.1002/jmri.21049

Jäncke, L., Mérillat, S., Liem, F., & Hänggi, J. (2015). Brain size, sex, and the

aging brain. Human Brain Mapping, 36(1), 150–169. https://doi.org/10.
1002/hbm.22619

Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimi-

zation for the robust and accurate linear registration and motion correc-

tion of brain images improved optimization for the robust and accurate

linear registration and motion correction of brain images. NeuroImage,

17(2015), 825–841. https://doi.org/10.1006/nimg.2002.1132

Kamnitsas, K., Chen, L., & Ledig, C. (2015). Multi-scale 3D convolutional

neural networks for lesion segmentation in brain MRI. Ischemic Stroke.

Retrieved from http://www.isles-challenge.org/ISLES2015/pdf/

20150930_ISLES2015_Proceedings.pdf#page=21

Kandel, B. M., Wolk, D. A., Gee, J. C., & Avants, B. (2013). Predicting cogni-

tive data from medical images using sparse linear regression. Informa-

tion Processing in Medical Imaging, 7917, 86–97. https://doi.org/10.
1007/978-3-642-38868-2_8

Kendall, A., & Gal, Y. (2017). What uncertainties do we need in Bayesian

deep learning for computer vision? In Advances in Neural Information

Processing Systems (pp. 5575–5585). Montreal, Canada: NIPS 2018.

Kennedy, D. N., Haselgrove, C., Hodge, S. M., Rane, P. S., Makris, N., &

Frazier, J. A. (2012). CANDIShare: A resource for pediatric neuroimag-

ing data. Neuroinformatics, 10(3), 319–322. https://doi.org/10.1007/
s12021-011-9133-y

Koen, J. D., & Yonelinas, A. P. (2014, September 15). The effects of healthy

aging, amnestic mild cognitive impairment, and Alzheimer's disease on

recollection and familiarity: A meta-analytic review. Neuropsychology

Review, 24, 332–354. https://doi.org/10.1007/s11065-014-9266-5
Kuncheva, L. I., & Whitaker, C. J. (2003). Measures of diversity in classifier

ensembles and their relationship with the ensemble accuracy. Machine

Learning, 51(2), 181–207. https://doi.org/10.1023/A:1022859003006
Laird, A. R., Bzdok, D., Kurth, F., Fox, P. T., & Eickhoff, S. B. (2011). Activa-

tion likelihood estimation meta-analysis revisited. NeuroImage, 59(3),

2349–2361. https://doi.org/10.1016/j.neuroimage.2011.09.017

Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable

predictive uncertainty estimation using deep ensembles. Retrieved

from http://papers.nips.cc/paper/7219-simple-and-scalable-predictive-

uncertainty-estimation-using-deep-ensembles

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86

(11), 2278–2323. https://doi.org/10.1109/5.726791
Ledig, C., Schuh, A., Guerrero, R., Heckemann, R. A., & Rueckert, D. (2018).

Structural brain imaging in Alzheimer's disease and mild cognitive

impairment: Biomarker analysis and shared morphometry database.

Scientific Reports, 8(1), 11258. https://doi.org/10.1038/s41598-018-

29295-9

Lee, S., Purushwalkam, S., Cogswell, M., Crandall, D., & Batra, D. (2015).

Why M heads are better than one: Training a diverse ensemble of

deep networks. ArXiv. Retrieved from http://arxiv.org/abs/1511.

06314

Lemaitre, H., Goldman, A. L., Sambataro, F., Verchinski, B. A., Meyer-

Lindenberg, A., Weinberger, D. R., & Mattay, V. S. (2012). Normal age-

related brain morphometric changes: Nonuniformity across cortical

thickness, surface area and gray matter volume? Neurobiology of Aging,

33(3), 617.e1–617.e9. https://doi.org/10.1016/j.neurobiolaging.2010.
07.013

Li, G., Liu, M., Sun, Q., Shen, D., & Wang, L. (2018). Early diagnosis of

autism disease by multi-channel CNNs. In Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics) (Vol. 11046 LNCS, pp. 303–309). Hei-

delberg, Germany: Springer Verlag. https://doi.org/10.1007/978-3-

030-00919-9_35

Liem, F., Varoquaux, G., Kynast, J., Beyer, F., Masouleh, S. K.,

Huntenburg, J. M., … Margulies, D. S. (2016). Predicting brain-age from

multimodal imaging data captures cognitive impairment. NeuroImage,

148, 179–188. https://doi.org/10.1016/j.neuroimage.2016.11.005

Liu, W., Wei, D., Chen, Q., Yang, W., & Meng, J. (2017). Data descriptor:

Longitudinal test–retest neuroimaging data from healthy young adults

in Southwest China. Scientific Data, 4, 1–9. https://doi.org/10.1038/
sdata.2017.17

Lorenzi, M., Pennec, X., Frisoni, G. B., & Ayache, N. (2015). Disentangling

normal aging from Alzheimer's disease in structural magnetic reso-

nance images. Neurobiology of Aging, 36(S1), S42–S52. https://doi.org/
10.1016/j.neurobiolaging.2014.07.046

Lorio, S., Kherif, F., Ruef, A., Melie-Garcia, L., Frackowiak, R., Ashburner, J.,

… Draganski, B. (2016). Neurobiological origin of spurious brain mor-

phological changes: A quantitative MRI study. Human Brain Mapping,

37(5), 1801–1815. https://doi.org/10.1002/hbm.23137

Marcus, D. S., Fotenos, A. F., Csernansky, J. G., Morris, J. C., &

Buckner, R. L. (2010). Open access series of imaging studies: Longitu-

dinal MRI data in nondemented and demented older adults. Journal of

3250 LEVAKOV ET AL.

http://www.deeplearningbook.org
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.3389/fninf.2015.00008
https://doi.org/10.3389/fninf.2015.00008
https://doi.org/10.1016/J.NEUROIMAGE.2009.06.060
https://doi.org/10.1212/WNL.0b013e31828726f5
https://doi.org/10.1212/WNL.0b013e31828726f5
https://doi.org/10.1109/TMI.2011.2138152
http://arxiv.org/abs/1502.03167
https://doi.org/10.1007/s11682-014-9321-0
https://doi.org/10.1002/hbm.22856
https://doi.org/10.1002/hbm.22856
https://doi.org/10.1002/jmri.21049
https://doi.org/10.1002/hbm.22619
https://doi.org/10.1002/hbm.22619
https://doi.org/10.1006/nimg.2002.1132
http://www.isles-challenge.org/ISLES2015/pdf/20150930_ISLES2015_Proceedings.pdf#page=21
http://www.isles-challenge.org/ISLES2015/pdf/20150930_ISLES2015_Proceedings.pdf#page=21
https://doi.org/10.1007/978-3-642-38868-2_8
https://doi.org/10.1007/978-3-642-38868-2_8
https://doi.org/10.1007/s12021-011-9133-y
https://doi.org/10.1007/s12021-011-9133-y
https://doi.org/10.1007/s11065-014-9266-5
https://doi.org/10.1023/A:1022859003006
https://doi.org/10.1016/j.neuroimage.2011.09.017
http://papers.nips.cc/paper/7219-simple-and-scalable-predictive-uncertainty-estimation-using-deep-ensembles
http://papers.nips.cc/paper/7219-simple-and-scalable-predictive-uncertainty-estimation-using-deep-ensembles
https://doi.org/10.1109/5.726791
https://doi.org/10.1038/s41598-018-29295-9
https://doi.org/10.1038/s41598-018-29295-9
http://arxiv.org/abs/1511.06314
http://arxiv.org/abs/1511.06314
https://doi.org/10.1016/j.neurobiolaging.2010.07.013
https://doi.org/10.1016/j.neurobiolaging.2010.07.013
https://doi.org/10.1007/978-3-030-00919-9_35
https://doi.org/10.1007/978-3-030-00919-9_35
https://doi.org/10.1016/j.neuroimage.2016.11.005
https://doi.org/10.1038/sdata.2017.17
https://doi.org/10.1038/sdata.2017.17
https://doi.org/10.1016/j.neurobiolaging.2014.07.046
https://doi.org/10.1016/j.neurobiolaging.2014.07.046
https://doi.org/10.1002/hbm.23137


Cognitive Neuroscience, 22(12), 2677–2684. https://doi.org/10.1162/
jocn.2009.21407

Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G., Morris, J. C., &

Buckner, R. L. (2007). Open access series of imaging studies (OASIS):

Cross-sectional MRI data in young, middle aged, nondemented, and

demented older adults. Journal of Cognitive Neuroscience, 19(9),

1498–1507. https://doi.org/10.1162/jocn.2007.19.9.1498
Marek, K., Jennings, D., Lasch, S., Siderowf, A., Tanner, C., Simuni, T., …

Taylor, P. (2011). The Parkinson progression marker initiative (PPMI).

Progress in Neurobiology, 95(4), 629–635. https://doi.org/10.1016/j.
pneurobio.2011.09.005

Mayer, A. R., Ruhl, D., Merideth, F., Ling, J., Hanlon, F. M., Bustillo, J., &

Cañive, J. (2013). Functional imaging of the hemodynamic sensory gat-

ing response in schizophrenia. Human Brain Mapping, 34(9),

2302–2312. https://doi.org/10.1002/hbm.22065

Mazziotta, J. C., Toga, A. W., Evans, A., Fox, P., & Lancaster, J. (1995). A

probabilistic atlas of the human brain: Theory and rationale for its

development. NeuroImage, 2(2), 89–101. https://doi.org/10.1006/

nimg.1995.1012

Mikhael, S. S., & Pernet, C. (2019). A controlled comparison of thickness,

volume and surface areas from multiple cortical parcellation packages.

BMC Bioinformatics, 20(1), 55. https://doi.org/10.1186/s12859-019-

2609-8

Monté-Rubio, G. C., Falcón, C., Pomarol-Clotet, E., & Ashburner, J. (2018).

A comparison of various MRI feature types for characterizing whole

brain anatomical differences using linear pattern recognition methods.

NeuroImage, 178, 753–768. https://doi.org/10.1016/j.neuroimage.

2018.05.065

Mori, S., Wakana, S., van Zijl, P., & Nagae-Poetscher, L. (2005). MRI atlas of

human white matter. Amsterdam: Elsevier.

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted

Boltzmann machines. Proceedings of the 27th International Conference

on Machine Learning, 3, 807–814.
Neyshabur, B., Tomioka, R., & Srebro, N. (2015). In search of the real

inductive bias: On the role of implicit regularization in deep learning.

In 3rd International Conference on Learning Representations, ICLR

2015—Workshop Track Proceedings. Retrieved from http://arxiv.org/

abs/1412.6614

Olah, C., Satyanarayan, A., Johnson, I., Carter, S., Schubert, L., Ye, K., &

Mordvintsev, A. (2018). The building blocks of interpretability. Distill, 3

(3), e10.

Pereira, S., Pinto, A., Alves, V., & Silva, C. A. (2016). Brain tumor segmenta-

tion using convolutional neural networks in MRI images. IEEE Transac-

tions on Medical Imaging, 35(5), 1240–1251. https://doi.org/10.1109/
TMI.2016.2538465

Pinel, P., Fauchereau, F., Moreno, A., Barbot, A., Lathrop, M., Zelenika, D.,

… Dehaene, S. (2012). Genetic variants of FOXP2 and

KIAA0319/TTRAP/THEM2 locus are associated with altered brain

activation in distinct language-related regions. The Journal of Neurosci-

ence: The Official Journal of the Society for Neuroscience, 32(3),

817–825. https://doi.org/10.1523/JNEUROSCI.5996-10.2012

Poldrack, R. A., Congdon, E., Triplett, W., Gorgolewski, K. J., Karlsgodt, K.

H., Mumford, J. A., … Bilder, R. (2016). A phenome-wide examination

of neural and cognitive function. BioRxiv, 059733.

Qi, Q., Du, B., Zhuang, M., Huang, Y., & Ding, X. (2018). Age estimation

from MR images via 3D convolutional neural network and densely

connect. In Lecture Notes in Computer Science (Vol. 11307 LNCS,

pp. 410–419). Cham: Springer.

Raz, N., Ghisletta, P., Rodrigue, K. M., Kennedy, K. M., & Lindenberger, U.

(2010). Trajectories of brain aging in middle-aged and older adults:

Regional and individual differences. NeuroImage, 51(2), 501–511.
https://doi.org/10.1016/J.NEUROIMAGE.2010.03.020

Sagi, O., & Rokach, L. (2018). Ensemble learning: A survey. Wiley Interdisci-

plinary Reviews: Data Mining and Knowledge Discovery, 8(4), e1249.

https://doi.org/10.1002/widm.1249

Shamir, L., & Long, J. (2016). Quantitative machine learning analysis of brain

MRI morphology throughout aging. Current Aging Science, 9, 310–317.
Retrieved from. http://www.ingentaconnect.com/contentone/ben/cas/

2016/00000009/00000004/art00009

Simard, P. Y., Steinkraus, D., & Platt, J. (2003). Best practices for con-

volutional neural networks applied to visual document analysis. In Pro-

ceedings of the Seventh International Conference on Document Analysis

and Recognition-Volume 2 (p. 958). Washington, DC: IEEE Computer

Society Press.

Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep inside con-

volutional networks: Visualising image classification models and

saliency maps. Retrieved from http://arxiv.org/abs/1312.6034

Singh, S., Hoiem, D., & Forsyth, D. (2016). Swapout: Learning an ensemble

of deep architectures. Retrieved from http://papers.nips.cc/paper/

6205-swapout-learning-an-ensemble-of-deep-architectures

Smilkov, D., Thorat, N., Kim, B., Viégas, F., & Wattenberg, M. (2017).

SmoothGrad: Removing noise by adding noise. ArXiv. Retrieved from

https://arxiv.org/abs/1706.03825

Sowell, E. R., Thompson, P. M., & Toga, A. W. (2004). Mapping changes in

the human cortex throughout the span of life. Neuroscientist. Thousand

Oaks, CA: Sage.

Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striv-

ing for simplicity: The all convolutional net. In 3rd International Confer-

ence on Learning Representations, ICLR 2015—Workshop Track

Proceedings. Retrieved from http://lmb.informatik.uni-freiburg.de/

Publications/2015/DB15a

Storsve, A. B., Fjell, A. M., Tamnes, C. K., Westlye, L. T., Overbye, K.,

Aasland, H. W., & Walhovd, K. B. (2014). Differential longitudinal

changes in cortical thickness, surface area and volume across the adult

life span: Regions of accelerating and decelerating change. The Journal

of Neuroscience: The Official Journal of the Society for Neuroscience, 34

(25), 8488–8498. https://doi.org/10.1523/JNEUROSCI.0391-14.

2014

Tanno, R., Worrall, D., Kaden, E., Ghosh, A., Grussu, F., Bizzi, A., …
Alexander, D. C. (2019). Uncertainty quantification in deep learning

for safer neuroimage enhancement. Retrieved from http://arxiv.org/

abs/1907.13418

Tzeng, E., Hoffman, J., Saenko, K., & Darrell, T. (2017). Adversarial dis-

criminative domain adaptation. In Proceedings—30th IEEE Conference

on Computer Vision and Pattern Recognition, CVPR 2017

(pp. 2962–2971). Piscataway, NJ: IEEE. https://doi.org/10.1109/

CVPR.2017.316

Valizadeh, S. A., Hänggi, J., Mérillat, S., & Jäncke, L. (2017). Age prediction

on the basis of brain anatomical measures. Human Brain Mapping, 38

(2), 997–1008. https://doi.org/10.1002/hbm.23434

van der Walt, S., Yu, T., Gouillart, E., Yager, N., Nunez-Iglesias, J.,

Schönberger, J. L., … Warner, J. D. (2014). Scikit-image: Image

processing in python. PeerJ, 2, e453. https://doi.org/10.7717/

peerj.453

Vanasse, T. J., Fox, P. M., Barron, D. S., Robertson, M., Eickhoff, S. B.,

Lancaster, J. L., & Fox, P. T. (2018). BrainMap VBM: An environment

for structural meta-analysis. Human Brain Mapping, 39(8), 3308–3325.
https://doi.org/10.1002/hbm.24078

Vinke, E. J., de Groot, M., Venkatraghavan, V., Klein, S., Niessen, W. J.,

Ikram, M. A., & Vernooij, M. W. (2018). Trajectories of imaging markers

in brain aging: The Rotterdam study. Neurobiology of Aging, 71, 32–40.
https://doi.org/10.1016/j.neurobiolaging.2018.07.001

Voevodskaya, O., Simmons, A., Nordenskjöld, R., Kullberg, J., Ahlström, H.,

Lind, L., … Alzheimer's Disease Neuroimaging Initiative, A. D. N.

(2014). The effects of intracranial volume adjustment approaches on

multiple regional MRI volumes in healthy aging and Alzheimer's dis-

ease. Frontiers in Aging Neuroscience, 6, 264. https://doi.org/10.3389/

fnagi.2014.00264

Wang, J., Knol, M. J., Tiulpin, A., Dubost, F., de Bruijne, M., Vernooij, M. W.,

… Roshchupkin, G. V. (2019). Gray matter age prediction as a biomarker

LEVAKOV ET AL. 3251

https://doi.org/10.1162/jocn.2009.21407
https://doi.org/10.1162/jocn.2009.21407
https://doi.org/10.1162/jocn.2007.19.9.1498
https://doi.org/10.1016/j.pneurobio.2011.09.005
https://doi.org/10.1016/j.pneurobio.2011.09.005
https://doi.org/10.1002/hbm.22065
https://doi.org/10.1006/nimg.1995.1012
https://doi.org/10.1006/nimg.1995.1012
https://doi.org/10.1186/s12859-019-2609-8
https://doi.org/10.1186/s12859-019-2609-8
https://doi.org/10.1016/j.neuroimage.2018.05.065
https://doi.org/10.1016/j.neuroimage.2018.05.065
http://arxiv.org/abs/1412.6614
http://arxiv.org/abs/1412.6614
https://doi.org/10.1109/TMI.2016.2538465
https://doi.org/10.1109/TMI.2016.2538465
https://doi.org/10.1523/JNEUROSCI.5996-10.2012
https://doi.org/10.1016/J.NEUROIMAGE.2010.03.020
https://doi.org/10.1002/widm.1249
http://www.ingentaconnect.com/contentone/ben/cas/2016/00000009/00000004/art00009
http://www.ingentaconnect.com/contentone/ben/cas/2016/00000009/00000004/art00009
http://arxiv.org/abs/1312.6034
http://papers.nips.cc/paper/6205-swapout-learning-an-ensemble-of-deep-architectures
http://papers.nips.cc/paper/6205-swapout-learning-an-ensemble-of-deep-architectures
https://arxiv.org/abs/1706.03825
http://lmb.informatik.uni-freiburg.de/Publications/2015/DB15a
http://lmb.informatik.uni-freiburg.de/Publications/2015/DB15a
https://doi.org/10.1523/JNEUROSCI.0391-14.2014
https://doi.org/10.1523/JNEUROSCI.0391-14.2014
http://arxiv.org/abs/1907.13418
http://arxiv.org/abs/1907.13418
https://doi.org/10.1109/CVPR.2017.316
https://doi.org/10.1109/CVPR.2017.316
https://doi.org/10.1002/hbm.23434
https://doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
https://doi.org/10.1002/hbm.24078
https://doi.org/10.1016/j.neurobiolaging.2018.07.001
https://doi.org/10.3389/fnagi.2014.00264
https://doi.org/10.3389/fnagi.2014.00264


for risk of dementia. Proceedings of the National Academy of Sciences,

116(42), 21213–21218. https://doi.org/10.1073/pnas.1902376116
Woolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S.,

Behrens, T., … Smith, S. M. (2009). Bayesian analysis of neuroimaging

data in FSL. NeuroImage, 45(1), S173–S186. https://doi.org/10.1016/j.
neuroimage.2008.10.055

Yang, C., Rangarajan, A., & Ranka, S. (2018). Global Model Interpretation

via Recursive Partitioning. 2018 IEEE 20th International Conference

on High Performance Computing and Communications; IEEE 16th

International Conference on Smart City; IEEE 4th International Con-

ference on Data Science and Systems (HPCC/SmartCity/DSS),

pp. 1563–1570. https://doi.org/10.1103/PhysRevB.80.081304
Ziegler, G., Dahnke, R., Jäncke, L., Yotter, R. A., May, A., & Gaser, C. (2012).

Brain structural trajectories over the adult lifespan. Human Brain Map-

ping, 33(10), 2377–2389. https://doi.org/10.1002/hbm.21374

Zou, K. H., Warfield, S. K., Bharatha, A., Tempany, C. M. C., Kaus, M. R.,

Haker, S. J., … Kikinis, R. (2004). Statistical validation of image segmen-

tation quality based on a spatial overlap index. Academic Radiology, 11

(2), 178–189. https://doi.org/10.1016/S1076-6332(03)00671-8

Zuo, X.-N., Anderson, J. S., Bellec, P., Birn, R. M., Biswal, B. B., Blautzik, J.,

… Song, X. W. (2014). An open science resource for establishing reli-

ability and reproducibility in functional connectomics. Scientific Data,

1, 140049. https://doi.org/10.1038/sdata.2014.49

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Levakov G, Rosenthal G, Shelef I,

Raviv TR, Avidan G. From a deep learning model back to the

brain—Identifying regional predictors and their relation to

aging. Hum Brain Mapp. 2020;41:3235–3252. https://doi.org/

10.1002/hbm.25011

3252 LEVAKOV ET AL.

https://doi.org/10.1073/pnas.1902376116
https://doi.org/10.1016/j.neuroimage.2008.10.055
https://doi.org/10.1016/j.neuroimage.2008.10.055
https://doi.org/10.1103/PhysRevB.80.081304
https://doi.org/10.1002/hbm.21374
https://doi.org/10.1016/S1076-6332(03)00671-8
https://doi.org/10.1038/sdata.2014.49
https://doi.org/10.1002/hbm.25011
https://doi.org/10.1002/hbm.25011

	From a deep learning model back to the brain-Identifying regional predictors and their relation to aging
	1  INTRODUCTION
	1.1  Predicting age from structural brain imaging using machine learning
	1.2  Application of deep convolutional neural network for predicting ``brain age´´
	1.3  Model interpretability-Which brain regions underlie a given prediction?
	1.4  The current study

	2  MATERIALS AND METHODS
	2.1  Datasets
	2.2  Data preprocessing
	2.3  Data augmentation
	2.4  CNN architecture
	2.5  The ensemble model
	2.6  Performance metrics
	2.7  Ensemble variability and uncertainty estimation
	2.8  Individual explanation maps
	2.9  Aggregating explanation maps across samples
	2.10  Assessing the similarity of explanation maps within the ensemble
	2.11  Relating contribution to specific tissues and brain structures
	2.12  Validating the population-based inference scheme
	2.12.1  Replicability of the produced explanation map as a function of sample size
	2.12.2  Similarity between explanation maps and voxel-based morphometric meta-analysis
	2.12.3  Specificity of the regions obtained in the analysis to the employment of the current model


	3  RESULTS
	3.1  Estimating ``brain age´´
	3.2  Ensemble variability and uncertainty estimation
	3.3  From the model to the brain-A novel inference scheme
	3.3.1  Assessing the similarity of explanation maps within the ensemble
	3.3.2  Mapping the anatomical regions underlying ``brain age´´ prediction

	3.4  Validating the population-based inference scheme
	3.4.1  Replicability of the produced explanation map as a function of sample size
	3.4.2  The similarity between explanation maps and voxel-based morphometric meta-analysis
	3.4.3  Specificity of the regions obtained in the analysis to the employment of the current model


	4  DISCUSSION
	4.1  Identifying the brain regions underlying age prediction using population-based explanation maps
	4.2  Reducing noise or averaging over true relevant population differences?
	4.3  The ventricles and cisterns as biomarkers for brain aging
	4.4  Ensemble diversity among models' population-based explanation maps
	4.5  Limitations
	4.6  Population-level explanation maps: Future directions
	4.7  Conclusions

	ACKNOWLEDGMENTS
	  DATA AVAILABILITY STATEMENT

	REFERENCES


