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ABSTRACT
Studies of soft tissue, cells and original biomolecular constituents preserved in fossil
vertebrates have increased greatly in recent years. Here we report preservation of ‘skin’
with chemical and molecular characterization from a three-dimensionally preserved
caudal portion of an aspidorhynchid Cretaceous fish from the equatorial Barremian
of Colombia, increasing the number of localities for which exceptional preservation is
known. We applied several analytical techniques including SEM-EDS, FTIR and ToF-
SIMS to characterize the micromorphology and molecular and elemental composition
of this fossil. Here, we show that the fossilized ‘skin’ exhibits similarities with those from
extant fish, including the wrinkles after suffering compression stress and flexibility,
as well as architectural and tissue aspects of the two main layers (epidermis and
dermis). This similarity extends also to the molecular level, with the demonstrated
preservation of potential residues of original proteins not consistent with a bacterial
source. Our results show a potential preservation mechanism where scales may have
acted as an external barrier and together with an internal phosphate layer resulting
from the degradation of the dermis itself creating an encapsulated environment for the
integument.

Subjects Biochemistry, Paleontology, Zoology
Keywords Aspidorhynchidae, Barremian, Zapatoca, South America, Soft-tissue, Molecular
Paleontology

INTRODUCTION
Exceptional preservation in the fossil record is expressed in a wide range of structures
including hair, cells, blood vessels, claw sheaths, feathers, pycnofibers, muscle remains, skin
and even the potential remains of original biomolecular constituents (DNA, proteins, lipids)
(Lingham-Soliar & Plodowski, 2010; Cadena, 2016; Cadena & Schweitzer, 2012 Cleland et
al., 2015; McNamara et al., 2018a; Schweitzer, 2011; Wiemann et al., 2018; Bailleul et al.,
2020) associated with these structures. The skin is the largest organ of the a vertebrate
body, which encloses or covers their entire body. Numerous integumentary derivatives
are located within the epithelial sheet itself (glands) or extend above its surface (teeth,
scales, feathers, hairs, etc.) (Chernova, 2009). The skin of vertebrates and its derivate
structures has been shown to have high preservation potential in the fossil record, and
has been reported in dinosaurs, pterosaurs, snakes, frogs and birds (McNamara et al.,
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2018a; McNamara et al., 2016; McNamara et al., 2009; McNamara et al., 2018b; Varejão et
al., 2019). Similarly, fishes are also covered by a relatively flexible skin, which in almost all
extant and extinct groups is associated with hard scales composed of collagen I, calcium
salts (Sionkowska & Kozlowska, 2014), ganoine and cosmine. Preservation of skin in fossil
fish has been documented in many Konservat Lagerstätte sites, including the Messel
Formation, Germany (Micklich, 2002), Huajiying and Yixian formations (Xu et al., 2020);
and Romualdo Formation (previously Santana Formation) of northeastern Brazil (Kellner
et al., 2013;Maisey, 1991;Martill, 1989; Fig. 1D).

Despite the abundant recent discoveries of fossil vertebrates from the Cretaceous
of Colombia (Cadena, 2015; Cadena & Parham, 2015; Cadena et al., 2019; Carballido et
al., 2015; Maxwell et al., 2019; Noé & Gómez-Pérez, 2020; Páramo-Fonseca et al., 2016;
Vernygora et al., 2018), the exceptional preservation of soft tissue or their potential original
components is still rarely reported for most of them, with the exception of the recently
described gravid marine turtle from the Early Cretaceous of Villa de Leyva (Cadena et al.,
2019). Here we report a caudal fragment of an aspidorhynchid fossil fish recovered from the
lower segment of the Paja Formation from Zapatoca, Santander, Colombia (Figs. 1A–1C)
that constitutes the first specimen of the paleontological collection at Universidad del
Rosario in Bogotá. We have applied multiple analytical techniques to interrogate the
degree of preservation of its skin, including some of their potentially original biomolecular
constituents. Our finding not only expands the worldwide record of skin preserved in
Cretaceous vertebrates, but also constitutes the most equatorial example of it (Fig. 1D)
considering that Colombia has barely changed its latitude since the Early Cretaceous
(Fig. S1).

MATERIALS & METHODS
Fossil material Collection and Geological framework. UR-CP-0001 specimen was
collected by E-A. Cadena in 2016, during a short expedition to Zapatoca. The fossil was
found approximately 100 m north-west from the Radio Lenguerke station antenna region,
Zapalonga locality (6◦48′28.94′′N, 73◦16′08.23′′W, 1703 m) (Fig. 1A), inside a gray-purple
sequence dominated by mudstones with abundant occurrence of large concretions and
interbedded layers of fossiliferous limestones (Fig. 1B). This sequence represents the most
basal member of the Paja Formation in this zone, a fewmeters above the last limestone bank
of the underlying Rosablanca Formation. Approximately 35 m of stratigraphic column
were measured and described (Fig. 1C).

The fossil was collected using sterile nitrile gloves and wrapped in aluminum foil, and
placed in a plastic bag with silica gel small packets to control humidity. To avoid any
contamination, the fossil has not been treated mechanically or chemically and always has
been manipulated using sterile nitrile gloves for measurements, photography or sampling
for analytical studies. Fieldwork and laboratory experiments permit granted by the Comité
de ética and the Dirección de Investigaciones of the Universidad del Rosario (IV-FCS018).
Specimen photography, internal observation andmeasurements. General views of
UR-CP-0001 specimen were obtained using a Leica-EZ4-HD and Nikon SMZ1270
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Figure 1 Locality and other reported exceptionally preserved skin fossils from the Cretaceous. (A)
map of Colombia showing in orange the Santander department, and the fish fossil site (Zapalonga local-
ity) very near Zapatoca. (B) outcrop view at the fish fossil site, showing the presence of mudstones and
large concretions. (C) stratigraphic column along with Zapalonga locality, indicating the (continued on
next page. . . )

Full-size DOI: 10.7717/peerj.9479/fig-1
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Figure 1 (. . .continued)
horizon where UR-CP-0001 was found. (D) world map with remarkable findings of exceptional preserved
skin fossils through the Cretaceous: (1) Barremian, Paja Fm, Colombia (this study); (2) Barremian, Cal-
izas de la Huérgina Fm, Spain (Martin et al., 2015); (3) Barremian-Aptian, Huajiying and Yixian forma-
tions (Xu et al., 2020) Yixian Fm, China (Lingham-Soliar & Plodowski, 2010); (4) Aptian, Clearwater Fm,
Canada (Brown et al., 2017); (5) Aptian-Albian, Romulado Fm, Brazil (Martill, 1988); (6) Aptian-Albian,
Haman Fm, South Korea (Paik, Kim & Huh, 2010); (7) Albian, Pietraroja, Italy (Signore et al., 2005); (8)
Cenomanian, Hadjula, Lebanon (Caldwell & Sasso, 2004); (9) Cenomanian, Nobrara Fm, Kansas, United
States (Lindgren, Everhart & Caldwell, 2011a); (10) Campanian, Auca Mahuevo, Argentina (Coria & Chi-
appe, 2007); (11) Campanian-Maastrichtian, Fruitland Fm, New Mexico, United States (Hall, Wolberg &
West, 1988); (12) Maastrichtian, Hell Creek Fm, North Dakota, United States (Manning et al., 2009); (13)
Maastrichtian Harrana, Jordan (Lindgren, Kaddumi & Polcyn, 2013); (14) Maastrichtian, Sânpetru Fm,
Romania (Grellet-Tinner et al., 2012).

stereomicroscopes coupled with cameras. Measurements of the specimen were obtained
using calipers, always wearing nitrile gloves during its manipulation. The specimen was
scanned using computer tomography (CT-scan), Toshiba Aquilion at the Radiology unit
of Hospital Méderi, Bogotá, with the following parameters: voltage 120 kV, exposure 225
mAs, and voxel size 350 µm.
Transmitted and polarized light microscopy. In order to observe and obtain microscopic
details of the preserved ‘skin’, small pieces of approximately five mm3 each were sampled
and treated separated with HCl 25% for 24 h and EDTA 0.5 M pH 8.0 for 4 days changing
daily to dissolve carbonate matrix and full demineralization. The isolated remains of ‘skin’
were rinsed 3 times with E-Pure water to remove HCl and EDTA, then were mounted
in glass slides, observed and photographed using a Nikon ECLIPSE-80i transmitted-light
microscope and an Olympus CX-31 polarized microscope. Samples were finally transferred
to sterilized containers for Fourier-transform infrared spectroscopy (FTIR) analyses.
FTIR spectroscopy. Samples from an extant Orechromis sp. (Mojarra fish), and four
samples from the UR-CP-0001 fossil fish (‘skin’ from HCl, EDTA treatments, ‘skin’
untreated and infilling matrix) were analyzed. The FTIR spectra were collected in the mid-
infrared range of 4,000–600 cm−1 wavelength using a Bruker Optics - ALPHA ZnSe FTIR
spectrometer at the Biomedical Engineering Lab of Universidad de los Andes, Bogotá,
Colombia. Between each analysis, the crystal and sample holder of the spectrometer
were cleaned up with isopropanol and standardized with an ‘‘air’’ measurement in
order to reduce rovibration absorptions of carbon dioxide present in the ambient air.
Measurements were repeated twice for each of the samples. For the ‘skin’ untreated
spectrum a deconvolution was performed for the 1,450–1,800 cm−1 range in order to find
out the specific peaks associated to the vibrational band frequencies of Amide I and II,
similar as described in Kong & Yu (2007).
Scanning electronmicroscopy and elemental analysis (SEM-EDS). Four different regions
of the fossil fish were sampled for Scanning Electron Microscope (SEM)-coupled with
Energy Dispersive X-ray Spectroscopy (EDS) observation and characterization, taking
∼5 mm3 of each (scale ‘skin’, and two different regions of the infilling matrix exhibiting
different coloration). Samples were mounted in sterile carbon stubs and storage in sterile
boxes prior to the SEM-EDS analyses, which were performed at the Microscopy Core
Facility of Universidad de los Andes, Bogotá, Colombia. Samples were analyzed without
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adding any coating. Imaging and map elemental composition were obtained at 10 kV using
a JEOL-JSM-6490 LV SEM, while the point elemental composition was performed at 10
kV using a TESCAN-Lyra3 SEM.
Time of Flight Secondary Ions Mass Spectrometry (ToF-SIMS). Two samples from the
UR-CP-0001, an untreated (fresh) and an HCl treated were mounted in sterilized glass and
sent to the Analytical Instrumentation Facility (AIF) of North Carolina State University,
Raleigh, North Carolina. ToF-SIMS analyses were conducted using a TOF SIMS V (ION
TOF, Inc. Chestnut Ridge, NY) instrument equipped with a Binm+ (n= 1–5, m =1, 2)
liquid metal ion gun, Cs+ sputtering gun and electron flood gun for charge compensation.
Both the Bi and Cs ion columns are oriented at 45◦ with respect to the sample surface
normal, with at least two different regions of the sample being analyzed. The instrument
vacuum system consists of a load lock for rapid sample loading and an analysis chamber,
separated by the gate valve. The analysis chamber pressure is maintained below 5.0× 10−9

mbar to avoid contamination of the surfaces to be analyzed.
For high mass resolution spectra acquired in this study, a pulsed Bi3+ primary ion beam

at 25 keV impact energy with less than 1 ns pulse width was used. An electron gun was used
to prevent charge buildup on the insulting sample surfaces. The total accumulated primary
ion dose for data acquisition was less than 1 ×1013 ions/cm2, an amount of ions which is
within the static SIMS regime. The mass resolution on Si wafer is about ∼8,000 m/1m at
29AMU. For high lateral resolution mass spectral images acquired in this study, a Burst
Alignment setting of 25 keV Bi3+ ion beam was used to raster a 500 µm by 500 µm area.
The negative secondary ion mass spectra obtained were calibrated using C−, O−, OH−,
Cn
−, respectively. The positive secondary ion mass spectra were calibrated using H+, C+,

C2H3
+, C3H5

+, C4H7
+.

RESULTS
Systematic Paleontology

Order ASPIDORHYNCHIFORMES Bleeker, 1859
Family ASPIDORHYNCHIDAE Nicholson and Lydekker, 1889
Genus and Species Indet. (Fig. 2)

Referred material.—UR-CP-0001, caudal portion of a fish, missing the fins.
Locality and Age.—Radio Lenguerke station antenna region, Zapalonga locality
(6◦48′28.94′′N, 73◦16′08.23′′W, 1,703 m), southeast of Zapatoca, Santander Department,
Colombia. The occurrence of the ammonoid Nicklesia pulchella (Fig. 1C) found in the
same layer and concretions cropping out at this locality, indicates an early Barremian age
for this locality following (Patarroyo, 2009; Patarroyo, 2020).
Remarks.—UR-CP-0001 is attributed to the Aspidorhynchidae family by the presence
of rectangular high hypertrophied flank and nearly subquadrate scales covering the
lateral and ventral sides of the trunk (Brito, 1997; Cantalice, Alvarado-Ortega & Brito,
2018) (Figs. 2G–2J). Although further taxonomic resolution is not possible owing to its
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Figure 2 UR-CP-0001, aspidorhynchid fossil fish specimen. (A–B) right lateral view. (C) interpreted
position of UR-CP-0001 in the body of an aspidorhynchid fish. (D) left lateral view. (E) ventral view. (F)
posterior view, showing the naturally preserved original 3-D volume. (G) detail of the originally preserved
‘skin’ with wrinkles and marks. (H) View of some of the ventral scales (vs) preserved. (I–J) elongated ven-
tral flank scales (vfs). five cm scale applies for A, D, E and F; two cm for G; 1.5 cm for H and one cm for I
and J.

Full-size DOI: 10.7717/peerj.9479/fig-2
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fragmentary preservation, the smooth surface of the flank scales resemble those of Vinctifer
comptoni (see Cantalice, Alvarado-Ortega & Brito, 2018), suggesting the possibility that
this organism represents a member of this taxon. Aspidorhynchids constitute an extinct
basal teleostean group from the Middle Jurassic to Late Cretaceous fishes that were highly
specialized and lived in shallow epicontinental marine environments throughout America,
Europe, Australia, Africa, Antarctica, and Middle East (Cantalice, Alvarado-Ortega & Brito,
2018). The occurrence of the aspidorhynchid Vinctifer has been previously reported from
exposures of the Paja Formation cropping out near Villa de Leyva, in the Department of
Boyacá (Noé & Gómez-Pérez, 2020; Schultze & Stöhr, 1996).
Description. UR-CP-0001 represents a caudal portion of a fish preserved three-
dimensionally (Figs. 2A–2D). The specimen is shaped like a truncated cone, which fits with
the shape of caudal portions of other aspidorhynchids previously reported (Fig. 2C). Also
the orientation of the scales impressions left on the skin exhibits a pattern typical of the
caudal region (Fig. 2B).

The fossil has a length of 128.5 mm, an anterior height of 84 mm, and a posterior height
of 40 mm. On the ventral surface there is a region that shows a scar that resembles the
potential insertion of the anal fin. The edges of the specimen are completely eroded and
no sign of bones is visible, which suggests that most of the anterior part of the specimen
was probably lost prior the fossilization

Most of the lateral surfaces of the specimen bear a brown, wrinkled layer preserving ‘skin’
and covered in some places by rectangular black scales (Fig. 2B). These are particularly
visible on the right side (Fig. 2G), whereas on the ventral side there are small, square marks
similar to the ventral scales (Figs. 2H, 2I). There are no vertebrae or spines visible on the
naturally broken anterior or posterior surfaces (Figs. 2E, 2F) nor are any visible internally
in Computed Tomography (CT) of the specimen, which is infilled by a heterogeneous
black-gray and yellow carbonate matrix (hereinafter infilling matrix) that is high-porosity
in some regions and reacts to HCl (Video S1).

After demineralization with either HCl or EDTA (Figs. 3A, 3B) isolated pieces of ‘skin’
from fragments of fossil material (handled following aseptic techniques (see methods) and
no glues or preservatives were applied) were observed under transmitted light microscope,
and were shown to be formed by two distinct layers. Similar layers were observed in the
dry skin of the extant Orechromis sp. (Mojarra fish) (Fig. 3C) together to some parallel
lines similar to fibers observed in the extant and the fossil (Figs. 3D, 3F, 3G). The most
basal layer is a thin semitransparent film-like sheet; this layer is covered by a brown to
black organic patchy layer, in some degraded regions form irregular reticular pattern (Figs.
3I–3K). The basal semitransparent layer is quite flexible when wet, but becomes rigid and
fragile when dried (Video S2). Under polarized light, the basal layer of the HCl-treated
samples exhibits small granules having a first order of birefringence, indicating a potential
phosphatic composition. The external organic brown layer covering this basal layer remains
of the same color when the polarizer is rotated (Figs. 3L–3M). Pieces treated with EDTA
showed higher degradation characterized by less and smaller fragments of both layers in
contrast to those treated with HCl (Fig. S1). We consider that the external organic brown
layer is consistent with the most exterior morphological feature of the skin, which is the
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Figure 3 Some ‘skin’ fragments after HCl treatment. (A) Light micrograph of preserved ‘skin’ after
treated with 15% HCl, without any infilling matrix left. (B) Enlargement of the organic patchy layer. (C–
D) Fragment of the dry skin of the extant Orechromis sp. (Mojarra fish) exhibiting two layers, wrinkles and
collagen fibers indicated by black arrows in d. (E) Wrinkled ‘skin’ of UR-CP-0001. (F–G) An UR-CP-0001
close-up of the two organic exterior layers and collagen fibers indicated by black arrows in g. (H) isolated
tissue fragment after EDTA treatment under transmitted-light microscopy showing collagen fibers. (I–K)
An UR-CP-0001 ‘skin’ fragment under transmitted-light microscope, exhibiting the two distinct inorganic
(base) and organic (exterior) layers. (L–M) An UR-CP-0001 ‘skin’ fragment under transmitted-light (L)
and polarized-light (M), showing low birefringence of the granular basal layer. One mm horizontal scale
applies for A, C, L and M; one mm vertical scale for E and F.

Full-size DOI: 10.7717/peerj.9479/fig-3
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epidermis (Elliott, 2011); also soft-tissue that are morphologically consistent with portions
of the dermis were recovered after EDTA treatment, exhibiting collagen fibers (Fig. 3H).
SEM-EDS results. The untreated, uncoated skin is very smooth and uniform under SEM,
which contrasts with the highly granular topography of the surrounding infilling matrix
(Figs. 4A–4D). Point elemental analyses show predominant occurrence of carbon and
nitrogen, with minor representation of calcium and phosphorus in the ‘skin’ layer (Fig.
4C). The infilling matrix contains predominantly calcium and carbon; no nitrogen was
observed (Fig. 4D). Similar results were obtained using elemental mapping of the ‘skin’
and matrix (Figs. 4G–4L); however, nitrogen was not clearly observed.
FTIR results. The FTIR spectrum of the untreated ‘skin’ sample showed distinct peaks at
2,931 cm−1, 1,740 cm−1, 1,591 cm−1 and around 1,120 cm−1. The EDTA-treated sample
showed high infrared absorption peaks at 1,703, 1,540 and 3,744 cm−1 respectively (Fig.
5A). The HCl-treated sample showed absorption peaks at 1,724, 1,142, and 1,027 cm−1

(Fig. 5A). The commercial extant fish skin sample (Orechromis sp. mojarra fish), exhibited
two well defined regions of peaks at 1,746, 1,647, 1,559, and 1,117 cm−1 and second one
with peaks at 3,319 and 2,931 cm−1. In contrast, the infilling matrix from UR-CP-0001
showed clear peaks at 1,428 cm−1, 1,030 cm−1 876 cm−1 and 711 cm−1 (Fig. 5A).
ToF-SIMS results. ToF-SIMS analyses of both the untreated fossil ‘skin’ and the HCl-
treated ‘skin’ show almost the same as each other negative and positive ions spectra (Fig. 6,
Fig. S2); in particular, in abundance of CN− (Fig. 6C) and CNO− (Fig. 6F) negative ions;
CH4N+ (Fig. 6D), C4H8N+ (Fig. 6E), C2H6N+ (Fig. 6G), and C3H6N+ (Fig. 6H) positive
ions were detected. All ions potentially derived from proteins are presented in Table 1, as
well as all raw data obtained from ToF-SIMS analyses can be found in Data S1.
Integrated compositional characterization of the ‘skin’ and comparisons. As we showed
using transmitted light, polarized light, and SEM-EDS microscopy (Figs. 3 and 4), the
preservation of the ‘skin’ inUR-CP-0001 resulted from an organic and inorganic interaction
forming two well defined layers (Figs. 3J, 3K), each of them exhibiting distinct physical and
chemical characteristics. The basal layer is translucent, granular to film-like in appearance.
This layer is interpreted as inorganic in composition, potentially phosphates, based on
its birefringence pattern (Fig. 3M), the abundance of phosphorus showed by the EDS
analysis (Fig. 4G, K-Phosphorus) together with the high absorbance peaks at 1,177 and
998 cm−1 observed in the FTIR spectra. These peaks are particularly intense in the UR-
CP-0001 sample (Fig. 5A), and were reported in an FTIR analysis of Vinctifer comptoni
from the Cretaceous of Brazil (Sousa Filho et al., 2016). Similar peaks at this region have
been interpreted as four infrared absorption bands of phosphate (vPO4

3− 1,120 cm−1,
v3a PO4

3−1112 cm−1, v3c PO4
3− 1,007 cm−1 and v1 PO4

3− 966 cm−1) (Lee et al., 2017).
Occurrence of phosphates and carbonates could be inferred from both SEM-EDS and
FTIR analyses (Figs. 4K, 4L ; 5A) in the infilling matrix similar to the typical calcium
carbonate FTIR spectrum (Bosch-Reig, Gimeno-Adelantado & Moya-Moreno, 2002). The
more external layer of the ‘skin’ in UR-CP-0001 is brown to black, and is consistent with
organic material when analyzed under polarized light (Fig. 3M). Its organic composition
is supported by the SEM-EDS point and map analyses, which showed particularly high
levels of carbon and nitrogen (Figs. 4C, 4H). Another remarkable finding that supports
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Figure 4 SEM-EDSmicrographs and elemental composition analyses of an untreated and uncoated
fragment of UR-CP-0001 ‘skin’. (A) Sample from UR-CP-0001 that contains ‘skin’ and infilling matrix.
(B) detail of samples mounted over the stub. (C) SEM micrograph with point EDS analysis in the ‘skin’
region, showing the abundant content of carbon and nitrogen, with less occurrence of calcium and phos-
phorous. (D) SEM micrograph with point EDS analysis in the infilling matrix, showing absence of nitro-
gene, dominance of carbon and calcium instead. (E) SEM micrograph of the ‘skin’-infilling matrix contact
before apply the EDS analysis. (F) Same micrograph as in (E) after EDS analysis, showing the extremely
wrinkled organic surface of the ‘skin’, remaining intact the infilling matrix region. (G) Outline of the ‘skin’
organic and phosphatic layer, as well as the infilling matrix showed in e, which is the base of the elemental
mapping. (H–L) Elemental mapping at 10 kV of the ‘skin’ infilling matrix region showing dominance of
carbon (H) and oxygen (I) at the organic region, and phosphorus (K) at the boundary between the ‘skin’
and the infilling matrix; silicon (J) is very scarce in both regions, and of calcium (L) is highly abundant in
the infilling-matrix.

Full-size DOI: 10.7717/peerj.9479/fig-4
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Figure 5 FTIR analyses of UR-CP-0001 and the extantOrechromis sp. (A) Composite FTIR spectra
(absorbance vertical axis, wavenumber horizontal axis) of different samples: Orechromis sp. (Mojarra fish)
(dark blue line) with interpretation of typical proteinaceous compounds (Amide A, I, II, III, v(C=O), C-H
stretch and a phosphate) with gray bands showing potential ranges based on Boatman et al. (2019); Kong
& Yu (2007); and Lee et al. (2017); an extant bacteria biofilms (black, yellow and purple lines) taken and
redraw from Lee et al. (2017) and Lindgren et al. (2011b); Vinctifer comptoni (orange line) from the Creta-
ceous of Brazil, taken and redrawn from Sousa Filho et al. (2016); UR-CP-0001 aspidorhynchid fossil fish
‘skin’ treated with EDTA (red line); treated with HCl (green line); untreated (light blue line); and UR-CP-
0001 infilling matrix (brown line). (B) Skin sample from Orechromis sp. (Mojarra fish) used for the FTIR
analysis and close-up of the skin sample analyzed from this specimen (C). (D) The region from which the
‘skin’ sample of UR-CP-0001 was taken, and a close-up of the ‘skin’ fragment after EDTA treatment under
a transmitted light microscope (E). (F) UR-CP-0001 sample used for the untreated analysis and a close-
up of the FTIR vibrational bands (red rectangle) in (A) after deconvolution (G). (H) UR-CP-0001 infilling
matrix sample and how it was grinded using a sterilized mortar and pestle (I) and placed in the FTIR ma-
chine (J).

Full-size DOI: 10.7717/peerj.9479/fig-5
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Figure 6 ToF-SIMS analyses of UR-CP-0001 ‘skin’. (A–B) Negative and Positive ion ToF-SIMS spec-
trum of UR-CP-0001 untreated sample (see circular photo of the sample), typical organic compounds oc-
cur in high intensities in both ions (raw data presented in Data S1). (C-H) ToF-SIMS images showing the
distribution of ions CN–(C), CH4N+ (D), C4H8N+ (E), CNO–(F), C2H6N+ (G) and C3H6N+ (H).

Full-size DOI: 10.7717/peerj.9479/fig-6
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Table 1 Species tentative assignments andm/z values for peaks in both positive and negative ToF-
SIMS spectra fromUR-CP-0001 and its possible organic source based on Samuel et al. (2001), Brüning
et al. (2006), Lindgren et al. (2018) and Lindgren et al. (2012).

Tentative
assignment

Theoretical
mass

Fossil sample
(UR-CP-0001)

Associated organic
compound

CN- 26.00 25.997 Melanin
CH4N 30.036 29.998 Glycine
CNO- 42.00 42.001 Melanin
C3H7 43.03 42.998 Leucine
C2H6N 44.053 43.999 Alanine
C3N- 50.00 50.000 Melanin
C3H6N 56.05 55.996 Lysine
CN3H5 59.05 59.001 Arginine
C2H6NO 60.045 59.999 Serine
C2H5S 61.01 60.998 Methionine
C3NO- 66.00 65.996 Melanin
C4H6N 68.05 67.996 Proline
C4H5O 69.03 68.998 Threonine
C4H8N/C3H4NO 70.068 70.000 Proline
C4H10N 72.084 71.997 Valine
C3H8NO 74.063 73.998 Threonine
C5N-/C2H2O3 74.00 74.000 Melanin
C4H5N2 81.04 80.996 Histidine
C4H6N2 82.05 81.998 Histidine
C5H7O 83.09 83.000 Valine
C5H10N 84.085 84.003 Lysine
C5H12N/C4H8NO 86,064/86,101 86.002 Hydroxyproline/Leucine
C3H7N2O 87.05 86.999 Aspargine
C7H7 91.05 90.998 Phenylalanine
C4H4NO2 98.02 97.999 Aspargine
C4H10N3 100.088 99.999 Arginine
C4H10NS 104.05 104.002 Methionine
C7H7O 107.048 106.999 Tyrosine
C8N/C9H2 110.075 109.999 Histidine
C8H10N 120.084 120.000 Phenylalanine
C5H11N4 127.1 126.997 Arginine
C9H8N 130.068 130.003 Tryptophan
C8H10NO 136.082 136.005 Tyrosine
C10H11N2 159.04 159.00 Tryptophan

the organic composition of this layer is its morphological change after being exposed to 10
kV for mapping EDS analysis becoming highly corrugated (Figs. 4E, 4F), which typically
happens to uncoated organic tissue or structures under high voltage in SEM similar as
degradation of non-conductive materials (Kersten, 2009).

FTIR analysis confirmed that the carbon rich layer we found with the EDS is composed
of, organic residues, particularly the C-H stretch and v(C=O) peaks around 2,931 and
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1,737 respectively (Fig. 5A), which are commonly found in collagen I (Belbachir et al.,
2009; Jeevithan et al., 2014; Valenzuela-Rojo, López-Cervantes & Sánchez-Machado, 2018)
and keratin (Chandini et al., 2017; Estévez-Martínez et al., 2013); highly abundant proteins
found in the scales and skin of fishes (Bhagwat & Dandge, 2016; Elliott, 2011). Amide A,
I, II, and III, C-H stretch and v(C=O) peaks were clearly observed in the FTIR of the
extant Orechromis sp. (mojarra fish) skin used as standard for comparison (Fig. 5A). Peaks
potentially corresponding to Amide I and II were also found in the deconvoluted spectrum
of the ‘skin’ untreated sample (Fig. 5D), falling inside the range of vibrational bands as
product of possible diagenetic alterations of the original organic compounds, similar as
occurs in FTRI analyses of modern proteins (Kong & Yu, 2007). We exclude a potential
bacterial origin of the organic component of the ‘skin’ in UR-CP-0001 because FTIR
spectra lack of the characteristic broad infrared absorption band of hydroxyl group (-OH)
of polysaccharides at 3,700–3,100 cm−1 (Lee et al., 2017; Lindgren et al., 2011b). ToF-SIMS
results of the two samples of UR-CP-0001 analyzed also show the occurrence of molecular
organic fragments, including the positive CH4N+ (Fig. 6D), C4H8N + (Fig. 6E), C2H6N+

(Fig. 6G), C3H6N+ (Fig. 6H) and C7H7O + which are typical residues of glycine, alanine,
proline and tyrosine constituents of collagen and fibronectin (Brüning et al., 2006; Henss
et al., 2013). Two other ions that support potential organic preservation in the ‘skin’ of
UR-CP-0001 are CN− (Fig. 6C) and CNO− (Fig. 6F) negative ions particularly abundant
in melanosomes and melanin (Lindgren et al., 2018; Lindgren et al., 2012), and although we
can not reject at this point that they could be from another source, our hypothesis seems to
be plausible. A complete tentative assignment of ions derived from proteins based on m/z
values in UR-CP-0001 samples and theoretical mass is presented in Table 1. We exclude
a potential mineralized biofilm source of protein residues based on the FITR spectra (Fig.
5A) and the absence of any morphological features associated to bacteria origin (filaments
or spheres) (Kaye, Gaugler & Sawlowicz, 2008; Schweitzer, Moyer & Zheng, 2016).

The preservation of the ‘skin’ in UR-CP-001 is also supported by its morphological
corrugated macroscopic appearance (Figs. 2G, 3E) resembling a phenomenon that occurs
to the skin from extant fishes where an absence of scales leaves the skin without an
external support structure, make it more susceptible to wrinkling under a compression
stress (Vernerey & Barthelat, 2014), due to dehydration or in a post mortem deformation
(Lindgren et al., 2018) (Figs. 3C, 3E). Additionally, collagen fibers were observed in both
UR-CP-0001 ‘skin’ and the dehydrated skin from extant Orechromis sp. (mojarra fish) also
to microscopic level after EDTA demineralization of ‘skin’ (Figs. 3D, 3G, 3H) supporting
the interpretation of UR-CP-0001 as an exceptional preserved fossilized skin.

DISCUSSION
Aspidorhynchid fishes had widespread geographic and temporal distribution with fossils
reported in all continents from the Middle Jurassic to Late Cretaceous (Brito, 1997).
Specimen UR-CP-0001 represents the earliest known record for an aspidorynchid in
Colombia, extending the temporal range from the Aptian (Schultze & Stöhr, 1996) to
Barremian. Once again, a peri-Gondwanan distribution of Vinctifer (Fig. S3) is confirmed
here, as UR-CP-0001 potentially belongs to this genus (see Remarks).
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Vibrational spectroscopic techniques such FTIR demonstrates its reliability to
understand fossil preservation mechanisms, due to its sensitiveness to organic functional
groups and phosphates thought high peak bands (Lafuente-Diaz et al., 2020;Olcott Marshall
& Marshall, 2015). However, due to noise signals, a deconvolution was needed to unveil
masked absorbance peaks from the raw data. ToF-SIMS also give more resolution to
identify the nature of preserved components. These kind of analysis has demonstrate to be
trustful for inferences about preservation mechanisms and track the origin of the preserved
molecules (Bezerra et al., 2020; Lafuente-Diaz et al., 2020).

Although it is hard to reconstruct the complete chain of taphonomical events
that occurred to UR-CP-0001, we hypothesize that besides fragmentation and fins
disarticulation without losing the conical shape of its caudal region, the nature of its scales
and skin played a key role in its preservation. The presence of scales and the thickness of the
fossilized ‘skin’ suggest a possible mechanism of preservation that we call a ‘‘microsandwich
effect’’, which could apply tomany other fragmentary fossil fishes that have not been studied
for molecular paleontology. Scales may have acted as an external barrier against bacteria
and other environmental decay accelerators, which could decompose the integument.
Simultaneously, the basal layer became enriched in phosphate, possibly resulting from
the degradation of phosphate containing organic compounds from the dermis itself, as
has been reported in other fossilized skin from vertebrates (McNamara et al., 2009), at
the same time this layer may have acted as an internal barrier, creating an encapsulating
environment for the integument. These local biogeochemical interactions would favor not
only preservation of the general morphology of the skin, but also some of their soft-tissue
structures and residues of the original biomolecules by geopolymerization (Lindgren et al.,
2018). Another factor that potentially played a key role in the preservation of the ‘skin’
in UR-CP-0001 was the burial environment conditions, dominated by organic-rich shale
interval showing characteristics of oxygen depleted conditions at the lower segment of Paja
Formation in this region (Gaona-Narvaez, Florentin & Etayo-Serna, 2013).Microcrystalline
minerals like clays and shales have extremely large surface area to volume ratios, and are
usually charged, both of which favor adsorption and inactivation of degrading enzymes,
similar been proposed for the exceptional preservation of Burgess Shale fossils (Butterfield,
1990).

Our results imply that the Paja Formation could be potentially considered as the third
locality in South America where exceptional preservation in fishes have been reported,
alongside of the Brazilian Romualdo and Crato Formations, where the preservation
mechanisms is well known (Osés et al., 2017). The mechanism of preservation proposed
here, as well as other recent work (Lindgren et al., 2018) increases the number of potential
scenarios for preservation of cellular-to-subcellular soft tissue morphology in fossils
additional to oxidative depositional environments (Wiemann et al., 2018), where iron
play a key role (Schweitzer et al., 2014). As we showed in here, iron was not detected
in UR-CP-0001, suggesting that in molecular paleontology studies there will be always
exceptions to those formulated general trends and factors favoring preservation in deep
time, and that each case and fossil site needs to be considered with its own particularities.
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CONCLUSIONS
Exceptional preserved ‘skin’ from an aspidorhynchid fish represents the first report of
soft tissue preservation in vertebrates from the Early Cretaceous in north South America.
Morphological comparisons andmolecular analyses present several similar features between
the extant fish skin and the fossilized specimen. Molecular analyses also provide evidence
of possible proteinaceous residues preserved in the fossilized skin, which is supported by
vibrational peaks associated with Amide I and II in the FTIR spectra and signals that can be
associated to aminoacids like Glycine and Lysine. Because of the limitation in the project
funding, future analyses should be focused on immunohistochemistry, testing specific fish
skin antibodies and other mass spectrometry techniques including LC-MS/MS to confirm
the preservation of original proteinaceous components.
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