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Mature T-cell lymphomas (TCLs) are rare, clinically heterogeneous hematologic cancers

with high medical need. TCLs have an inferior prognosis which is attributed to poor

understanding of their pathogenesis. On the basis of phenotypic similarities between normal

and neoplastic lymphocytes, it has been assumed that TCLs develop in the periphery, directly

from various subtypes of normal T cells. To address the debated question of the cell of origin

in TCLs, we attempted to identify the highly variable complementarity-determining regions

(CDRs) of T-cell receptors (TCRs) to trace the clonal history of the T cells. We have collected

previously published whole-genome, whole-exome, and whole-transcriptome sequencing

data from 574 patients with TCL. TCR clonotypes were identified by de novo assembly of

CDR3 regions of TCRa, TCRb, and TCRg. We have found that the vast majority of TCLs are

clonotypically oligoclonal, although the pattern of oligoclonality varied. Anaplastic large-cell

lymphoma was the most diverse comprising multiple clonotypes of TCRa, TCRb, and TCRg,

whereas adult TCL or leukemia and peripheral TCLs often showed monoclonality for TCRb

and TCRg but had diverse TCRa clonotypes. These patterns of rearrangements indicated that

TCLs are initiated at the level of the lymphoid precursor. In keeping with this hypothesis,

TCR rearrangements in TCLs resembled the pattern seen in the human thymus, which

showed biased usage of V (variable) and J (joining) segments of high combinatorial

probability resulting in recurrent public CDR3 sequences shared across unrelated patients

and different clinical TCL entities. Clonotypically diverse initiating cells may seed target

tissues that are then responsible for disease relapses after therapy.

Introduction

T-cell lymphomas (TCLs) are a heterogenous group of 29 malignancies that make up �10% of non-
Hodgkin lymphomas, and their incidence is about 6000 cases per million.1,2 Most TCLs are classified as
mature TCLs because malignant cells phenotypically resemble mature T cells and harbor rearranged
T-cell receptor (TCR) variable (V), diversity (D), and joining (J) genes; many express the TCR ab hetero-
dimer.3,4 Striking similarities between subsets of normal T cells and the malignant cells in TCLs (eg, to
T-regulatory cells in adult TCL or leukemia or central memory T cells to Sezary syndrome [SS]) led to the
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Key Points

� The majority of TCLs
are clonotypically
oligoclonal, although
the patterns of
oligoclonality are
varied.

� TCR rearrangements
in TCL show a biased
usage of V and J
segments and
presentation of public
CDR3 sequences
shared across
unrelated patients.

2334 12 APRIL 2022 • VOLUME 6, NUMBER 7

REGULAR ARTICLE

mailto:aiyer2@ualberta.ca
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode


general acceptance of the theory that different subsets of mature T
cells are the cells of origin in mature lymphomas.5

TCR gene sequences are excellent markers of T-cell lineage,
because TCRg, TCRb, and TCRa loci are sequentially rearranged
during different stages of intrathymic maturation of T cells from a
diverse pool of V(D)J genes. The TCRb locus contains 47 V
(TRBV), 2 D (TRBD), and 13 J (TRBJ) segments, whereas the
TCRa locus comprises 42 TRAV and 61 TRAJ segments, which
recombine to yield unique DNA sequences that are retained in
genomes of all daughter cells.6 This diversity of the unique DNA
sequences is enhanced by the insertion of random palindromic
sequences during the recombination step of V(D)J or VJ. Analysis of
the complementarity determining region 3 (CDR3), the most diverse
fragment of the TCR chain coded by the V(D)J joining region and
involved in antigen recognition, has long been used in the molecular
diagnosis of TCLs and leukemias. The repertoire of normal human
TCRs is in the range of 106 to 107 clonotypes (unique CDR3
sequences defining a T-cell clone),7-9 whereas in mature TCLs, it is
dominated by a single clonotype, representing the clonally expanded
malignant cells (ie, malignant clonotypes).10

Clonotypic analyzes of TCLs and leukemias are not only useful for
diagnostic purposes but might also provide important clues to the
pathogenesis. Transformation of the mature T cell would result in
perfect monoclonality in all TCR loci because TCR rearrangement
does not occur in mature T cells, and TCRa and TCRb clonotypes
would be inherited from the cell of origin. A different pattern of TCR
rearrangement will be seen if the transformation occurs during ear-
lier stages of T-cell development, before the completion of the final
TCRa rearrangement. Assuming that early oncogenic mutations do
not arrest cell development at the early stages (as is the case in
T-cell acute lymphoblastic leukemia [T-ALL]), the T-cell is able to
sequentially rearrange TCR, and one would expect oligoclonal or
polyclonal patterns of clonotypes, characteristic of the stage in
which the transformation happened. Indeed, our previous analyses
of malignant T-cell clonotypes in cutaneous TCL revealed an oligo-
clonal pattern of TCRa and TCRb but monoclonality of TCRg,
which suggests that original malignant transformation occurred at
the stage of a double-negative thymocyte after rearrangement of the
TCRg locus.11,12 A similar pathogenic scenario involving early thy-
mocytes has been proposed for anaplastic large-cell lymphoma
(ALCL),13,14 but it is unclear whether other TCLs might also be
derived from immature T cells.

During analysis of our CTCL sequencing data, we were puzzled by
the finding that certain malignant clonotypes were repeatedly found
in samples from unrelated patients; because of the vastness of the
TCR repertoire, we had expected that malignant clonotypes would
be unique for each patient. We have noted a preferential usage of
certain Va and Vb segments in cutaneous TCLs11 and were
intrigued by the finding that similar biases in V-segment usage was
reported in T-ALL, which is derived from lymphoid precursors
arrested at various stages of development.15,16

In this study, we used the previously optimized bioinformatic pipeline
for de novo assembly of CDR3 regions using paired-end RNA
sequencing, whole-genome DNA sequencing (WGS), and whole-
exome DNA sequencing (WES)11 to analyze malignant TCR clono-
types in 574 samples that make up 8 major subtypes of TCL. We
propose that TCR rearrangement patterns across different clinical
TCL entities are incompatible with the mature T-cell transformation

hypothesis and support the immature lymphoid progenitor as the
cell of origin.

Methods

TCL data collection and tumor cell fraction analysis

The graphical summary of the methods is shown in Figure 1. Raw
fastq files of WES, WGS, and whole-transcriptome sequencing
(WTS) were collected from 13 different studies (574 patients).17-29

Ethics clearance to access the human genome data from restricted
databases such as Database of Genotype and Phenotype (dbGaP)
and European Genome-phenome Archive (EGA) was provided by
the Health Research Ethics Board of the Alberta Cancer Committee
under ethics ID-HREBA.CC-20-0118. In addition, samples from 50
healthy controls were also obtained.30 The accession numbers of
the studies are listed in supplemental Table 1, and the diagnostic
groupings are listed in supplemental Table 2. Tumor cell fraction
(TCF) was determined on the basis of copy number aberrations
(CNAs) using Titan CNA (v. 1.17.1)31 and/or Ichor CNA (v. 0.2.0)32

in the 368 samples for which DNA sequencing data were available
(supplemental Table 3). Data sets from Crescenzo et al29

(SRP044708) lacked control DNA and therefore, a panel of normal,
as recommended in the Genome Analysis Toolkit (GATK) pipeline,33

was created to analyze the TCF for samples from that study. The
majority of transcriptome data were not obtained from the same
samples as their exome counterparts; therefore, TCF data calculated
using the DNA sequencing was not applicable to the TCRs identi-
fied from the RNA sequencing.

TCR clonotype identification and quantification

TCR clonotypes were identified and quantified using MiXCR
(v. 3.0.3 or 3.1.0).34 We used superscript letters to indicate whether
the clonotype was identified by the DNA, RNA, or amino acid (aa)
sequence (eg, TCRaDNA). Default recommendations for analysis of
exome and transcriptome data were used with the exception of elim-
inating the assembly of short reads to identify additional TCR clono-
types. Short- and long-read alignments were included for WTS;
however, for WES data, partial reads were filtered out because they
might be the captures of only V or J sequences. After clonotypes
were identified, further elimination of clonotypes based on muta-
tional positions was performed and best predictive VJ combinations
were included in further analyses. When TCFs were available, the
malignant clonotypes (ie, clonotypes of the malignant T cells) were
determined by including the most abundant clonotypes to match
the TCFs of the sample (Figure 1). Shared clonotype identification
was based on TCRbaa and was used to calculate clonotype sharing
(Jaccard index) with Immunarch (v. 0.6.6).35 An estimate of the
diversity was limited to malignant clonotypes. To estimate the num-
ber of malignant TCRb clonotypes, the clonotypes of the cumulative
frequency matching TCFs from every sample were counted and
averaged. On the basis of the average number of clonotypes of 9.4,
the 10 most frequent clonotypes from every sample were used for
the inverse Simpson index. Probability of generation (Pgen) of CDR3
was calculated using OLGA (v. 1.2.3)36 for the TCL samples and
samples from the 50 healthy controls. Immunarch, Graphpad Prism
(v. 9), and Excel (v. 16.16.27) were used for data representation.
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Results

Clonotypic TCRb diversity in TCLs

We analyzed data from 574 samples from the following TCL diagno-
ses: mycosis fungoides (MF; a primary cutaneous TCL; n 5 122),
SS (leukemic form of primary cutaneous TCL; n 5 130), ALCL
(n 5 67), adult TCL or leukemia (ATCLL; n 5 135), natural killer
TCL (NKTL; n 5 25), peripheral TCL (PTCL; n 5 55), and subcu-
taneous panniculitis-like TCL (SPTL; n 5 10). We were unable to
classify 30 samples into any of the above categories, which were
grouped as “other TCLs” (supplemental Table 2).

To determine the sequences of CDR3, we used the previously
described bioinformatic analysis of bulk sequencing data from
WES, WGS, and WTS.11 To differentiate between malignant clono-
types (ie, clonotypes derived from malignant T cells) and those con-
tributed from the infiltrating reactive cells, we ranked the TCRDNA

clonotypes (clonotypes obtained from DNA sequencing) starting
with the most abundant and included only those of the cumulative
frequency matching the TCF in the sample (Figure 1).12

Among 378 samples for which genomic data (WES or WGS) was
available for calculating TCFs, the majority (75%) showed more
than 1 TCRbDNA clonotype attributed to malignant T cells (matching
TCF) (Figure 2). We considered 3 rearrangements as evidence of
oligoclonality because although �60% of T cells rearrange TCRb
on only 1 chromosome, the remaining 40% are biallelic rearrange-
ments (the 60-40 rule).37,38 Oligoclonality of malignant clonotypes
was most prevalent in ALCL (43 of 47) and least common in NKTL
(12 of 25) (Figure 2).

The allelic exclusion of TCRb locus ensures that a mature T cell
expresses only 1 clonotype,37 even in the presence of biallelic rear-
rangements.39,40 Thus, the single TCRb clonotype at the level of
RNA (TCRbRNA) unequivocally identifies the T-cell clone. TCFs
could not be calculated for WTS samples because the matching
WES or WGS data were not available; therefore, we analyzed
TCRb clonality by applying the relative frequency threshold of 25%.
This threshold has been proposed by other investigators,41,42 and
we considered it reasonable to adopt that frequency threshold
because the majority (79% of TCL samples) had TCFs of 25% or
higher (supplemental Table 3). In 26% of the samples, the most
abundant TCRbRNA clonotype had a frequency below 25% (ie, the
criterion of monoclonality was not met; Figure 3). In 6 samples. the
relative frequency of the second most frequent TCRbRNA clonotype
was .25%, and in 38 samples, the frequencies of the first and sec-
ond clonotypes were comparable (no single dominant clonotype),
indicating oligoclonality of malignant clonotypes.

We further assessed the diversity of the TCRb clonotypes by using
the inverse Simpson index, which varies from 1 (1 clonotype) to the
maximum value representing the number of clonotypes (in our analy-
sis, n 5 10), taking into account clonotype concentration (supple-
mental Figure 1). For the TCRbDNA clonotypes, the diversity was
highest in SS and ALCL, and lowest in ATCLL. The diversity of
TCRbRNA clonotypes had a slightly different pattern with a decrease
in diversity for SS and ALCL when compared with TCRbDNA clono-
types. This can be explained by the increase in the relative contribu-
tion of the most abundant TCRbRNA clonotype (higher clonotype
concentration) relative to TCRbDNA which, in turn, is likely to be
caused by a higher proportion of non-productively rearranged TCRb
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loci. The mean diversity for MF, ATCLL, and PTCL remain the same
for TCRbDNA and TCRbRNA.

Patterns of TCRa, TCRb, and TCRg corroborate a

branched evolution model of TCLs

The analyses described above suggested that TCR monoclonality is
not a constant feature of TCLs, and approximately one-third of all
samples display an oligoclonal pattern of malignant TCRb, which is
incompatible with the hypothesis of the mature T-cell origin hypothe-
sis. To explore this further, we analyzed the frequencies of TCRa
and TCRg clonotypes. Unlike TCRb, TCRa and TCRg loci are not
subjected to allelic exclusion and are usually rearranged at both
chromosomes (Figure 4A). Moreover, TCRg is rearranged before
TCRb, so the cells with the same TCRg rearrangement may harbor
several TCRb rearrangements. The same is true for TCRa; a single
TCRb clone may comprise several (usually 2-4) TCRa clonotypes
because of biallelic rearrangement and secondary rearrangements
during expansion of the TCRb clone (Figure 4A). It is thus possible

to deduce the stage of T-cell transformation from the relative fre-
quencies of TCRa, TCRb, and TCRg.

Interestingly, most TCL samples showed a clearly monoclonal pat-
tern of TCRg dominated by 1 or 2 clonotypes (supplemental
Figure 2). By plotting the frequency of the dominant (most abun-
dant) TCRbDNA clonotype vs that of the 2 most abundant TCRg
clonotypes (Figure 4B), most of the cases fall into 2 categories. The
samples located in the lower left quadrant had low-frequency
TCRbDNA and low-frequency TCRg and represented 32% of sam-
ples classified as oligoclonal for both TCRb and TCRg. Most ALCL
cases were found in this group. The remaining (68%) of the sam-
ples showed a high proportion of TCRg and a disproportionately
low frequency of TCRbDNA (lower right quadrant), which indicates
TCRg monoclonality but oligoclonality with respect to TCRb. Only
single cases of TCL were in the right upper quadrant representing
the high frequency of TCRb and TCRg, which would be character-
istic for an expansion of a single mature T-cell clone. A similar plot
of the frequencies of the dominant TCRbDNA vs the combined
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Figure 2. Frequency of TCRbDNA
clonotypes in TCLs. A total of 378 DNA samples from 8 subtypes of TCLs were analyzed to identify the frequency of TCF and

TCRbDNA clonotypes using WES and WGS data. TCRbDNA clonotypes corresponding to the TCF are indicated by the colored bars in the descending order of relative
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frequencies of the first and second (biallelic) TCRaDNA showed a
linear correlation within the lower left quadrant, which represents oli-
goclonality in both chains (Figure 4C). The samples clustered into 2
major groups: those with the higher frequency of TCRa and TCRb
(mostly ATCLL) and those with a lower frequency occupying the
low-frequency portion of the quadrant (Figure 4C). The analysis of
the TCRaRNA and TCRbRNA clonotypes helped interpret the find-
ings. As shown in Figure 4D, most ATCLL and SS samples showed
monoclonality because they were located in the right upper quad-
rant, which represents high frequencies of the dominant clonotypes.
However, ALCL, PTCL, MF, and other TCLs were scattered in the
remaining quadrants, which underscores their oligoclonality not only
at the DNA level but also at the level of TCR gene expression.

Although the above described findings showed significant variation
in TCR clonality patterns within the same TCL diagnostic entities,
general conclusions can be made regarding the putative cell of ori-
gin (Figure 4A). ALCL was the most heterogeneous with the clear
oligoclonality of TCRa, TCRb, and TCRg, which indicated that the
transformation takes place in immature thymocytes before the TCRg
recombination step. On the opposite end of the spectrum were SS
and ATCLL, which in the majority of cases showed TCRg mono-
clonality and high frequency of TCRb, mapping the transformation
event approximately at the TCRb rearrangement step. However,
none of the TCLs exhibited a consistent pattern of monoclonality,

defined at the DNA level by a maximum of 2 rearrangements of
each TCRg, TCRb, and TCRa genes matching the TCF and at the
RNA level by a single dominant TCRb clonotype and a maximum of
2 TCRa clonotypes.

On the basis of the above described results, we hypothesized that
TCRbDNA clonotypes may label neoplastic T-cell clones in the sam-
ple, and the distribution of those clonotypes is not random but might
be a result of the clonal evolution of the disease. Systems compris-
ing objects that grow in size and compete with each other (such as
growth of cancer subclones in a tumor) often obey power laws
such as Zipf-Mandelbrot law expressed as SðkÞ � Sð1Þ=kg where S(k)

is the size of the species (in our case, the size of the TCRbDNA clo-
notype) of the rank k, S(1) is the size of the first ranked species, and
g is a scaling constant.43,44 Indeed, the log-log plots in which mean
abundance of the TCRbDNA clonotype was plotted vs its rank
revealed the expected linear relationship for all TCLs, although the
slope of the linear regression line varied from 20.34 for ALCL to
21.21 for ATCLL, which reflects different values of the constant g
for different types of TCLs (supplemental Figure 3). Reproducible
linearity of the rank-size TCRb plots for different TCLs were there-
fore consistent with zipfian dynamics45 and supported the hypothe-
sis that malignant T-cell clones are dynamically coherent and
interactively evolve via neutral clonal evolution,44 as postulated by us
for MF.17
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Biased V and J usage in TCLs

Previous studies have shown biased rearrangement of certain TCR
V and J gene combinations,46,47 but it is not clear whether those
findings are generalizable to all TCLs. We calculated the frequen-
cies with which V and J genes are represented in the most abun-
dant clonotype of TCRb (Figure 5) or the 2 most abundant
clonotypes in TCRa and TCRg (Figure 6). There was a strong pref-
erential usage of certain Vb and Va segments across different
TCLs. The most striking was Vb20-1 (TRBV20-1), which was found
in a large proportion of clonotypes in MF, SS, ATCLL, ALCL, and
NKTL, at the level of both DNA and RNA. Vb4-1 (TRBV4-1) was
overrepresented in ALCL, NKTL, and SPTL. Other Vb segments
were more disease-specific, such as TRBV18, which was was often
found in MF and TRBV24-1, which was frequent in PTCL. Biased
use of Va segments was also obvious; for example, Va16
(TRAV16), Va35 (TRAV35), Va41 (TRAV41), and Va3 (TRAV3)
were overrepresented in most TCLs. The Jb and Ja segments also
seemed to be unequally used (eg, TRBJ2-1 and TRBJ2-7 overex-
pression in all subtypes of TCLs) but because of a small number of
J genes, the patterns are less obvious (Figures 5 and 6).

We have also analyzed V and J segment usage in the 10 most
abundant TCRb clonotypes, which represents the median number
of malignant clonotypes determined in comparison with TCFs. The
overall pattern was similar to that of the most abundant clonotypes,
which confirms biased use of TRBV20-1, TRBV4-1, TRBJ2-1, and
TRBJ2-7.

Previous studies in CTCL have indicated overrepresentation of
TRGV10-TRGJP1 in the malignant T cells.48 We confirmed
this in our analysis, and we also found that TRGV2, TRGV8,
and TRGV9 were frequently used across different TCLs, but
TRGV1, TRGV5, TRGV11 were relatively underrepresented
(Figure 6C-D).

Shared malignant clonotypes represent public

clonotypes and have high recombination probability

The results described above indicated that certain V-J combinations
are overrepresented. This suggests that the clonotypes (as defined
by the amino acid sequence of the highly variable CDR3 region)
may also be shared between patients with different TCLs. Indeed,
as shown in supplemental Tables 4 and 5, we have found numerous
shared TCRaaa and TCRbaa. Some clonotypes were shared across
a large number of patients with different TCLs. For example,
CARRKSSFF was detected in 100 samples (54 samples used
TRBV28-TRAJ1-1) and CDNNNDMRF (TRAV16-TRAJ43) was pre-
sent in 213 samples.

We estimated the fraction of the malignant clonotypes shared by 2
or more individuals using the Jaccard index (ranging from 0 [no
overlap] to 1 [full overlap] of TCR repertoires). Both TCRaaa and
TCRbaa had a high degree of sharing (Jaccard indices of 0.4 and
0.34, respectively), predictably showing higher sharing for TCRa.

Shared malignant clonotypes resembled public clonotypes found in
the blood of healthy conrols. Public TCRs largely result from V-J
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recombination biases and convergent recombination in which rear-
rangement of different segments can result in the same amino acid
sequence.49 Public TCR chains can pair with a diverse repertory of
private TCR chains and therefore they are not determining antigen
specificity.49 To determine whether the detected shared malignant
clonotypes might represent the result of biased, convergent V-J
recombination, we calculated the probability of CDR3 sequence
generation (Pgen) value

36,50 for the most abundant TCRb and TCRa
clonotypes. Pgen of those shared malignant clonotypes had 2 proba-
bility peaks at 1029 and 1026, respectively (Figure 7A; supplemen-
tal Tables 4-7). Shared TCRbRNA and TCRaRNA had even higher
values with the maxima at 1026 and 1024, respectively (Figure 7B),
which were significantly higher than the Pgen of peripheral blood
private (unique) clonotypes (,1029).

Discussion

TCLs represent a clinically diverse spectrum of T-cell cancers that
vary from aggressive to relatively indolent and from nodal to organ
specific (such as the skin). Nevertheless, analysis of TCR rearrange-
ment patterns revealed striking similarities across different TCLs.
Because TCR loci are rearranged sequentially and the rearrange-
ment happens only during the thymic development of T-cell precur-
sors, the rearrangement products retained in the genome allow us
to trace the clonal history of TCL and illuminate the much-debated
question of the cell of origin.

The current model of TCLs as neoplasms originating from various
subpopulations of normal mature T cells3 is not only unsupported
but is directly contradicted by our findings. Malignant transformation
of a single lymphocyte randomly drawn from a vast pool of 106 to
107 singular T-cell clonotypes should yield lymphomas that are
monoclonal (all malignant cells share the same clonotype), unique
(low probability of shared clonotypes between tumors from unre-
lated patients), and unconnected (random frequency distribution of
clonotypes). We show here that TCLs are mostly oligoclonal, have a
high degree of interindividual clonotype sharing across different dis-
ease entities, and represent connected systems of clonotypes, the
frequency of which follows the Zipf-Mandelbrot power law. We pro-
pose that considering the T-cell lymphatic precursor as a cell of ori-
gin allows not only for a more accurate interpretation of our findings
but also accounts for previous observations that could not be
explained by a mature T-cell model.

Clonotypic diversity arises if a transformed lymphoid precursor
passes through different stages of TCR rearrangements resulting in
a clonotypically heterogeneous pool of early cancer cells, mimicking
the differentiation of normal T cells. The model schematically shown
in Figure 4A assumes that precursor cells for mature TCLs progress
through the sequential rearrangements analogous to those of normal
thymocytes and in a stark contrast to those of immature TCLs and
leukemias (eg, T-ALL), which become arrested at a given stage of
development. Thus, transformation before TCRg rearrangement
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would result in oligoclonality for all TCR rearrangements, whereas
transformation after TCRg rearrangement would render cancer cells
monoclonal for TCRg but oligoclonal for TCRb and TCRa. Transfor-
mation after the TCRb rearrangement stage would render the malig-
nant cells monoclonal (single TCRbRNA clonotype and 1 to 2
TCRbDNA clonotypes) but oligoclonal for TCRa. Across different
TCLs, ALCL showed a fingerprint for transformation at the earliest
stage (before or at the TCRg rearrangement), and ATCLL and
PTCL seemed to derive from a cell in a later stage of development
(TCRb rearrangement or later). However, significant overlap in the
patterns of clonality existed within each disease, indicating that the
stage of the transformation does not fully define the phenotype of
the disease. Because the available sequencing data did not have
detailed clinical information, we cannot exclude that different sub-
types within each diagnosis (eg, anaplastic lymphoma kinase
[ALK1], ALK–, primary cutaneous ALCL, and breast implant–
associated ALCL) differ with regard to the differentiation stage of
the cell of origin as well.

The existence of more than 1 malignant clonotype has previously
been shown in TCLs, but this finding has largely been ignored,
and the clonotypes have been considered as artifacts caused by
contamination of the sample with normal reactive T cells. We con-
sider those explanations unlikely. First, in our analysis we include
only the most abundant clonotypes of cumulative frequency equal
to the proportion of tumor cells in the sample (TCFs). Second,

across a large number of samples, we demonstrated the power-
law relationship between the frequency and the rank of the clono-
type. Power-law distribution characterizes complex, evolving,
out-of-equilibrium, multiplicative systems composed of intercon-
nected components, such as cities in a country, words in a lan-
guage, repertoire of protein domains, or migrating human
populations.43,45,51,52 It has been shown that growing malignant
tumors demonstrate power-law distribution between tumor sub-
clones.44 The distribution of clonotypes in TCLs followed power-
law distribution as well, which is understandable only if TCLs are
considered as evolving systems of interacting and expanding
T-cell clones identified by their clonotypic signature.

We considered alternative explanations of our findings because it
could be argued that clonotypic oligoclonality might also be a
result of secondary TCR rearrangements in the already estab-
lished tumor. However, this is unlikely because the TCR rear-
rangement machinery is irreversibly inactivated after completion of
TCRa rearrangement, and the essential enzymes RAG1 and
RAG2 are not expressed in TCLs.53 Moreover, additional support-
ive evidence for the lymphoid precursor model for TCLs comes
from the pattern of V-J usage, which invalidates the argument of
secondary mutations as the cause for multiple high-frequency
malignant clonotypes. TCR rearrangements in human thymocytes
are characterized by biased V and J segment usage, reflecting
the probability of recombination (Pgen) that produces shared
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(public) clonotypes.54,55 A very similar situation is seen in TCLs.
The V segments preferentially recombined in TCLs (TRBV20-1,
TRBV4-1, TRBV5-1, TRAV14, TRAV35, or TRAV41) were also
the most frequently used segments in normal human thymocytes,
and the shared clonotypes had comparable high Pgen values
(.1027 for TCRa and .1029 for TCRb).54,55 Differences in
combinatorial probability is a probable explanation for a higher
Jaccard index (degree of clonotype sharing) for TCRa more than
for TCRb.

It has been postulated that V-J bias in some TCLs is a result of
selection pressure from common antigens.56-60 For example,
TRBV20-1 has the highest frequency across all TCLs and is
known to be involved in response to Epstein-Barr virus or

cytomegalovirus.46,61 However, none of the known CDR3 regions
that recognize viral antigen was found among the malignant clono-
types. We postulate that the frequent finding of TRBV20-1 in
TCLs is not a result of its antigenic selection but simply its ubiq-
uity. TRBV20-1 is the prominent component of the TCRb clono-
types of normal blood,62,63 tumor-infiltrating T cells,64,65 and
autoimmune reactions.66-69 TRBV20-1 is the most frequently
rearranged segment in double positive thymocytes55 and is fre-
quently found in T-ALL, which develops directly from lymphoid
precursors.15

Although our data strongly indicate the role of the lymphoid precur-
sor as the cell of origin in TCLs, the origin of those cells and their
pathways of development cannot be inferred from this study.
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Compelling experimental data suggest that the precursor T cell in
the thymus might be the cell of origin for ALCL,13,14 but we cannot
exclude the possibility that extrathymic sites are involved as well.
T-cell maturation and TCR recombination may happen in extrathymic
sites such as bone marrow, lymph nodes, or the tonsils.70-72 In a
patient with lymphomatoid papulosis, we have found early precursor
cells in the bone marrow before the clinical onset of the disease73

and cases of transmission of TCL by bone marrow transplant from
asymptomatic donors who later developed the disease have been
observed,74 which indicates that bone marrow could be a potential
reservoir of progenitor malignant cells. Single-cell sequencing
experiments in which TCRa can be paired with TCRb in the context
of the transcriptomic profile of the cells would probably allow further
elucidation of the origin of lymphoma precursors.

In summary, we propose that mature TCLs do not originate from
T cells in the periphery but rather from lymphoid precursors at differ-
ent stages of their differentiation. Better understanding of the devel-
opmental trajectories of the early precursor into clinical lymphoid
malignancy would improve diagnosing and staging of TCLs and
help with designing targeted therapies that intervene with the dis-
ease at the initial stages.
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