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The sequence-structure-function paradigm of protein is the basis of molec-
ular biology. What is the underlying mechanism of such sequence and
structure/function corresponding relationship? We reviewed the methods
for protein representation and protein design. With these protein represen-
tation models, we can accurately predict many properties of proteins, such
as stability and binding affinity. Progen, Chroma, RF Diffusion, SCUBA, and
other protein design models have demonstrated how human-designed arti-
ficial proteins can have desired biological functions. The protein design
will revolutionize drug development. And more efficient artificial enzymes
that break down industrial waste or plastics will contribute to carbon
neutrality. We also discussed the three greatest challenges of protein
design in future and possible solutions.

With the rapid growth of ChatGPT (https://chat.openai.com/), which has over
100 million active users in just two months, people hear language model over
and over. However, many people are unaware that the language models have
been used extensively in protein research.1 We do know that the famous soft-
ware AlphaFold2 can accurately predict the protein structure based only on
the protein sequence with attention and transformer architecture.2 The attention
mechanism proposed by Google in 2017 is a revolutionary innovation for natural
language processing. The basis of ChatGPT and GPT-4 are large language
models, which essentially belong to natural language processing. Protein se-
quences can be treated as sentences and the 20 amino acids are the words.
Since the sequence-structure-function paradigm of protein is fundamental to
molecular biology, we can use language models borrowed from computer sci-
ence to investigate the underlying mechanisms of this relationship. Language
models have two primary applications in protein sciences: protein representation
and protein design (Figure 1).

The protein representation is a problem of how to represent a protein
sequencewith numerical vectors. Due to the varying lengths of different proteins,
it is not possible to use the original amino acids directly. The most intuitive
method is the amino acid composition which counts the frequencies of the 20
amino acids. Then, it is found that some amino acids share similar properties,
and pseudo-amino acid composition is developed. In addition to composition,
the transition and distribution of amino acids have been found to be important
and are also used for protein representation. Physical energy-based approaches
are widely used to calculate the most possible structure since proteins tend to
fold toward state of lower free energies.3 The optimization goal of physical en-
ergy-based approaches is to minimize free energy. The biological meaningful
sequence patterns shared by a protein family are summarized as motifs or do-
mains. The structural features, such as intrinsically disordered regions, evolu-
tionary conserved regions, protein-protein interaction sites, enzyme active sites,
and PTM (post-translational modification) sites, are also critical for protein char-
acterization. Subsequently, network-based functional features were proposed,
including KEGG and GO enrichment scores of a protein’s network microenviron-
ment, which refers to the interaction neighbors on the protein-protein network.
These features have demonstrated significant improvements in predicting
protein stability.4

With the advent of deep learning, people find that a protein sequence can be
considered as a sentencemade up of 20 words, i.e., amino acids. It is like human
ll
language. Therefore, an increasing number of deep neural network-based lan-
guage models have been proposed for protein representation. There are over
20 protein representation learning models.5 ProtVec used uncontextualized
word2vec (feedforward neural network, FNN-based). SeqVec used contextual-
ized ELMo (long short-term memory, LSTM-based). ProtBERT replaced LSTMs
with a Transformer (Bidirectional Encoder Representation from Transformers,
BERT-based). T5-XL-BFD used a larger/different transformer and more data.
T5-XL-U50 fine-tuned T5-XL-BFD on non-redundant data. With these protein rep-
resentation models, we can accurately predict many properties of proteins. That
leads to another application, protein design.
Could we design a non-existing protein with desired properties, such as a pro-

tein with a circular 3D structure, a protein that can bind SARS-CoV-2, a protein
with antifreeze, or an antibacterial protein? Could we speak the language of pro-
tein and create any desired proteins as we wish?
Protein structure prediction is a crucial part of protein design. It hasbeenwidely

used for theevaluationof designedcandidateproteinswith topologyor symmetry
constraints. There are several protein structure prediction rivals of well-known
AlphaFold2, including ESMFold (https://github.com/facebookresearch/esm)
developed by the Meta AI team, which predicts the structures of 600 million
uncharacterized proteins from bacteria, viruses, and other microorganisms;
RoseTTAFold (https://github.com/RosettaCommons/RoseTTAFold) developed
by David Baker, which has a long development history since 1998 and great aca-
demic reputation; Uni-Fold (https://github.com/dptech-corp/Uni-Fold) developed
by DP Technology, which can work on more hardware platforms and has much
higher efficiency; and MEGA-Protein (MindSpore for Evolutionary Generation &
Assessment Protein, https://gitee.com/mindspore/mindscience) developed by
Huawei, which has better performance on the orphan sequences. Each program
has its own advantages. When designing proteins for different organisms using
different hardware platforms, they can be replaced with each other.
SCUBA (Side Chain-Unknown Backbone Arrangement) developed by Haiyan

Liu6 proposes a statistical model that uses neural network-form energy terms.
It is a de novo protein design model that does not need a template. The de
novo protein design workflow of SCUBA has two steps, neighbor counting fol-
lowed by neural network training for learning. After the artificial proteins are
generated, ABACUS2 selects the sequence for natural backbones. SCUBA and
ABACUS2 are available at https://doi.org/10.5281/zenodo.4533424.
RoseTTAFold Diffusion (RF Diffusion, https://github.com/RosettaCommons/

RFdiffusion) developed by David Baker proposes a guided diffusion model for
generating new proteins by adding and removing noise. RF Diffusion performs
well for a broad range of protein design problems, such as topology-constrained
protein design and enzyme active site scaffolding for therapeutic protein design.
To achieve atomically accurate design, David Baker and his colleagues applied
reinforcement learning for top-down design of protein architectures.7 The devia-
tion between the designed and real protein structure is on average smaller than
the size of a single atom.
Chroma (https://generatebiomedicines.com/chroma) developed by Generate

Biomedicines creates new proteins with desired structural or functional proper-
ties using a generative model. It combines a structured diffusion model for pro-
tein backbones with scalable molecular neural networks for backbone synthesis
and all-atom design. The designed proteins will have the required functional
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Figure 1. The scheme for protein representation and
protein design
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structural motifs, with symmetry constraints or in a pre-specified shape. It can
even design proteins with 3D structures in arbitrary given shapes, such as alpha-
bet and numbers (https://cdn.generatebiomedicines.com/video/alphabet_
padded.mp4). The proteins with shapes like the alphabet have existed in nature
for a long time,8 but Chroma can design novel ones with the same shapes.

Progen (https://github.com/salesforce/progen) developed by Salesforce
Research is one of the latest language models for protein engineering.9 The
model is trained on 280 million protein sequences, and it generates one million
artificial proteins. 100 sequences are selected based on generation quality and
diversity. 72 out of 100 Progen-generated artificial proteins express equally
well in cells. Two artificial proteins have the same function against the cell walls.
Without languagemodels, it is time-consuming and costly to design enzymes.10

First, you need to do multiple sequence alignment of natural homologs. Second,
you calculate the empirical statistics of amino acids. Third, you infer a statistical
model that generates artificial sequences. Fourth, you test them with a high-
throughput assay for desired functions. The statistical model is difficult to
construct, and its performance is usually poor since you do not know which fea-
tures you should use and which model and parameters you should choose.
Therefore, it requires a lot of feature engineering and parameter tunning to get
a workable statistical model. The language model is an end-to-end model. It is
easy to build and performs well. These results demonstrate how well language
model-designed artificial proteins can have desired biological functions and
how efficient they are.

Amore comprehensive list of papers about protein design using deep learning
can be found at https://github.com/Peldom/papers_for_protein_design_using_
DL. The sequenceand structure benchmark datasets, papers on function to scaf-
fold, scaffold to sequence, function to sequence, and function to structure, are
available.

The protein design will revolutionize drug development. Most drugs work by
binding to proteins and triggering changes in their function. If we can generate
proteins with the desired structure, we can design drugs or repurpose existing
drugs to effectively bind those target proteins. What’s more, more efficient artifi-
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cial enzymes that break down industrial waste or
plastics will contribute to carbon neutrality.

There are still several challenges ahead of us.
First, the structure of a protein is dynamic in vivo.
The point mutations, PTMs, such as phosphory-
lation, glycosylation, ubiquitination, methylation,
acetylation, lipidation, and proteolysis, and inter-
action with other molecules, such as protein-pro-
tein interaction, protein-RNAbinding, and protein-
DNA binding, can all affect the structures and
functions of proteins. The biological functions
are usually regulated by the disordered regions,
but the structures of such disordered regions
are still poorly predicted. The ligands and flexi-
bility (ability to change structure) should be
considered for deep learning modeling. Second,
more specific benchmark databases and predic-
tionmodels should be constructed. If we want to
design a specific enzyme, we may need high-
quality data on such enzymes. And the model
must be tuned for this specific task. There is no
general model that can work on all problems.
Let’s not forget the no-free-lunch theorem for
machine learning. Third, what is the ultimate
truth of protein? Now, we still need to train the
model on many existing proteins. Although it
works well, it is essentially data fitting. Can we
formulate the protein design with principles or
equations rather than based on big data? Is there
an end game of protein design, like from data-
based AlphaGO to principle-guided AlphaZero? We believe that the language
model will help understand the folding processes of proteins and their biological
functions.
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