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Abstract Learning to associate sensory stimuli with a chosen action involves a dynamic interplay

between cortical and thalamic circuits. While the cortex has been widely studied in this respect,

how the thalamus encodes learning-related information is still largely unknown. We studied

learning-related activity in the medial geniculate body (MGB; Auditory thalamus), targeting mainly

the dorsal and medial regions. Using fiber photometry, we continuously imaged population calcium

dynamics as mice learned a go/no-go auditory discrimination task. The MGB was tuned to

frequency and responded to cognitive features like the choice of the mouse within several hundred

milliseconds. Encoding of choice in the MGB increased with learning, and was highly correlated

with the learning curves of the mice. MGB also encoded motor parameters of the mouse during the

task. These results provide evidence that the MGB encodes task- motor- and learning-related

information.

Introduction
Learning, the process of acquiring new knowledge through experience, is known to involve disparate

brain areas, and particularly the cortex. For example, learning to discriminate between different sen-

sory stimuli leads to changes in the respective primary sensory areas (Blake et al., 2002;

Chen et al., 2015; Driscoll et al., 2017; Gilad and Helmchen, 2020; Jurjut et al., 2017;

Komiyama et al., 2010; Li et al., 2008; Makino and Komiyama, 2015; Poort et al., 2015;

Yan et al., 2014). Cortical neural responses have often been shown to strengthen after learning. For

example, neural signals in animals that gain expertise in a specific task, show increased activity and

result in higher discriminatory power between the learned stimuli (Gilad et al., 2018; Gilad and

Helmchen, 2020; Poort et al., 2015; Wiest et al., 2010; Yan et al., 2014). In other cases,

decreased responsiveness to the learned stimuli have been measured. These changes, too, may

result in improvement in the discrimination of the stimuli (Christensen et al., 2019; Maor et al.,

2020).

The cortex dynamically interacts with the thalamus via recurrent loops that are thought to involve

more than mere sensory processing. Rather, thalamocortical circuitry also encodes high-order proc-

essing of cognitive functions such as attention, working memory and learning (Acsády, 2017;

Audette et al., 2019; Bennett et al., 2019; Bolkan et al., 2017; Guo et al., 2017; McAlonan et al.,

2008; Rose and Bonhoeffer, 2018; Roth et al., 2016; Saalmann and Kastner, 2015;

Schmitt et al., 2017; Ward, 2013; Williams and Holtmaat, 2019; Zhang and Bruno, 2019). Where

do cognitive responses arise and how do they impact basic sensory processing remains an area of

active research. In this study, we focused on the medial geniculate body (MGB; auditory thalamus),

asking whether and how it represents sensory and cognitive information along learning.
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The MGB is, at least in part, a thalamic relay center of the auditory pathway, predominantly

receiving direct input from the inferior colliculus (Calford and Aitkin, 1983; Peruzzi et al., 1997),

but also from cortex (Winer et al., 2001) and other sources (Crabtree, 1998; Lee, 2015;

Winer, 1992). Its projections target the cerebral cortex and numerous other brain areas such as the

amygdala (LeDoux et al., 1991; Lee, 2015; Tasaka et al., 2020). Anatomical studies divide the

MGB into three main sub-divisions: ventral, dorsal and medial (Calford and Aitkin, 1983;

Clerici and Coleman, 1990; Hashikawa et al., 1991; Imig and Morel, 1985; Mo and Sherman,

2019; Rouiller et al., 1989; Smith et al., 2012). The ventral MGB relays topographically organized

information from the inferior colliculus to the primary auditory cortex (Rouiller et al., 1989;

Smith et al., 2012). This pathway is called the lemniscal pathway, and is considered to be the main

auditory processing pathway. While tracing experiment suggest a simple topographical representa-

tions of sounds relayed from MGB to cortex (Hackett et al., 2011), physiological responses of MGB

axon terminals suggest a more complex interaction (Vasquez-Lopez et al., 2017). Particularly, the

dorsal and medial parts of the MGB are thought to process more complex information than the ven-

tral MGB and not obey strict tonotopy. Dorsal and medial MGB project to higher-order cortical

areas (Huang and Winer, 2000; Lee, 2015; Tasaka et al., 2020) and receive cortical feedback,

among others, from layer 5 of the auditory cortex (Bartlett et al., 2000; Lee, 2015; Llano and Sher-

man, 2008). Those parts of the MGB, considered to be part of the non-lemniscal pathway, are well

positioned to encode higher-order information of sensory, motor and associative nature, but only

few studies have measured these in the auditory thalamus directly (Jaramillo et al., 2014).

Learning-related plasticity has been measured in the cortex after training animals to

discriminate between two simple sounds, neurons in auditory cortex display several learning related

modulations: encoding of higher-order choice information (Guo et al., 2019; Jaramillo et al., 2014),

tonotopic map reorganization (Maor et al., 2020; Polley et al., 2006), increased responses to a tar-

get frequency and decreased responses to a distractor stimulus (Blake et al., 2002; David et al.,

2012; Ghose, 2004; Ohl and Scheich, 2005). The inferior colliculus, too, has been shown to pro-

cesses auditory information based on behavioral context and bodily movements, which are also con-

sidered high order processing (Calford and Aitkin, 1983; Casseday et al., 2002; Gruters and

Groh, 2012; Yang et al., 2020). The MGB, being highly interconnected with both downstream and

upstream brain regions like the inferior colliculus and cortex (Tasaka et al., 2020), is expected to

encode learning-related activity. Indeed, the MGB has been shown to encode the choice of the

mouse during an auditory discrimination task (Chen et al., 2019; Jaramillo et al., 2014). Further-

more, a large body of evidence indicates that the medial MGB is involved in auditory fear condition-

ing, by providing fast, less refined auditory information to the lateral amygdala (Han et al., 2008;

Herry and Johansen, 2014; Maren and Quirk, 2004; Quirk et al., 1995; Romanski and LeDoux,

1992; Weinberger, 2011). To study learning related modulations in the MGB in the context of per-

ceptual learning, we chronically imaged MGB population responses to sounds as mice learned a go/

no-go auditory discrimination task. We find learning-related modulations in the MGB, and a particu-

larly strong modulation to choice signals.

Results

Calcium imaging from the MGB along learning using fiber photometry
To study learning-related changes in the MGB, we injected AAV-GCaMP6f into the MGB of C57BL/6

mice and implanted a 400 mm optical fiber directly above the injection site. After a week of handling

and habituation to head-fixation, we trained mice on a go/no-go auditory discrimination task. Each

trial started with a visual start cue (orange LED; duration 0.1 s; 2 s before stimulus onset) followed

by an auditory stimulus, either a go or a no-go pure tone sound (Figure 1A; duration 1 s; sounds

separated by 0.5 octave; mostly 10 kHz for go and 7.1 kHz for no-go; see Materials and methods).

After stimulus offset, we counted licks in a virtual response window of 3 s. Licking in response to the

go sound were counted as ‘hit’ trials and rewarded with a drop of water. Withholding licking in

response to the no-go sound were counted as correct rejection trials (CR), and were not punished or

reinforced. Licking in response to the no-go sound were counted as false alarm trials (FA) that were

followed by a mild punishment in the form of white noise (duration 3 s). Withholding licking for the

go sound were counted as Miss trials, and were not punished. As mice learned to discriminate
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between the two sounds we continuously imaged population responses in the MGB in addition to

monitoring their body movements during the task (Figure 1B). We first imaged six mice across learn-

ing. The fiber tips of the six mice were reconstructed to the higher-order regions of the MGB

(Figure 1C, medial and dorsal parts grouped as MGB for simplicity). Mice learned the task within

1200–2000 trials as assessed by d’ (defined as d’=Z(Hit/(Hit+Miss)) – Z(FA/(FA+CR) where Z denotes

the inverse of the cumulative distribution function; performance threshold was defined as d’=1;

Figure 1D,E; fitted with a sigmoid function (Bathellier et al., 2013; Maor et al., 2020). The learning

curves with respect to the go and no-go trials shows that individual mice varied widely in perfor-

mance and strategy (Figure 1—figure supplement 1). Learning the task took different forms: some

mice increased their CR rate, others had a steep increase in hit rate, whereas others gradually

increased both hit and CR rates. Thus, mice learned the task using a range of behavioral strategies.

Figure 1. Behavioral paradigm, performance, and frequency tuning. (A) Trial structure of a go/no-go auditory discrimination task and possible trial

outcomes. (B) Behavioral setup for head fixed behaving mice along with simultaneous fiber photometry in the medial geniculate body (MGB). (C) Top:

Fluorescent images of two coronal slices from two different mice, showing GCaMP6f (green) in the MGB along with the fiber track highlighted in white.

DAPI staining in blue. Bottom: Localization of the fiber tip in the MGB for all six mice. (D) Behavioral learning curves for all mice (n = 6) depicting the

performance (d’) as a function of trial number. Each learning curve was fitted with a sigmoid function. Dashed red line indicates the performance

threshold (d’=1). (E) Learning threshold (the trial number where the learning curve crossed the performance threshold) for all mice. (F) A frequency

response area plot (attenuation versus frequency) from one example recording of one example mouse. (G) Frequency tuning curve for the same

example mouse. The frequencies used as go and no-go are marked by arrows. (H) Average responses to the go (blue) and no-go (gray) sounds. (I)

Average evoked response (calculated from the 100 ms after stimulus onset; gray bar in ‘H’) to the go and no-go sounds from all mice. Error bars are s.e.

m across mice. *p<0.05. Wilcoxon sign rank test.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Behavioral performance and learning curves.

Figure supplement 2. Frequency tuning for each mouse.
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Prior to training we imaged fluorescent fiber response to a range of frequencies while the mouse

was passively listening in the awake state (4–40 kHz; 10, 20, 30, 40 dB attenuations relative to 62

dBSPL; duration 0.1 s; see Materials and methods). Population responses in the MGB displayed fre-

quency responses, biased to the low frequency range (Figure 1F). In the six mice shown below, the

response to the go frequency was significantly higher as compared to the no-go frequency

(Figure 1G–H, one example mouse; Figure 1I, average of all six mice; p<0.05; Signed rank test; Fig-

ure 1—figure supplement 2A for the tuning curves of all mice).

The tuning curves of individual neurons in the dorsal and medial parts of the MGB are generally

broader than ventral MGB (Bordi and LeDoux, 1994; Weinberger, 2011), and they represent multi-

ple frequencies (Hackett et al., 2011). It is therefore surprising that the responses we measured

were rather sharply tuned. Further surprising was that our signals peaked at lower frequencies, while

the bulk signal of photometry is summing activity from multiple neurons. Whereas we cannot deter-

mine the source of the signal explicitly, the fiber tip locations showed that most recordings were

from the dorsal and medial MGB. The full frequency response areas showed that our signal spanned

2.5 octaves, at least in high intensities. However, we cannot exclude that feedback connections from

higher cortex (Vasquez-Lopez et al., 2017) or signal leaking from the ventral MGB contributed to

the signal we recorded. Thus, the main source of the fluorescent signal is primarily, though not exclu-

sively, of non-leminsical origin.

MGB encodes the choice of the mouse
To evaluate how sounds and other task attributes were represented in the MGB across learning, we

plotted responses to the go and no-go sounds as mice learned the task. Figure 2A shows responses

to the go and no-go sounds of one representative mouse (Figure 2A). The most evident change in

MGB responses across learning was during the late part of the trial (0.6–1 s after stimulus onset),

and particularly so for go trials (Figure 2A).

Figure 2. MGB encodes choice in expert mice. (A) 2-dimensional plots of the calcium responses in MGB during

the trial (x-axis) and across learning (y-axis; 50 trial bins) for one example mouse divided into go (left) and no-go

(right) sounds. Dashed black line indicates stimulus onset (1 s duration) and dashed red line indicates the learning

threshold. (B) Calcium responses when the mouse was novice (left) and expert (right). Traces are shown separately

for different trial types (hit, miss, CR and FA trials; same data as in ‘A’). Shaded error bars are s.e.m across trials.

(C) Mean calcium response during stimulus presentation per mouse in hit and miss trials when mice were novice

(left) and expert (right). Error bars are s.e.m across trials. (D) Choice responses (defined as the response difference

between hit and miss trials) during the trial, averaged across all mice when they were novice (dashed line) and

expert (solid line). *p<0.05. ***p<0.001. n.s. – not significant. Wilcoxon rank sum test.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Calcium responses in different trial types for all mice.
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A particularly informative comparison is between hit and miss trials, where the stimulus is identical

but the choice of the mouse is different (either lick or no-lick). Thus, differences between hits and

misses represent encoding of choice. In expert mice (defined as the last 500 trials), MGB responses

were higher for hit as compared to miss trials, and more so than in the novice mice (defined as the

first 500 trials; Figure 2B; compare blue to light blue traces; For comparison, CR and FA trials are

plotted in gray; MGB responses for all six mice individually are presented in Figure 2—figure sup-

plement 1). Higher responses in hit versus miss trials were evident in all (6/6) expert mice and in

50% (3/6) of novice mice (Figure 2C; p<0.05; Wilcoxon rank sum test for each mouse separately;

minimum 40 trials for hit or miss). Choice responses (i.e. hit minus miss) increased gradually after

stimulus onset, and were stronger in expert mice (Figure 2D). These data suggests that the MGB

encodes more than only sounds. MGB encodes the choice of the mouse, which implies that the audi-

tory thalamus is involved in higher-level sensory-motor processing or some cognitive attributes of

the task.

MGB encodes sounds early and choices late
To further explore the role of MGB in high level processing versus low-level sound processing, we

tested the discrimination between sensory stimuli and choices at the single trial level. To do so, we

calculated the receiver operating curve (ROC) and derived the area under the curve (AUC) between

pairs of different trial-type distributions. We define two different AUC measures by comparing hit tri-

als to either FA (stim AUC; magenta; that is different stimuli but similar choice) or to Miss (choice

AUC; green; that is similar stimuli but different choice) trials (Figure 3A). The AUC value ranges

from 0 to 1 and quantifies the accuracy of an ideal observer. AUC values close to 0.5 indicate low

discrimination whereas values away from 0.5 indicate high discrimination. Together, these compari-

sons encompass the full breadth of options in the task (see below for additional trial types). In

Figure 3. MGB discriminates early between stimuli and late between choices. (A) Schematic of the two single trial

discrimination measures: hit vs. FA (magenta; Stim AUC) or hit vs. miss (green; Choice AUC). (B) Stim and Choice

AUCs during the trial for one example mouse during novice (black lines) and expert (colored lines). Dashed black

lines display the mean ±3 s.t.d of AUC from trial shuffled data. Arrows indicate the latency of the AUC measure

(i.e. the first time point the signal exceeded the shuffled data). (C) Latency of discrimination for the Stim and

Choice AUCs for all mice (averaged and marked individually). Error bars are s.e.m across mice (n=6). (D) Stim and

Choice AUCs averaged across all expert mice. Early and late times are marked in gray. (E) The two AUC measures

averaged during early (left) and late (right) times when mice were novice (black lines) and expert (colored). Error

bars are s.e.m across mice. *p<0.05. Wilcoxon signed-rank test.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Choice-AUC responses for all mice.

Figure supplement 2. Stim-AUC and Choice-AUC based on other trial type pairs.
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addition, we calculated AUC values for each time frame along the trial for the novice and expert

conditions separately (i.e. first and last 500 trials). As a control, we calculated the sample distribution

of trial-shuffled data and calculated the AUC identically. We define significance as the time point

when the observed AUC values exceed ±3 std above the mean of the shuffled distribution (dashed

lines in Figure 3B). For example, AUC data from one mouse is shown in Figure 3B. The ‘stim-AUC’

value is significantly discriminative early in the trial in both the novice and expert cases (Figure 3B,

<100 ms from stimulus onset; arrows). This example shows that MGB responses carry highly discrimi-

native information between the stimuli early in the trial and that this does not change following

learning. In contrast, ‘choice-AUC’ reached significance only in the expert condition and only later in

the trial (Figure 3B, green trace,>200 ms from stimulus onset; arrow).

To quantify this effect across mice, we defined the exact latency for discrimination as the time it

takes to reach significance for each AUC measure in the expert case (arrows in Figure 3B). The

latency of discrimination for ‘stim-AUC’ was significantly earlier than that of the ‘choice-AUC’

(Figure 3C; p<0.05; Signed rank test; n = 6 mice). In addition, the onset of the choice-AUC was sig-

nificantly earlier than the onset of licking in expert mice, implying that choice signal in the MGB pre-

cedes the execution of the motor command (p<0.05; Signed Rank test; n = 6 mice; Onset defined in

both traces as the peak of the 2nd derivative; Choice onset = 207 ± 109 ms; Lick onset = 385 ± 130

ms; mean ±std). Averaged across all mice, stim-AUCs increased early and abruptly whereas choice-

AUC increased gradually (Figure 3D; choice-AUCs for individual mice are shown separately in Fig-

ure 3—figure supplement 1). We then pooled together the AUC values during the early (0.1–0.3 s

after stimulus onset) and late (0.6–1 s after stimulus onset) times of the trial (Figure 3E). We found

that 1) Stim-AUC was significantly higher than choice-AUC early in the trial (p<0.05; Signed rank

test; n = 6 mice), 2) Choice-AUC was higher, yet not significantly, during the late part of the trial

compared to early times (p=0.09; Signed rank test; n = 6 mice), and 3) Choice-AUC was higher, yet

not significantly, in the expert compared to the novice state, particularly during late times during the

trial (Figure 3E; p=0.06; Signed rank test; n = 6 mice). In addition, we calculated choice and stim

AUCs based on other pairs of trial types: CR vs. Miss for an alternative stim-AUC and FA vs. CR for

an alternative choice-AUC (Figure 3—figure supplement 2). The alternative stim-AUC displayed

similar early onset discrimination in both novice and expert cases. In contrast, the choice-AUC

showed significant discrimination only in some mice, but not all. This was mainly due to the fact that

the responses were quite weak to the no-go sound (see Figure 2—figure supplement 1 for DF/F

responses in CR and FA trials), resulting in low discrimination values. In summary, these data indicate

that stimulus information is present in the MGB relatively early, whereas choice information develops

relatively late - several hundred milliseconds after stimulus onset.

Plasticity in MGB correlates with learning
Continuous imaging throughout the whole learning process enabled us to investigate the activity of

the MGB on a trial-by-trial manner, and compare it to behavioral performance of each mouse. For

this analysis, which was focused on go trials only, we averaged the calcium signals at late times dur-

ing the trial (0.6–1 s after stimulus onset) to obtain MGB responses as a function of learning (termed

‘MGB response curve’). The MGB response curve was sigmoid-like, resembling the learning curve of

the mouse (Figure 4A shows data from two mice; line is a sigmoid function fit). Next, we calculated

the MGB response curve for each time point along the trial separately, correlated it with the learning

curve, and plotted the correlation coefficient along time (see Materials and methods). Positive corre-

lations depict high similarity between the MGB response curve to the learning curve at the given

time point. The correlation increased after stimulus onset, indicating a strong relationship between

MGB modulations and the learning process (Figure 4B - two representative mice; Figure 4C- all

mice). To find the maximum point of change for each MGB response curve, we normalized sigmoid

fits of the MGB response curves for each mouse separately, and derived the trial threshold for each

curve (Figure 4D; defined as the trial number in which the normalized curve crosses 0.5). The trial

threshold of the MGB curves matched nicely the learning threshold of each mouse (Figure 4E;

r = 0.89; p<0.05). Calculating the learning curves based on earlier times (0–0.3 s after stimulus onset)

resulted in MGB curves which are much less sigmoid-like and their threshold did not match the learn-

ing curves of each mouse (r = 0.3; p>0.05), indicating that learning dynamics develop relatively late.

To test whether MGB responses had undergone changes not directly related to learning, we com-

pared between the responses to tones in passively listening mice before and after mice learned the
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task. We found no differences between the MGB frequency tuning curves or the response to the go

frequency during passive listening, before and after learning (Figure 4—figure supplement 1), indi-

cating that MGB plasticity occurs specifically for task related signals, at least at the population level.

In summary, we found that changes in MGB responses are positively correlated with learning as evi-

dent in similar modulation of the choice signal and the performance of individual mice.

Body movements affect MGB responses
The strong relationship between MGB plasticity and learning prompted us to further investigate

other parameters that may affect learning-related modulations, specifically related to encoding of

choice. Factors that could affect MGB responses are parameters related to movement (e.g. forelimb

movement, nose twitching, whisking, licking etc.), which were recently found to have substantial

impact on neuronal activity in different brain areas (Gilad et al., 2018; Gilad and Helmchen, 2020;

Musall et al., 2019; Stringer et al., 2019). As mentioned above, we continuously monitored the

body movements of the mouse throughout the experiment (Figures 1A and 5A). As expected,

changes in body movements were correlated with learning. Around the time mice crossed the learn-

ing threshold, they exhibited more body movements as evident by plotting their movement proba-

bility (Figure 5A, right). Movement probability was high both within the stimulus period (0–1 s after

stimulus onset) and, as expected, during the response period (Figure 5A,B). During pre-stimulus

periods (�1 to 0 relative to stimulus onset) expert mice moved significantly less compared to the

novice case, indicating a higher level of alertness (p<0.01; Signed rank test). Movement probability

during stimulus presentation across learning was sigmoid-like, and significantly higher in experts

compared to novice mice (Figure 5C,D; p<0.05; Signed rank test; n = 6 mice). Thus, as part of the

Figure 4. MGB changes correspond with gaining expertise. (A) MGB responses (averaged during late times, 0.6–1 s after stimulus onset; gray bars in B)

as a function of learning in two example mice. Each MGB response curve was fitted with a sigmoid function (black lines). The learning thresholds are

marked with a gray line. (B) Correlation coefficient as a function of time between the MGB response curve and the learning curve of the two example

mice shown in ‘A’. Positive values indicate that MGB responses change in a similar way to the behavioral performance of the mouse. (C) Same as B, but

averaged across all six mice. Error bars are s.e.m across mice. (D) Normalized fits of the MGB response curve for all mice. Dashed red line indicates

threshold. (E) Maximal change in MBG responses (i.e. the trial number in which the MGB fit crossed 0.5, dots) superimposed on the learning thresholds

(gray crosses).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Frequency tuning is similar before and after learning.
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development of choice responses in MGB, the body movements of mice during the task were also

strongly related to the learning process.

The strong effects of movement suggest that the abovementioned MGB ‘choice’ signal may sim-

ply represent body movements rather than choice, per se. Indeed, some MGB responses and body

movement covaried strongly whereas others did not (Figure 5E). Thus, to rule out the possibility

that movement is the dominant feature in our calcium signal, we calculated ’movement free’ MGB

responses by detecting the movement onset in each trial and truncating the MGB signal when mice

moved (gray traces in Figure 5E; see Materials and methods). This allowed us to evaluate separately

MGB responses without the body movements. Movement-free MGB responses still encoded the

choice of the mouse. Specifically, we found higher responses in hit compared to miss trials

(Figure 5F). Notably, the effect size was smaller and levels of statistical significance were weaker

when compared to the signal with movement (Figure 5G; compare to Figure 2C ‘Expert’). Impor-

tantly, when mice were still novice, movement-free MGB responses did not encode choice, indicat-

ing that choice encoding develops with learning, independent of movement (Figure 5—figure

supplement 1A). Indeed, movement-free MGB responses were also enhanced as a function of learn-

ing, indicating that enhanced responses in MGB are related to a learning processes in ways that are

not only directly linked to the movements of the mouse (Figure 5—figure supplement 1B,C). To

Figure 5. Body movements affect MGB responses. (A) Left: schematic illustration of mouse body movements during the task. Right: A 2-dimensional

plot of movement probability during go trials within the trial (x-axis) and across learning (y-axis; 50 trial bins) for an example mouse. Dashed green line

indicates stimulus onset (1 s duration) and dashed blue line indicates learning threshold. Color scale bar indicates min/max of movement probability.

(B) Movement probability during the trial for the example mouse in A when it was novice (black) and expert (orange). (C) Movement probability

(averaged during late times; 0.6–1 s after stimulus onset; go trials) across learning fitted with a sigmoid function. Same data as in ‘B’. (D) Movement

probability during late times for novice and expert averaged across all six mice. Error bars are s.e.m across mice. *p<0.05. Signed-rank test. (E) Single

trial traces of MGB calcium response (top), body movement (middle) and a binary movement vector (bottom; thresholding the body movement, dashed

red line; Materials and methods). To exclude effects of body movements, MGB responses were truncated just before the movement onset on a trial-by-

trial basis (gray traces in each trial). (F) MGB calcium responses for different trial types when including (left) and excluding (right) body movements. Data

is from one example mouse (same as Figure 2B). Error bars are s.e.m across trials. (G) Mean MGB responses (averaged during stimulus presentation)

for movement-free hit and miss trials per mouse. Data from expert mice. Error bars are s.e.m across trials. *p<0.05. **p<0.01. ***p<0.001. n.s. – not

significant. n.a. – not available. Wilcoxon rank sum test.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Movement-free MGB choice responses along learning.

Figure supplement 2. Movement of different body parts with respect to stimulus onset.
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rule out movement-related artifacts, we also imaged mice during the task while exciting the MGB

with a wavelength that does not excite the calcium indicator (565 nm). This non-calcium signal was

analyzed in a similar manner to the calcium signal and resulted in a relatively flat trace throughout

the trial, showing that there are no movement related artifacts (data not shown). In summary, body

movements during the task are evident in the calcium signal and are learning-related. Nevertheless,

MGB responses still maintains choice information that is separate from the motor parameters and,

critically, develops with learning. These data strengthen the claim that MGB encodes high-level

information.

Learning-related changes in MGB differ in different frequency bands
As noted above, MGB responses were tuned to frequency (Figure 1F–I). We next tested whether

the changes we observed in MGB are general or specific to the response properties at the range of

frequencies we used. To this end, we trained three additional mice on the task. In these mice, the go

frequency did not correspond to the best frequency. That is the underlying MGB population

response was not highest for the target frequency (tuned away from the go frequency; Figure 6A

shows one mouse with the go signal in the outskirts of the tuning curve; Figure 1—figure supple-

ment 2B for the tuning curves of all three mice). Interestingly, MGB responses in all three mice still

showed choice encoding but the absolute direction of change was in the opposite direction as com-

pared to the first cohort of mice (compare Figure 6B to Figure 2C). Specifically, the MGB responses

to the hit trials were now significantly lower than to the miss trials and this was evident in expert

mice only (Figure 6B; p<0.001; Signed rank test for each mouse separately; minimum 24 trials for hit

or miss). In expert mice, choice encoding gradually developed with time along the trial and was evi-

dent only in expert mice (Figure 6C). Here again, MGB response curves were sigmoid-like

(Figure 6D) and strongly correlated with learning (Figure 6E). A more detailed description of these

effects is shown in Figure 6—figure supplement 1. Taken together, we infer that learning enhances

responses to the target frequency while simultaneously suppressing activity away from the target fre-

quency. Notably, both phenomena still result in the same effect (i.e. encoding of choice), but likely

exploit different mechanisms.

Discussion
We describe learning-related changes in evoked responses to sounds in the auditory thalamus. We

find that auditory thalamus encodes the choice of the mouse several hundred milliseconds (~200 ms;

Figure 3C) after sound onset, by specifically enhancing activity to the go frequency as learning pro-

ceeds. Thus, late thalamic responses to the same sound are different depending on its learned state.

Figure 6. MGB responses tuned away from the go frequency are suppressed during learning. (A) Frequency tuning curve for an example mouse with

peak tuning frequency away from the go sound. (B) Mean MGB calcium response during stimulus presentation per mouse in hit and miss trials. Left-

novice mice, Right- expert mice. Error bars are s.e.m across trials. ***p<0.001. n.s. – not significant. Wilcoxon rank sum test. (C) Choice responses,

averaged across the three mice that are tuned away from the go frequency, for the expert (solid line) and novice (dashed line) conditions. Gray traces

are for the go-tuned mice, same as Figure 2D. (D) MGB response curve along learning in one mouse that is tuned away from the go frequency

(compare to Figure 4A). (E) Correlation between MGB response curves and learning curves as a function of time, averaged across the three mice. Error

bars are s.e.m across mice. Gray traces are for the go-tuned mice, same as Figure 4C.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. MGB responses tuned away from the go frequency are suppressed during learning.
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MGB responses alone allowed us to predict with high precision when each mouse learned the task.

Taken together, we provide strong evidence relating MGB plasticity to learning a simple auditory

discrimination task.

Higher-order thalamic nuclei are part of a thalamocortical loop that are suggested to encode

high-order cognitive information (Bolkan et al., 2017; Guo et al., 2017; Schmitt et al., 2017).

Choice encoding in the thalamus (Chen et al., 2019; Gimenez et al., 2015; Jaramillo et al., 2014)

bears similarity to the observations made in the cortex (Gilad et al., 2018; Guo et al., 2019;

Harvey et al., 2012; Pho et al., 2018; Siegel et al., 2015; Yang et al., 2016), indicating the inti-

mate involvement of thalamocortical loops during learning. The appearance of learning related

choice encoding was consistent across mice and evident at the population level (Figure 3). Since we

are unable to dissect the fiber photometry signal to its single cell components, we can only specu-

late about the nature of cells encoding the choice. The increase in choice signal could arise from

small contributions of a large fraction of MGB neurons or from large contributions of a smaller popu-

lation. A previous study found that neurons in the MGB (and similarly in cortex) mediate choice but

to a limited extent, whereas only a small fraction (16%) of recorded neurons encoded choice infor-

mation, supporting the latter possibility (Jaramillo et al., 2014). One noted difference is that

Jaramillo et al., 2014 recorded responses from all MGB sub-nuclei, including ventral MGB, while

our measurements were more localized to the medial and dorsal MGB. Ventral MGB might not

encode choice, and thus previous work may have underestimated the contribution of single neurons

in the non-lemniscal pathway in signaling choice. In fact, further functional dissection is warranted.

For example, dorsal MGB will likely be affected more prominently by motor parameters compared

to the medial MGB (Bartlett et al., 2000; Huang and Winer, 2000; Lee, 2015). Further, specific

populations of MGB neurons that project to different targets will likely transfer specific learning-

related information in a selective manner Chen et al., 2019; as has been shown for the enhancement

of choice information in the cortico-striatal pathway (Guo et al., 2019). Simultaneous recordings,

preferably with electrophysiology, with tight regulation of the information transfer between thalamus

and cortex will be instrumental in deciphering the origin of choice information.

The observed changes in MGB points to pronounced plasticity during the training phase. The

mechanisms of this plasticity are unknown and may involve several factors such as inhibitory effects,

changes in excitation-inhibition balance, and other forms of synaptic plasticity in specific pathways

to the MBG (Audette et al., 2019; McAlonan et al., 2008; Rose and Bonhoeffer, 2018). Learning-

related dynamics have been shown to involve disparate circuit elements such as deep cortical layers

(Audette et al., 2019; Olsen et al., 2012), specific inhibitory neuron subtypes (Hashikawa et al.,

1991; Khan et al., 2018; Peruzzi et al., 1997) or other thalamic sub-nuclei (Audette et al., 2019;

Bennett et al., 2019). Given that cortex encodes choice, higher-order thalamocortical connections

are good candidates to drive synaptic plasticity in cortex during learning (Audette et al., 2019). It is

unknown whether the synaptic changes from the thalamus to the cortex are the source of change in

the MGB or whether corticothalamic feedback is the source. The prolonged latency of choice devel-

opment in our study, implies an involvement of a late component that may suggest top-down feed-

back interaction. In addition, an interesting sub-thalamic nucleus that may be involved in gating

higher-order information is the thalamic reticular nucleus (TRN) which sends GABAergic projections

to MGB (Crabtree, 1998; Lee, 2015). TRN could gate incoming sensory information, where in the

novice case it is expected to exert strong inhibition to MGB which is then decreased with learning;

thus enabling enhanced activation to the go sound already at the level of the MGB

(McAlonan et al., 2008; Nakajima et al., 2019). Such a mechanism may contribute to the enhanced

discrimination between go tuned and no-go tuned recordings sites in the MGB of expert mice.

Selective disinhibition or inhibition could enhance go-tuned neuronal populations or suppress no-go

tuned populations, respectively.

Local and global functional connectivity are rich in cortical networks, including auditory

cortex (Rothschild et al., 2010; Maor et al., 2016). Selective changes in local and global functional

connectivity based on task demands is not unprecedented, and the mechanisms underlying it has

been attributed to the thalamus (Nakajima and Halassa, 2017). We show that as mice learn the

task, the target frequency enhances activity in tuned population whereas non-tuned populations are

simultaneously suppressed. This phenomenon may make the target stimulus more salient based on

context and bear similarities to other enhancement/suppression mechanisms found in visual thala-

mus (Fisher et al., 2017; Jones et al., 2012; Nakajima et al., 2019; Wilke et al., 2009). Comparing
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the different MGB subdivisions, we hypothesize that that medial and dorsal MGB neurons encoding

non-target frequencies will be suppressed, whereas the ventral MGB may continue with a similar

response profile for all frequencies. Since higher-order MGB projects to higher-order auditory cortex

(part of the non-lemniscal), this information may bypass incoming information from the lemniscal

pathway and may aid in increasing discrimination performance.

We find that motor parameters, such as body movements, are also learning-related. As mice learn

to associate between the go sound and a reward, they increase their body movement in preparation

for licking and the upcoming reward, well within the stimulation period. MGB responses were also

affected by body movements to different extents, as might be expected by the motor efferent corti-

cal feedback from layer 5 (Bartlett et al., 2000; Lee, 2015; Llano and Sherman, 2008). Another

possibility is that movement related encoding may ascend from the inferior colliculus, an upstream

area (Gruters and Groh, 2012; Yang et al., 2020). The fact that MGB still encodes choice after trun-

cating movement signals, indicates that the MGB does not inherit all task information from the infe-

rior colliculus, but rather integrates information coming from both top-down and bottom-up inputs.

The effect of motor parameters on neuronal signals were recently observed in a brain-wide manner,

emphasizing the need to strictly monitor and consider motor parameters during different tasks

(Gilad et al., 2018; Gilad and Helmchen, 2020; Musall et al., 2019; Stringer et al., 2019); and par-

ticularly so when measuring higher-order information. In summary, we show that the auditory thala-

mus encodes high-order information during the time course of learning, implying that the learning

process requires brain-wide activity spanning across both cortical and subcoritcal regions.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Transfected construct
(Adeno-associated virus)

pAAV.Syn.GCaMP6f.
WPRE.SV40

Addgene RRID:Addgene_100837

Software, algorithm Matlab, Labview Mathworks,
National Instruments

Animals
A total of n = 9, 8–16 week-old female C57BL/6 mice were used in this work. All experiments were

approved by Institutional Animal Care and Use Committee (IACUC) at the Hebrew University of Jer-

usalem, Israel (Permit Number: NS-19-15706-4).

Surgery
To express a calcium indicator in MGB neurons and implant an optical fiber for imaging, mice were

anesthetized with 2% isoflurane (in pure O2) and body temperature was maintained at 37˚C. We

applied local anesthesia to the area of surgery (lidocaine 1%), exposed and cleaned the skull. Next,

we drilled a small hole in the skull and injected 240 nl of an AAV virus pAAV.Syn.GCaMP6f.WPRE.

SV40 (AAV9; from Addgene) using a glass pipette, to the dorsal or medial part of the MGB (3.3 mm

posterior to bregma; 1.9 mm lateral to bregma; 3 mm in depth). Using the same coordinates, we

then inserted a 400 mm optical fiber with an attached cannula (CFMC14L05; Thorlabs), directly above

the injection site (2.95 mm deep). We chronically fixed the fiber position using dental cement that

was mixed with a few drops of superglue for extra strength and stability. Finally, a metal post for

head fixation was glued onto the bone in the back side of the right hemisphere. This procedure

enabled a chronic and reliable imaging of population calcium responses from the MGB.

Auditory discrimination task
Mice were trained on a go/no-go auditory discrimination task (Figure 1A). We used the exact same

hardware and software of an automated behavior system we recently described called the “Edu-

cage” (see details in Maor et al., 2020). Unlike the Educage where mice are free to train from their

home, here, we trained mice on this system while head fixed in an isolated acoustic chamber. In

short, each trial started with a visual start cue (orange LED placed in front of the mouse; duration 0.1

Gilad et al. eLife 2020;9:e56307. DOI: https://doi.org/10.7554/eLife.56307 11 of 18

Research article Neuroscience

https://scicrunch.org/resolver/Addgene_100837
https://doi.org/10.7554/eLife.56307


s; 2 s before stimulus onset) followed by an auditory stimulus, either a go or a no-go pure tone

(Figure 1A; duration 1 s; 62 dBSPL; sounds separated by 0.5 octave). All mice were trained on 10

kHz for go and 7.1 kHz for no-go except for mouse #3 which was trained on 8.2 kHz for go and 5.8

kHz for the no-go. After stimulus offset, we counted licks in a virtual response window of 3 s. Licking

in response to the go sound were counted as ‘hit’ trials and rewarded with a drop of water. With-

holding licking in response to the no-go sound were counted as correct rejection trials (CR), and

were not punished or reinforced. Licking in response to the no-go sound were false alarm trials (FA)

that were followed by a mild punishment of white noise (duration of 3 s). Withholding licking for the

go sound were counted as misses, and were not punished. The licking detector remained in a fixed

and reachable position throughout the entire trial and mice were free to lick at any time. Licking

before the response cue was allowed and did not lead to punishment or early reward. Note that the

visual cue merely signals the start of the trial, but had no predictive power with respect to go or no-

go condition.

Training and performance
Nine mice were trained on the task. Mice were first handled and accustomed to head fixation before

starting the schedule of water restriction. Before imaging began mice were conditioned to lick for

reward after the go sound (presented within a similar trial structure as the task itself). Imaging began

only after mice reliably licked for the presented sound (typically after the 1 st day; 200–400 trials). On

the first day of imaging, mice were presented with the go sound for 50 consecutive trials, after which

the no-go sound was gradually introduced (starting from 10% and increasing by 10% approximately

every 50 trials). By the end of the 1 st day, the no-go sound reached 50% probability (Guo et al.,

2014). During the 2nd day, most mice continuously licked for both sounds. Thus, after roughly 100

trials, we increased no-go probability to 80% and waited for mice to perform three consecutive CR

trials before returning to 50% probability. This was done for several times until mice increased their

performance, specifically learning to withhold licking for the no-go sound. In mice that still continued

to lick for both sounds we also repeated the no-go sound several times until the mouse performed

correctly. In all mice, a 50–50% protocol was reached typically on the 1st or 2nd day. Most mice

learned the task within 3–7 days corresponding to roughly 1200–2000 trials (Figure 1D). An effort

was made to maintain a constant position of the mouse, speaker and cameras across imaging days

in order to maintain similar stimulation and imaging conditions.

Optical fiber setup
As mice trained on and performed the task we continuously imaged MGB population responses. A

ferrule patch cable (M79L01; Thorlabs) was connected to the implanted cannula using a mating

sleeve (ADAF1; Thorlabs) and the cable end was connected (SMA connector) to an optical imaging

setup (FOM-2; MCI), enabling us to excite the MGB at 470 nm (blue; 0.3 mW power output kept

constant throughout the experiments) and collect emission light at 520 nm (green). As a control, we

also imaged mice during the task while exciting the MGB with a wavelength that does not excite the

calcium indicator (565 nm).

Histology
Mice were given an overdose of Pental and were perfused transcardially with phosphate-buffered

saline (PBS) followed by 4% paraformaldehyde (PFA) in PBS. Brains were post-fixed for 12–24 hr in

4% PFA in PBS and then cryoprotected for >24 hr in 30% sucrose in PBS. Then, 100 mm coronal sli-

ces of the entire brain were made using a freezing microtome (Leica SM 2000R), incubated for 15

min in 2.5 mg/ml of DAPI (4’,6-diamidino-2-phenylindole), mounted onto glass slides, and imaged

using an Olympus IX-81 epi-fluorescent microscope with a 4 � and 10 � objective lens (0.16 and 0.3

NA; Olympus). Fiber tracks and GCaMP6f expression were detected in all mice and were mainly

localized to the MGB (Figure 1C).

Body tracking
In addition to fiber photometry, we tracked body movements of the mouse during the task

(Figures 1B and 5A). The mouse was illuminated with a 940 nm infra-red LED. A body camera moni-

tored the movements of the mouse at 30 Hz (The Imaging Source; DMK 23UV024 camera). We used
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movements of both forelimbs, neck and jaw regions to assess body movements (Figure 1A; see

Data Analysis below). Mice performed the task in the dark.

Data analysis
Data analyses and statistics were performed using custom-written code in MATLAB. For MGB sig-

nals, each trial was normalized to baseline several frames before the visual cue (frame 0 division). We

did not find a substantial difference in baseline fluorescence across imaging days and also within an

imaging day, implying there was no over bleaching of the signal. This enabled us to quantitatively

compare DF/F signals across long time periods. To better control for possible changes in MGB signal

across days, we tested for frequency tuning (playing a range of frequencies 4–40 kHz; 10, 20, 30, 40

dB attenuations relative to 62 dB; duration 0.1 s) in each mouse, both before and after training. We

did not see a significant difference in DF/F response between the cases (Figure 4—figure supple-

ment 1; p>0.05; n=6 mice; Signed rank test).

Next, we divide trials based either on stimuli (i.e. go or no-go) or on choice (i.e. lick or no-lick per

stimulus type). MGB DF/F signals were plotted in two dimensional temporal spaces where the x-axis

is the trial temporal structure, and the y-axis is the learning profile across trials and days (Figure 2A).

From this 2D temporal space we averaged across trials during the novice and expert phases (defined

as the first and last 500 trials respectively; Figure 2B). Alternatively, we averaged across time frames

within the trial structure, to obtain an MGB response curve across learning (Figure 4A; see below).

Discrimination power between different trial types
To measure how well could neuronal populations discriminate between trial types (i.e. hit, miss, CR

and FA), we calculated a receiver operating characteristics (ROC) curve between the distribution of a

pair of trial types and calculated its area under the curve (AUC). We define two different AUC meas-

ures by comparing hit trials to either FA (stim AUC; magenta; i.e. different stimuli but similar choice)

or to Miss (choice AUC; green; i.e. similar stimuli but different choice) trials (Figure 3A). The AUC

value ranges from 0 to 1 and quantifies the accuracy of an ideal observer. AUC values close to 0.5

indicate low discrimination whereas values near away from 0.5 indicate high discrimination. In addi-

tion, we calculated AUC values for each time frame along the trial for the novice and expert condi-

tions separately (i.e. first and last 500 trials). To assess significance, we calculated the sample

distribution by trial shuffling between go and no-go sounds (n = 100 iterations). When the signal

exceeded the mean ±3 std of the sample distribution it was defined as significant (Figure 3B,

arrows).

Calculation of learning curve and MGB response curves
To calculate the learning curve for each mouse, trials were binned (n = 50 trials with no overlap)

across learning and the performance (defined as d’=Z(hit/(hit+miss)) – Z(FA/(FA+CR)) where Z

denotes the inverse of the cumulative distribution function) was calculated for each bin. Next, each

behavioral learning curve was fitted with a sigmoid function

SðtÞ ¼ a
1

1þ e
�ðt�bÞ

c

(1)

Where a denotes the amplitude, b the time point (in trial numbers) of the inflection point, and c

the steepness of the sigmoid. A d’=1 was defined as the performance threshold and mice were

ordered based on the trial number in which they crossed threshold (i.e. learning threshold;

Figure 1E). Different pthresholds did not change the order with which mice learned (see Figure 1E).

To compare the behavioral learning curve with responses in the MGB we calculated the mean

MGB response across learning (in the same 50 trial bins as the learning curve), averaged during late

times (0.6–1 s after stimulus onset; 0.2–0.5 s for m2). Our main focus in this study was on the go

sound (hit and miss trials grouped together). Therefore, stimulus identity was kept similar across

learning. MGB response curves were also fitted with a sigmoid function (black curves in Figure 4A;

Curves were smoothed with a Gaussian kernel (2s = 9) for visualization only). The sigmoid fits of the

MGB response curves were normalized between 0 and 1 in order to compare between curves from

different mice. In addition, we calculated the MGB response curve for each time frame separately.

This was correlated with the fixed learning curve of the mouse, to obtain a time course (within the
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trial) correlation coefficient value between the MGB response curve and the learning curve

(Figure 4B; no smoothing applied).

Calculating body movements
We used a body camera to detect general movements of the mouse (30 Hz frame rate; Figures 1A

and 5A). For each imaging day, we first outlined the forelimbs, neck and mouth areas (one area of

interest for each), which were reliable areas to detect general movements. Next, we calculated the

body movement (one minus frame-to-frame correlation) within these areas as a function of time for

each trial. Thresholding at 3 s.d. (across time frames before stimulus cue) above baseline resulted in

a binary movement vector (either ‘moving’ or ‘quiet’) for each trial (Gilad et al., 2018; Gilad and

Helmchen, 2020). This movement analysis was very strict, where any movement of the forelimb,

neck or jaw would be flagged as a period of movement. A detailed movement analysis of each body

part is presented in Figure 5—figure supplement 2. In addition, the licking onset was always later

compared to the movement onset, since one of the detection areas was the jaw area. This was done

for each trial to achieve a 2D space of movement probability within the trial temporal structure (x-

axis) versus the learning process (i.e. trial number; y-axis; Figure 5A). To obtain MGB signals that

are ‘movement-free’, that is do not contain direct effect of body movements, we detected the first

movement onset for each trial, defined as 0.2 s before crossing the movement threshold

(Figure 5E). Next, MGB signals were truncated from movement onset and onwards in a single trial

manner. This analysis resulted in MGB trials, each with a different length, that did not contain body

movements (Figure 5F,G). Similar results were obtained using other body parts such as the nose

and mouth (including licking).

Statistical analysis
In general, non-parametric two-tailed statistical tests were used. The Whitney rank sum test was

used to compare between two medians from two populations and the Wilcoxon signed rank test

was used to compare a population’s median to zero (or between two paired populations). Multiple

group correction was used when comparing between more than two groups. Significance was set at

p=0.05.
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