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Abstract
Expansion	 of	 oil	 palm	 agriculture	 is	 currently	 one	 of	 the	 main	 drivers	 of	 habitat	
	modification	 in	Southeast	Asia.	Habitat	modification	can	have	significant	effects	on	
biodiversity,	ecosystem	function,	and	interactions	between	species	by	altering	species	
abundances	or	the	available	resources	in	an	ecosystem.	Increasing	complexity	within	
modified	habitats	has	the	potential	to	maintain	biodiversity	and	preserve	species	inter-
actions.	We	 investigated	 trophic	 interactions	 between	Argyrodes miniaceus,	 a	 clep-
toparasitic	spider,	and	 its	Nephila spp.	spider	hosts	 in	mature	oil	palm	plantations	 in	
Sumatra,	Indonesia.	A. miniaceus	co-	occupy	the	webs	of	Nephila spp.	females	and	sur-
vive	by	stealing	prey	items	caught	in	the	web.	We	examined	the	effects	of	experimen-
tally	manipulated	understory	vegetation	complexity	on	the	density	and	abundance	of	
A. miniaceus in Nephila spp.	webs.	Experimental	understory	treatments	 included	en-
hanced	complexity,	standard	complexity,	and	reduced	complexity	understory	vegeta-
tion,	which	had	been	established	as	part	of	the	ongoing	Biodiversity	and	Ecosystem	
Function	 in	 Tropical	Agriculture	 (BEFTA)	 Project.	A. miniaceus	 density	 ranged	 from	
14.4	to	31.4	spiders	per	square	meter	of	web,	with	significantly	lower	densities	found	
in	 reduced	 vegetation	 complexity	 treatments	 compared	 with	 both	 enhanced	 and	
standard	treatment	plots.	A. miniaceus	abundance	per	plot	was	also	significantly	lower	
in	reduced	complexity	than	in	standard	and	enhanced	complexity	plots.	Synthesis and 
applications:	 Maintenance	 of	 understory	 vegetation	 complexity	 contributes	 to	 the	
preservation	 of	 spider	 host–cleptoparasite	 relationships	 in	 oil	 palm	 plantations.	
Understory	structural	complexity	in	these	simplified	agroecosystems	therefore	helps	
to	support	abundant	spider	populations,	a	functionally	important	taxon	in	agricultural	
landscapes.	In	addition,	management	for	more	structurally	complex	agricultural	habi-
tats	can	support	more	complex	trophic	interactions	in	tropical	agroecosystems.
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1  | INTRODUCTION

Tropical	 habitats	 are	 experiencing	 rapid	 change	 as	 the	 rate	 of	 agri-
cultural	expansion	 in	 the	 tropics	 increases	 (Foley	et	al.,	2005;	Gibbs	
et	al.,	 2010;	Hansen	 et	al.,	 2008;	Tylianakis,	 Didham,	 Bascompte,	 &	
Wardle,	 2008;	 Tylianakis,	 Tscharntke,	 &	 Lewis,	 2007).	 Oil	 palm	 is	 a	
leading	tropical	crop	and	has	been	responsible	for	the	conversion	of	
more	than	10	million	hectares	of	tropical	forest	over	the	past	two	de-
cades	 (FAO	2010;	Gibbs	et	al.,	 2010;	Wilcove	&	Koh,	2010).	Forest	
conversion	causes	severe	variation	in	habitat	structure,	microclimate,	
and	 resource	 availability,	which	 leads	 to	 alterations	 in	 species	 com-
position,	 abundance,	 and	 interactions	 within	 ecosystems	 (Didham,	
Tylianakis,	 Gemmell,	 Rand,	 &	 Ewers,	 2007;	 Fitzherbert	 et	al.,	 2008;	
Franco	 et	al.,	 2006;	 Gaston,	 Blackburn,	 &	 Goldewijk,	 2003;	 Tilman,	
1994;	Turner	&	Foster,	2009;	Tylianakis	et	al.,	2007,	2008).	Changes	
in	species	occurrence	within	a	habitat	can	result	in	profound	impacts	
to	predator–prey,	host–parasite,	or	other	species	interactions	(Aerts,	
1999;	 Kneitel	 &	 Chase,	 2004;	 Tilman,	 1994;	Wright,	 2002;	 Zobel,	
1992).	Understanding	 and	 conserving	 species	 interactions	 is	 critical	
to	the	maintenance	of	species	richness	and	ecosystem	functioning	as	
habitats	are	modified	and	is	of	paramount	importance	in	agricultural	
ecosystems,	as	humans	rely	on	many	of	these	interactions	for	services	
such	as	pollination	and	pest	control	(Costanza	et	al.,	1997,	2014).

Altered	host–parasite	relationships	can	cause	additional	changes	
to	already	modified	ecosystems,	especially	 if	hosts	or	parasites	are	
functionally	 important	 species	 (Kutz,	 Hoberg,	 Polley,	 &	 Jenkins,	
2005;	Nazzi	et	al.,	2012;	Sammataro,	Gerson,	&	Needham,	2000).	In	
agroecosystems,	many	important	pollinators,	pests,	and	pest	control	
agents	 are	 parasites	 or	 hosts	 (Nazzi	 et	al.,	 2012;	 Sammataro	 et	al.,	
2000;	 Sheffield,	 Pindar,	 Packer,	 &	 Kevan,	 2013;	 Tscharntke	 et	al.,	
2007).	Species	losses	or	changes	to	resource	availability	alter	host–
parasite	 interactions	 through	changes	 to	host	density,	host	 fitness,	
prey	availability,	and	the	level	of	intra-		or	inter-	specific	competition	
(Barber	 &	Martin,	 1997;	 Berndt,	Wratten,	 &	 Scarratt,	 2006;	 Hahn	
&	Hatfield,	1995;	 Irvin	et	al.,	 2006;	Kruess,	2003;	Rusch,	Valantin-	
Morison,	Sarthou,	&	Roger-	Estrade,	2011;	Tilman,	1994;	Tylianakis	
et	al.,	 2007;	 Wilkinson	 &	 Feener,	 2007;	 Wolinska	 &	 King,	 2009).	
Increased	 habitat	 complexity	 can	 increase	 parasitism	 rates	 by	 pro-
viding	additional	resources	for	parasites,	such	as	increased	host	den-
sity	or	food	resources	(Berndt	et	al.,	2006;	Irvin	et	al.,	2006;	Kruess,	
2003;	Rusch	et	al.,	2011;	Tylianakis,	Didham,	&	Wratten,	2004),	but	
can	also	decrease	parasitism	rates	by	increasing	the	host’s	ability	to	
defend	 against	 parasites	 (Denno,	 Finke,	 &	 Langellotto,	 2005;	 Gols	
et	al.,	2005;	Wilkinson	&	Feener,	2007).

Cleptoparasites	such	as	Argyrodes spp.	(Araneae:	Theridiidae)	spi-
ders	may	be	particularly	sensitive	 to	habitat	change	due	to	 their	di-
rect	reliance	on	host	spider	success	(Sheffield	et	al.,	2013).	Argyrodes 

are	 obligate	 cleptoparasitic	 spiders	 that	 depend	 solely	 on	 food	 re-
sources	caught	by	their	hosts	and	living	space	provided	by	their	hosts	
(Agnarsson,	2003;	Cangialosi,	 1997;	Vollrath,	 1987b).	Yet,	Argyrodes 
can	also	have	profound	negative	effects	on	host	fitness	(Elgar,	1989;	
McCrate	 &	 Uetz,	 2010;	 Rittschof	 &	 Ruggles,	 2010;	 Rypstra,	 1981;	
Tanaka,	1984).	Argyrodes	 reach	densities	of	up	to	40	 individuals	per	
square	meter	of	their	host’s	web,	and	even	at	much	lower	densities,	
can	 consume	enough	prey	 to	 significantly	 impact	 host	 growth,	web	
tenure,	 web	 damage,	 and	 host	 mortality	 (Agnarsson,	 2003,	 2011;	
Grostal	 &	Walter,	 1997;	 Koh	&	 Li,	 2002;	Miyashita,	 2001;	 Rypstra,	
1981).	Argyrodes	may	also	indirectly	reduce	host	reproductive	success:	
Male	Nephila	spiders,	which	are	substantially	smaller	than	females	and	
co-	occupy	 female	webs,	also	act	as	cleptoparasites,	 thereby	directly	
competing	with	 resident	Argyrodes	 for	 access	 to	 food	 (Christenson,	
Brown,	Wenzl,	Hill,	&	Goist,	1985).	Because	of	the	sensitive	balance	
of	competition	with	and	dependence	on	hosts,	any	change	in	the	in-
teractions	between	cleptoparasites	and	their	hosts	could	be	an	early	
indicator	of	changing	trophic	interactions	within	modified	ecosystems	
(Sheffield	et	al.,	2013;	Tylianakis	et	al.,	2007,	2008).	In	addition,	owing	
to	their	role	as	generalist	predators,	any	changes	in	the	trophic	interac-
tions	of	spiders	have	the	potential	to	impact	pest	control	in	agricultural	
systems	(Cardinale,	Harvey,	Gross,	&	Ives,	2003;	Denno	et	al.,	2005;	
Jonsson,	Wratten,	 Landis,	 &	 Gurr,	 2008).	While	Argyrodes,	 because	
they	consume	insects	already	caught	in	host	webs,	are	not	likely	to	be	
critical	pest	control	agents,	their	impacts	on	Nephila	host	health	or	be-
havior	have	the	potential	to	alter	host	pest	control	potential.	Although	
little	 is	yet	 known	 about	 the	 role	 of	 spiders	 in	 oil	 palm	 specifically,	
they	can	be	important	pest	control	agents	in	other	tropical	(Hlivko	&	
Rypstra,	2003;	Kobayashi,	1975;	Settle	et	al.,	1996;	Sigsgaard,	2000)	
and	 tree	 (Mansour,	 Rosen,	 &	 Shulov,	 1980;	 Mathews,	 Bottrell,	 &	
Brown,	2004)	crops.

Argyrodes	 abundance	 is	 known	 to	 be	 positively	 correlated	
with	 web	 size,	 host	 body	 size,	 host	 density,	 and	 prey	 availabil-
ity	 (Agnarsson,	 2003,	 2011;	 Cangialosi,	 1990,	 1991;	 Elgar,	 1989;	
Grostal	 &	Walter,	 1997;	 Hénaut,	 Delme,	 Legal,	 &	Williams,	 2005;	
Koh	&	Li,	2002),	but	the	overarching	effects	of	habitat	structure	on	
density	and	abundance	are	 less	well	understood	(Agnarsson,	2011;	
Cangialosi,	1997;	Miyashita,	2002;	Rittschof	&	Ruggles,	2010).	Here,	
we	present	the	first	study	on	the	effects	of	habitat	complexity	in	an	
oil	palm	agroecosystem	on	host–parasite	interactions	between	a	spi-
der	and	a	cleptoparasite.	We	examine	the	impact	of	oil	palm	under-
story	vegetation	complexity	as	well	as	host	characteristics	(host	web	
size	and	male	Nephila	presence)	on	Argyrodes miniaceus	 (Doleschall,	
1857)	cleptoparasites	in	the	webs	of	female	Nephila spp.	hosts	(Koh	
&	 Li,	 2002;	Miyashita,	 2002;	 Rypstra	 1981).	We	make	 the	 follow-
ing	hypotheses	about	the	effects	of	these	environmental	factors	on	 
A. miniaceus	density	and	abundance:

K E Y W O R D S
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1. Greater	 vegetation	 complexity	 allows	 for	 greater	 cleptoparasite	
density	 and	 abundance.

2. Cleptoparasite	density	is	constant	or	greater	in	larger	webs.
3. As	male	Nephila	also	act	as	cleptoparasites	in	female	webs,	and	so	
benefit	 from	 similar	 environmental	 conditions	 to	Argyrodes,	 their	
presence	is	positively	associated	with	Argyrodes	density.

By	quantifying	the	effect	of	understory	complexity	on	a	host–par-
asite	 relationship,	 this	 study	will	yield	novel	 insights	 into	 the	effect	of	
habitat	structure	and	management	on	food	web	complexity	in	a	tropical	
agricultural	landscape.

2  | MATERIALS AND METHODS

2.1 | Study site

This	study	was	conducted	as	part	of	the	Biodiversity	and	Ecosystem	
Function	 in	 Tropical	 Agriculture	 (BEFTA)	 Project,	 located	 in	 Riau	
Province,	Sumatra,	Indonesia	(Foster	et	al.,	2014).	The	BEFTA	Project	
is	 a	 large-	scale,	 long-	term	ecological	 experiment	 testing	 the	 effects	
of	understory	vegetation	management	on	oil	palm	biodiversity,	eco-
system	functions,	and	yield.	It	is	being	conducted	in	oil	palm	estates	
owned	and	managed	by	PT	Ivo	Mas	Tunggal,	a	subsidiary	company	of	
Golden	Agri	Resources	 (GAR),	with	technical	advice	from	Sinar	Mas	
Agro	 Resources	 and	 Technology	 Research	 Institute	 (SMARTRI,	 the	
research	and	development	center	of	GAR).	The	area	surrounding	the	
estates	consists	primarily	of	oil	palm	plantations,	with	a	small	coverage	
of	other	crops.

2.2 | Experimental treatments

Eighteen	 study	 plots	 were	 established	 in	 October	 2012.	 Oil	 palm	
trees	on	all	plots	were	planted	between	1987	and	1993,	and	so	were	
mature	at	 the	time	of	the	study.	Plots	are	150	m	by	150	m	and	are	
located	 on	 flat	 ground	 between	 10	 and	 30	m	 above	 sea	 level	 and	
without	adjacent	human	habitation.	The	plots	are	arranged	in	triplets,	
with	one	plot	in	each	triplet	randomly	assigned	a	different	understory	
vegetation	management	treatment.	Treatments	were	implemented	in	
February	2014,	and	involved	the	following	management:

1. Standard	 understory	 complexity:	 standard	 company	 practice,	
consisting	 of	 intermediate	 herbicide	 use,	 and	 understory	 vege-
tation	 removal.

2. Reduced	 understory	 complexity:	 intensive	 herbicide	 use	 and	 re-
moval	of	understory	vegetation.

3. Enhanced	understory	complexity:	no	herbicide	treatment	and	mini-
mal	understory	vegetation	removal.

Herbicides	 used	 in	 the	 initial	 establishment	 of	 the	 plots	 included	
Glyphosate	 (Rollup	 480	 SL),	 Paraquat	 Dichloride	 (Rolixone	 276	 SL),	
metsulfuron-	methyl	 (Erkafuron	 20	WG)	 and	 Fluroxypyr	 (Starane	 290	
EC).	These	were	sprayed	exclusively	on	the	ground	vegetation	and	are	
unlikely	to	have	directly	affected	Nephila	webs.	Although	there	 is	 little	

evidence	regarding	the	direct	toxic	effects	of	properly	applied	herbicide	
on	invertebrates	(Marshall,	Brown,	Boatman,	Lutman,	&	Squire,	2001),	at	
least	one	study	indicates	little	to	no	direct	effect	of	herbicide	application	
on	leaf-	litter	invertebrate	communities	(Lindsay	&	French,	2004).

2.3 | Sampling protocol

To	 measure	 cleptoparasite	 density,	 we	 walked	 along	 every	 row	 of	
oil	palm	trees	in	each	150	m	x	150	m	plot	in	March	2016,	two	years	
after	the	experimental	treatments	had	been	implemented.	Tree	rows	
were	planted	approximately	8	m	apart,	with	each	tree	in	a	row	also	ap-
proximately	8	m	apart.	We	noted	every	adult	Nephila spp.	web	within	
the	plot	 that	was	 less	 than	3	m	above	the	observer’s	head	and	was	
over	10	cm	in	both	length	and	width.	Species	of	Nephila	present	in	the	
study	plots	included	N. pilipes	(Fabricius,	1793)	and	N. kuhlii	(Doleschal,	
1859).	Argyrodes miniaceus	was	the	only	species	of	Argyrodes	present	
on Nephila spp.	webs	in	the	study	plots.	Webs	consist	of	a	large	central	
orb	surrounded	by	varying	amounts	of	barrier	webbing.	To	obtain	a	
rough	estimate	of	the	size	of	the	web,	we	measured	the	length	and	
width	of	the	central	orb	of	every	web.	We	did	not	measure	the	size	
of	barrier	webbing,	and	we	did	not	measure	distances	between	webs,	
although	we	 observed	 no	 interconnected	webs.	We	 counted	 all	A. 
miniaceus	cleptoparasites	that	were	within	the	central	orb	and	on	the	
surrounding	barrier	webbing,	including	any	web	attachment	threads.	
We	also	noted	whether	or	not	any	male	Nephila	were	present	in	the	
web	of	the	larger	female	host.

2.4 | Analyses

All	 analyses	 were	 conducted	 using	 R	 version	 3.3.0	 (R-	Core-	Team	
2016).	We	calculated	cleptoparasite	density	per	web	by	dividing	the	
number	of	cleptoparasites	by	the	web	area	 in	square	meters	 (calcu-
lated	as	orb	length	×	orb	width).	To	determine	what	factors	best	pre-
dict	cleptoparasite	density,	we	created	a	 linear	mixed	effects	model	
with	square	 root	 transformed	cleptoparasite	density	data	as	 the	re-
sponse	variable,	using	the	R	package	“lme4”	(Bates,	Maechler,	Bolker,	
&	Walker,	2015).	We	tested	treatment,	host	web	size	 (m2),	and	the	
presence	of	a	male	in	the	host	web	as	potential	explanatory	variables	
and	included	triplet	as	a	random	effect.

We	used	an	automatic	drop-	in-	deviance	test	to	select	the	best-	fit	
model.	The	automatic	drop-	in-	deviance	test	used	a	series	of	likelihood	
ratio	 tests	 to	 determine	 which	 variables	 most	 improved	 the	 mod-
el’s	goodness	of	fit.	We	chose	the	variable	with	the	lowest	reported	
Akaike’s	Information	Criterion	(AIC)	to	add	to	the	model	and	repeated	
the	 test,	 adding	variables	 one	 at	 a	 time	 until	 no	more	 factors	were	
significant	at	the	α	=	0.05	level	(Burnham	&	Anderson,	1998).	We	then	
used	additional	likelihood	ratio	tests	to	determine	whether	including	
interactions	 between	 any	 of	 the	 selected	 explanatory	 variables	 in-
creased	the	model’s	goodness-	of-	fit.	The	final	model	was	the	model	
with	the	lowest	AIC	value.

To	examine	differences	in	mean	cleptoparasite	density	per	web	
and	abundance	per	plot	among	treatments,	we	conducted	ANOVA	
tests	on	square-	root	 transformed	density	data	and	untransformed	
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abundance	 data,	with	 triplet	 as	 a	 random	 effect.	We	 square	 root	
transformed	the	density	data	to	avoid	violating	assumptions	of	nor-
mality	 of	 residuals	 and	 homoscedasticity.	 Because	 the	 effect	 of	 a	
treatment	can	be	underestimated	by	p-	values	for	small	sample	sizes	
(Gelman	 &	 Stern,	 2006;	 Ioannidis,	 2005),	 we	 considered	 results	
marginally	 significant	 for	p-	values	 below	α	=	0.1	 for	ANOVA	 tests	
on	per-	plot	abundance	(where	n	=	6	plots).	After	any	significant	or	
marginally	significant	results,	additional	ANOVAs	were	used	to	test	
pairwise	differences	in	A. miniaceus	density	and	abundance	between	
treatments.

3  | RESULTS

We	 counted	 a	 total	 of	 737	A. miniaceus	 individuals	 in	 89	Nephila 
host	webs	in	enhanced	complexity	plots,	703	individuals	in	96	webs	
in	 standard	 complexity	 plots,	 and	 106	 individuals	 in	 28	 webs	 in	
reduced	complexity	plots.	Six	webs	 in	enhanced	complexity	plots,	
six	 webs	 in	 standard	 complexity	 plots,	 and	 five	 webs	 in	 reduced	
complexity	 plots	 did	 not	 contain	 cleptoparasites.	 Webs	 that	 did	
not	 contain	 cleptoparasites	 ranged	 in	 size	 from	 400	cm2	 to	 over	
2000	cm2.	 The	maximum	number	 of	 cleptoparasites	 found	 in	 one	
web	was	34	in	enhanced	complexity	plots,	27	in	standard	complex-
ity	plots,	and	13	in	reduced	complexity	plots.	Mean	cleptoparasite	
density	was	 31.4	±	3.31	A. miniaceus	 per	 square	meter	 of	Nephila 
web	in	enhanced	complexity	plots,	29.3	±	2.46	per	square	meter	of	
web	in	standard	complexity	plots,	and	14.4	±	3.02	per	square	meter	
of	 web	 in	 reduced	 complexity	 plots	 (mean	±	SE;	 Figure	1).	 Mean	
abundance	of	cleptoparasites	per	plot	in	the	enhanced	complexity	
treatment	was	122.8	±	31.21,	in	the	standard	complexity	treatment	
was	117.2	±	59.47,	 and	 in	 the	 reduced	 complexity	 treatment	was	
17.7	±	8.38	(mean	±	SE;	Figure	2).

Treatment,	web	size,	 and	 the	presence	of	a	male	Nephila were 
all	 significant	 predictors	 of	 cleptoparasite	 density	 and	 were	 thus	
all	 included	 in	 the	 final	model	 (Table	1).	 No	 interactions	 between	
variables	 were	 significant.	 Model	 parameter	 coefficients	 indicate	
that,	 on	 average,	 larger	webs	 have	 lower	 cleptoparasite	 densities,	
and	male	presence	is	associated	with	higher	cleptoparasite	densities	
(Table	1).

Mean	A. miniaceus	density	per	square	meter	of	Nephila spp.	host	
web	differed	across	treatments	(F = 8.13,	df	=	2,	p < .001)	and	was	sig-
nificantly	 lower	 in	 reduced	 complexity	 plots	 than	 in	 both	 enhanced	
complexity	plots	(F = 18.75,	df	=	1,	p < .001)	and	standard	complexity	
plots	 (F = 11.79,	df	=	1,	p < .001;	Figure	1).	Density	 in	enhanced	and	
standard	complexity	plots	did	not	significantly	differ	(F = 2.20,	df	=	1,	
p = .14;	Figure	1).	Mean	A. miniaceus	abundance	per	plot	was	margin-
ally	significantly	different	across	treatments	(F = 3.75,	df	=	2,	p = .061; 
Figure	2).	Abundance	 in	enhanced	complexity	plots	was	significantly	
greater	 than	 abundance	 in	 reduced	 complexity	 plots	 (F = 15.29,	
df	=	1,	p = .011;	Figure	2).	Abundance	in	standard	complexity	and	re-
duced	complexity	plots	did	not	differ	(F = 3.07,	df	=	1,	p = .14),	nor	did	
abundance	 differ	 between	 standard	 and	 enhanced	 complexity	 plots	
(F = 0.019,	df	=	1,	p = .90;	Figure	2).

4  | DISCUSSION

Habitat	 complexity	 in	 agroecosystems	 can	have	profound	effects	
on	 species	 interactions,	 with	 potential	 impacts	 on	 the	 provision	
of	 ecosystem	 services	 (Finke	 &	Denno,	 2002;	 Langellotto,	 2002;	
Martin,	 Reineking,	 Seo,	 &	 Steffan-	Dewenter,	 2015).	 This	 study	
investigated	 factors,	 including	 habitat	 complexity,	 that	 influence	
Argyrodes miniaceus	 cleptoparasite	 occurrence	within	Nephila spp. 
host	webs	in	oil	palm	plantations.	Understory	vegetation	complex-
ity,	 host	web	 size,	 and	male	Nephila	 presence	were	all	 significant	
predictors	of	A. miniaceus	density	in	Nephila spp.	host	webs.	Greater	

F IGURE  1 Boxplots	depicting	medians	and	interquartile	ranges	
of	Argyrodes miniaceus	cleptoparasite	density	per	square	meter	of	
Nephila spp.	web	in	BEFTA	Project	plots	of	enhanced	complexity	
(n	=	89	webs),	standard	complexity	(n	=	96	webs),	and	reduced	
complexity	(n	=	28	webs)	understory	management	treatments.	Letters	
(a	or	b)	indicate	significant	differences	in	means:	a	different	letter	
indicates	a	difference	from	the	others

F IGURE  2 Boxplots	depicting	medians	and	interquartile	
ranges	of	Argyrodes miniaceus	cleptoparasite	abundance	per	
plot	in	BEFTA	Project	plots	of	enhanced	complexity	(n	=	6	plots),	
standard	complexity	(n	=	6	plots),	and	reduced	complexity	(n = 6 
plots)	understory	management	treatments.	Letters	(a	or	b)	indicate	
significant	or	marginally	significant	differences	in	means:	a	different	
letter	indicates	a	difference	from	the	others
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cleptoparasite	density	was	associated	with	enhanced	and	standard	
levels	 of	 understory	 complexity,	 smaller	 webs,	 and	 the	 presence	
of	a	male	Nephila spp.	 in	the	web.	In	addition,	total	cleptoparasite	
abundance	differed	across	understory	complexity	treatments,	with	
significantly	fewer	cleptoparasites	in	reduced	understory	complex-
ity	plots.

4.1 | Cleptoparasite density and 
vegetation complexity

Our	results	suggest	that	greater	habitat	complexity	in	oil	palm	plan-
tations	 supports	 higher	 populations	 of	 cleptoparasitic	 spiders,	 both	
per	host	web	and	 in	 terms	of	 total	abundance.	This	 finding	adds	 to	
a	 body	 of	 literature	 demonstrating	 that	 vegetation	 complexity	 and	
diversity	 support	 complex	 food	webs,	 although	 these	 studies	were	
primarily	 conducted	 in	 temperate	 ecosystems	 (Macfadyen,	 Gibson,	
Symondson,	 &	 Memmott,	 2011;	 Memmott	 et	al.,	 2007;	 Pocock,	
Evans,	&	Memmott,	2012).	For	example,	a	study	by	Goulson,	Hughes,	
Derwent,	and	Stout	(2002)	found	that	an	increase	in	floral	resources	
in	suburban	and	agricultural	habitats	in	the	United	Kingdom	increased	
both	the	abundance	of	native	bumblebees	and	the	abundance	of	their	
specialist	 parasites.	 Ebeling,	 Klein,	 Weisser,	 and	 Tscharntke	 (2012)	
also	report	that	greater	plant	diversity	in	German	grasslands	increases	
not	only	the	diversity	of	host	bee	and	wasp	species,	but	the	diversity	
of	their	parasitoids	as	well.	Our	study	indicates	that	a	similar	relation-
ship	exists	in	tropical	agroecosystems.

An	increased	abundance	of	Nephila spp.	host	webs	in	enhanced	and	
standard	complexity	plots	compared	to	reduced	complexity	plots	(89	cf. 
96,	cf.	28)	is	one	probable	cause	of	the	observed	increase	in	abundance	
of	A. miniaceus.	Enhanced	vegetation	complexity	may	provide	greater	
prey	 availability,	 which	 could	 account	 for	 the	 greater	 abundance	 of	
Nephila	host	webs	as	well	as	the	higher	density	per	web	and	total	abun-
dance	 of	Argyrodes	 within	 enhanced	 and	 standard	 complexity	 plots.	
Higher	abundances	of	arthropods,	including	carabid	and	rove	beetles,	
aphids,	mites,	Lepidopterans,	and	several	types	of	Hemipterans,	have	
been	found	in	habitats	with	greater	vegetation	complexity	and	diver-
sity	(Andow,	1991;	Chaplin-	Kramer,	O’Rourke,	Blitzer,	&	Kremen,	2011;	

Hansen,	2000;	Landis,	Wratten,	&	Gurr,	2000;	Langellotto	&	Denno,	
2004;	Weibull,	Östman,	&	Granqvist,	2003).	Argyrodes	populations	are	
limited	by	competition	for	food	resources—both	with	the	host	and	with	
other	 cleptoparasites	 (Miyashita,	 2001;	 Whitehouse,	 1997)—and	 so	
an	increased	abundance	of	prey	would	allow	each	Nephila	web	to	sup-
port	a	greater	density	of	Argyrodes	 cleptoparasites	 (Cangialosi,	1991;	
Miyashita,	2001;	Whitehouse,	1988,	1997).

Distance	between	host	webs	may	also	play	a	role	in	cleptoparasite	
density.	Isolated	habitat	patches	are	less	likely	to	be	inhabited	by	any	
given	species	(Prugh,	Hodges,	Sinclair,	&	Brashares,	2008;	Watling	&	
Donnelly,	2006)	and	are	expected	to	exhibit	high	extinction	and	low	
immigration	rates	 (Brown	&	Kodric-	Brown,	1977;	Fahrig	&	Merriam,	
1985;	Hanski,	1999).	Although	we	did	not	directly	measure	distances	
between	host	webs,	the	observed	lower	abundance	and	therefore	den-
sity	of	Nephila	host	webs	in	reduced	complexity	plots	suggests	webs	in	
these	plots	are	more	isolated	than	in	the	densely	populated	enhanced	
complexity	plots.	If	we	consider	host	webs	as	habitat	patches,	the	iso-
lation	of	host	webs	in	reduced	complexity	plots	may	be	an	additional	
contributing	 factor	 to	 lower	 cleptoparasite	 density.	However,	 previ-
ous	research	has	indicated	that	host	web	isolation	does	not	correlate	
with	 cleptoparasite	 abundance	 (Agnarsson,	 2011).	 Future	 research	
might	more	closely	examine	the	relationship	between	host	web	inter-	
distance	and	cleptoparasite	density.

4.2 | Web size, male presence, and 
cleptoparasite density

Argyrodes miniaceus	 density	was	also	correlated	with	host	web	size:	
Density	was	greater	in	smaller	webs.	Previous	research	suggests	that	
cleptoparasite	density	should	remain	constant	across	host	webs,	due	
to	the	strong	linear	relationship	between	web	size	and	cleptoparasite	
abundance	(Agnarsson,	2011).	In	several	studies,	removal	or	addition	
of	Argyrodes spp.	individuals	to	host	webs	resulted	in	nearly	immediate	
immigration	to	or	emigration	from	the	web,	keeping	density	constant	
(Miyashita,	2001,	2002;	Rypstra,	1985).	Argyrodes	often	behave	ag-
gressively	toward	each	other,	with	population	density	limited	by	com-
petition	 for	 food	 and	 space	 (Miyashita,	 2001,	 2002).	 The	 observed	
disparity	in	cleptoparasite	density	among	host	webs	of	different	sizes	
is	therefore	surprising.	We	found	no	significant	differences	in	web	size	
across	treatments	(D.M.	Spear	unpublished	data),	and	so	the	observed	
trend	cannot	be	explained	by	disparities	in	average	Nephila	web	size	
across	our	treatments.	Female	Nephila	host	body	size	may	be	a	con-
tributing	factor	to	the	observed	differences	in	density.	Large	webs	are	
typically	occupied	by	 larger	or	older	hosts	 (Eberhard,	1972;	Grostal	
&	Walter,	1999;	Kuntner,	Gregorič,	&	Li,	2010;	Moore,	1977;	Witt,	
Reed,	&	Peakall,	2012),	which	can	behave	more	aggressively	toward	
cleptoparasites	than	younger	“naïve”	females,	predating	upon	or	chas-
ing	 occupants	 from	webs	 (Cangialosi,	 1991;	Vollrath,	 1979,	 1987b;	
Whitehouse,	 1988,	 1997).	 It	 is	 possible	 that	 these	older	 hosts	may	
more	 effectively	 limit	 the	 density	 of	 Argyrodes	 within	 their	 webs.	
Further	 research	 is	necessary	to	determine	the	potential	 interactive	
effects	 of	 host	 web	 size	 and	 habitat	 complexity	 on	 cleptoparasite	
density.

TABLE  1 Parameter	coefficients	(±SE)	and	random	effect	with	
variance	(±SD)	of	the	best-	fit	linear	model	predicting	
Argyrodes miniaceus	cleptoparasite	density	per	square	meter	of	
Nephila spp.	web	in	BEFTA	Project	plots

Variable Coefficient (±SE)

Web	size	(m2) −2.853	(±0.663)

Male	Nephila	presence 1.047	(±0.465)

Reduced	complexity	treatment −1.979	(±0.503)

Standard	complexity	treatment −0.346	(±0.351)

Enhanced	complexity	treatmenta 0	(±	0)a

Random Effect Variance (±SD)

Triplet 0.139	(±0.373)

aEnhanced	complexity	treatment	was	used	as	the	reference	category	dur-
ing	model	construction,	so	was	assigned	a	coefficient	of	zero.
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The	 correlation	 between	 male	 Nephila	 presence	 and	 Argyrodes 
density	may	 also	 reflect	 differences	 in	 food	 resources	 among	 treat-
ments.	Males	frequently	act	as	cleptoparasites	in	females’	webs,	and	
so	benefit	from	similar	factors	to	cleptoparasites,	such	as	prey	abun-
dance	 (Christenson	 et	al.,	 1985;	 Elgar	 et	al.,	 2003;	Vollrath,	 1987b).	
Webs	 that	 are	 preferable	 to	males	may	 be	 located	 in	 areas	 of	 high	
resource	abundance,	and	so	may	be	equally	suitable	for	high	densities	
of	cleptoparasites.	Grostal	and	Walter	 (1999),	who	similarly	 found	a	
positive	correlation	between	presence	of	Nephila plumipes	host	males	
and	 abundance	 of	 Argyrodes antipodianus	 cleptoparasites,	 also	 pro-
pose	that	males	may	distract	the	female	host,	thus	decreasing	the	risk	
of	predation	by	Nephila	females	for	Argyrodes	inhabitants	and	making	
male-	occupied	webs	safer.	An	increased	cleptoparasite	load	therefore	
may	constitute	an	additional	cost	of	reproduction	for	Nephila	females.

4.3 | Impacts of changing cleptoparasite occurrence

High	Argyrodes	 density	 could	 have	 significant	 impacts	 on	 hosts,	 in-
cluding	 decreased	 web	 tenure,	 increased	 web	 damage,	 decreased	
prey	consumption	rate,	decreased	growth	rate,	and	increased	mortal-
ity	(Agnarsson,	2003,	2011;	Grostal	&	Walter,	1997;	Koh	&	Li,	2002;	
Miyashita,	2001;	Rypstra,	1981).	All	of	these	effects	have	the	poten-
tial	to	decrease	the	total	rate	of	prey	capture	and	the	rate	of	reproduc-
tion	of	host	spider	populations	 (Chmiel,	Herberstein,	&	Elgar,	2000;	
Elgar,	1989;	Miyashita,	1986;	Rypstra,	1981;	Vollrath,	1987a).	Such	a	
decrease	in	host	fitness	could	diminish	the	ecosystem	services	these	
spiders	provide	by	reducing	capture	of	pest	or	other	arthropod	spe-
cies	(Rusch,	Birkhofer,	Bommarco,	Smith,	&	Ekbom,	2015;	Symondson,	
Sunderland,	&	Greenstone,	2002;	Tscharntke	et	al.,	2007).

However,	high	occurrence	of	both	Nephila spp.	and	cleptopara-
sites	 in	enhanced	and	standard	complexity	plots	suggests	 that	any	
detrimental	effects	of	an	 increased	cleptoparasite	 load	are	not	se-
vere	enough	to	significantly	limit	Nephila	population	levels.	Resource	
availability	 in	 enhanced	 complexity	 plots	 must	 therefore	 be	 great	
enough	 to	 support	 both	 high	 cleptoparasite	 abundance	 and	 high	
Nephila	density,	providing	evidence	that	higher	vegetation	complex-
ity	increases	the	ability	of	oil	palm	ecosystems	to	support	both	more	
predators	 and	more	 complex	 trophic	 interactions.	 The	 lower	 den-
sities	 of	 cleptoparasites	 per	web	 area	 in	 reduced	 complexity	 plots	
suggest	 that	 fewer	 resources	were	 available	 to	 support	 either	 the	
hosts	 or	 the	 parasites.	 Because	 cleptoparasites	 rely	 on	 taking	 any	
remaining	food	once	their	host’s	energy	requirements	are	met,	clep-
toparasites	 are	 likely	 to	 be	more	 sensitive	 to	 habitat	 change	 than	
their	hosts	 (Sheffield	et	al.,	2013).	Thus,	changes	 to	cleptoparasite	
abundance	could	be	a	first	indicator	of	changing	trophic	interactions	
across	modified	ecosystems	(Sheffield	et	al.,	2013;	Tylianakis	et	al.,	
2007,	2008).

5  | CONCLUSIONS

While	increased	vegetation	complexity	and	diversity	provides	ben-
eficial	 resources	 to	 spiders	 in	 agricultural	 systems	 (Diehl,	Mader,	

Wolters,	 &	Birkhofer,	 2013;	 Rypstra,	 Carter,	 Balfour,	 &	Marshall,	
1999;	Schmidt,	Roschewitz,	Thies,	&	Tscharntke,	2005),	this	study	
shows	that	vegetation	complexity	also	has	the	potential	to	increase	
cleptoparasite	 loads.	The	most	 likely	 reason	 for	 this	 is	 that	main-
taining	understory	vegetation	 in	oil	palm	plantations	provides	ad-
ditional	 resources	 that	 support	 a	 greater	 abundance	 and	 density	
of	Nephila	hosts,	and	also	a	greater	number	of	cleptoparasites	per	
web.	 This	 study	 demonstrates	 the	 potential	 of	 within-	plantation	
management	to	increase	the	complexity	of	tropical	food	webs,	in-
creasing	 the	abundance	of	both	predators	 and	 the	parasites	 they	
support,	 with	 potential	 impacts	 on	 the	 ecosystem	 services	 that	
predators	provide.
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