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An increasingly important scenario in population genetics is when a large cohort has been genotyped using a low-resolution

approach (e.g., microarrays, exome capture, short-read WGS), from which a few individuals are resequenced using a more

comprehensive approach, especially long-read sequencing. The subset of individuals selected should ensure that the cap-

tured genetic diversity is fully representative and includes variants across all subpopulations. For example, human variation

has historically focused on individuals with European ancestry, but this represents a small fraction of the overall diversity.

Addressing this, SVCollector identifies the optimal subset of individuals for resequencing by analyzing population-level

VCF files from low-resolution genotyping studies. It then computes a ranked list of samples that maximizes the total number

of variants present within a subset of a given size. To solve this optimization problem, SVCollector implements a fast, greedy

heuristic and an exact algorithm using integer linear programming. We apply SVCollector on simulated data, 2504 human

genomes from the 1000 Genomes Project, and 3024 genomes from the 3000 Rice Genomes Project and show the rankings

it computes are more representative than alternative naive strategies. When selecting an optimal subset of 100 samples in

these cohorts, SVCollector identifies individuals from every subpopulation, whereas naive methods yield an unbalanced

selection. Finally, we show the number of variants present in cohorts selected using this approach follows a power-law dis-

tribution that is naturally related to the population genetic concept of the allele frequency spectrum, allowing us to estimate

the diversity present with increasing numbers of samples.

[Supplemental material is available for this article.]

In recent years it has become increasingly clear that structural var-
iants (SVs) play a key role in evolution, diseases, and many other
aspects of biology across all organisms (Lupski 2015; Sudmant
et al. 2015; Alonge et al. 2020). It is less well known, however,
whether the evolutionary forces shaping SV diversity are analo-
gous or distinct from those influencing single-nucleotide variants
(SNVs). Genome-wide inferences of human evolutionary relation-
ships (The 1000 Genomes Project Consortium 2015) and key pop-
ulation genetic parameters such as θ (Watterson 1975), π (Nei and
Li 1979), and Tajima’s D (Tajima 1989) have largely focused on
SNVs but not SVs. Similarly, genome-wide scans of human SNV
data have revealed positive and/or balancing selection targeting
genomic regions including lactase, the ABO blood group, and
the HLA immune complex (Fu 2014), but the role of SVs in human
adaptation remains poorly understood. Performing population ge-
netic research using structural variants will require better methods
that identify SVs in a more cost-effective way. Short-read sequenc-
ing is currently themost widely used approach for identifying SVs,
although it suffers from limited accuracy (Chaisson et al. 2015;
Sedlazeck et al. 2018). Long reads, such as those from Pacific
Biosciences (PacBio) and Oxford Nanopore Technologies, provide
greater sensitivity and lower false discovery rates, but their higher

costs hinder widespread application in large sequencing studies.
Another related question with large cohorts is how to efficiently
validate a large number of SVs from the short read–based calls.
Traditional methods such as PCR/Sanger sequencing are costly
and labor intensive, necessitating careful consideration of variants
and samples to validate for further study. Thus, these methods are
often limited to hundreds of SVs that can be validated out of an av-
erage of 20,000–23,000 SVs present in a healthy individual
(Mahmoud et al. 2019).

Here, we present SVCollector, an open-source method (MIT
license) to optimally rank and select samples based on variants
that are shared within a large population. By default, the optimal
ranking strives to capture as much genetic population diversity
as possible in a fixed number of samples. As a consequence of
this approach, the selected samples will include most common
variants plus as many rare and private variants as possible.
Alternatively, it can optimize the selection by weighting the vari-
ants by their allele frequency, which further enriches for common
variants in the population. Naive methods to select samples in-
clude picking a random selection or picking the samples which in-
dividually have the most variants. These methods do not account
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for the fact that variants may be shared across multiple samples in
the selection.

Instead, SVCollector uses an optimized greedy approach to
identify a set that collectively spans as many variants as possible.
Thus, SVCollector allows for both a more cost-efficient way to val-
idate a large number of commonSVs, alongwith an improved rese-
quencing approach to discover SVs that were initially missed by
short-read sequencing. In the analysis, SVCollector reports the cu-
mulative number of distinct variants present for each individual
selected. By extrapolating out to larger collections of genomes,
SVCollector estimates the number of individuals that would
need to be sequenced to obtain a given fraction of the total popu-
lation-specific diversity.

Results

SVCollector overview

SVCollector is implemented inC++ and computes a ranked list and
diagnostic plots of the samples listed in a multisample VCF file. It
uses an iterative approach tominimize the memory footprint, and
requires <2 MB of RAM even when ranking thousands of samples
with tens of thousands of variants each. In the first iteration, it
parses the VCF file, counts the total number of variants, and gen-
erates a temporary file storing the sample IDs associated with each
variant. For subsequent iterations, it reads the temporary file and
deletes variants that were present in the previously selected
sample.

SVCollector has two major ranking modes: topN and greedy
(Fig. 1), as well as a simple random selection model. For the
topNmode, it picks samples in the order of the number of variants
they contain, irrespective of whether the variants are shared with
other samples. In the default greedy mode, SVCollector finds an
optimal subset of samples that collectively contain the largest
number of distinct variants. SVCollector can be used to optimize
for all types of variants (SNVs, SVs, etc.) listed in a VCF file.

We assessed the results of SVCollector based on simulated
data (Supplemental Note S1; Supplemental Figs. S1, S2) and two
large short-read sequencing projects involving 2504 and 3024
samples each (Fig. 2). For each cohort, we focused on selecting
an optimal set of 100 diverse samples. Using SVCollector, the
individuals that are identified span all subpopulations, whereas
the naive topN approach concentrates the selection in a few sub-
populations. For all cohorts, the runtime and memory require-
ments were minimal. For example, for the 1000 Genomes Project
VCF file of 2504 samples over 66,555 distinct SVs (Sudmant
et al. 2015), SVCollector computed the top 100 samples in 67 sec
using 1.7 MB memory. Each of the modes had a similar runtime
and RAM requirements.

Sample selection based on SVs from 2504 human genomes

We assessed SVCollector based on 2504 human genomes from
the 1000 Genomes Project (Sudmant et al. 2015). For our analy-
ses, we used the phase 3 variant callset (The 1000 Genomes Pro-
ject Consortium 2015) for Chromosomes 1 through 22 with all
children removed. Figure 2 shows a summary of the results and
Supplemental Note S2, Supplemental Figure S3, and Supplemen-
tal Table S1 list the details. We first investigated the distribution
of the 100 samples selected by SVCollector across the five super-
populations (Supplemental Table S2). The naive topN approach
selects 99 African samples and one American sample, whereas
SVCollector’s optimal greedy approach covers all five superpopu-
lations containing 57 African, 14 East Asian, 14 South Asian,
eight American, and seven European samples and represents 25
of the 26 subpopulations, excluding only GBR (Fig. 2B,C). The
topN approach oversamples from the African superpopulation
because it has a greater number of SVs than the other superpopu-
lations (Fig. 2A).

We next investigated the fraction of SVs covered by the 100
samples selected by SVCollector. We compared SVCollector’s
greedy method to the naive topN method, to a random method,
and to the exact algorithm using integer linear programming
(ILP) (Fig. 3A). The ILP approach allowed us to establish a ground
truth so that we could assess the accuracy of the much faster
greedy heuristic (Methods). In the random approach, samples
are drawn from a uniform random distribution of samples across
the whole cohort. The random selection was run 100 times per
cohort, and we report a box plot of the percent of SVs identified.
We gave the ILP solver the greedy solution as a starting point, ran
it for 24 h, and chose the best solution at this time. SVCollector’s
fast greedy approach (20.43% of SVs) slightly outperforms the na-
ive topN approach (19.47% of SVs) and equals the ILP solution
(20.43% of SVs) when investigating the top 10 ranked samples
in terms of SVs captured. However, when extending the selection
to 100 genomes, the greedy approach (41.65% of SVs) more sub-
stantially outperforms the topN approach (35.75% of SVs) and
only slightly underperforms the ILP solution (41.75% of SVs)
by 74 SVs. Across all the values we tested (k=5, 6, 10, 12, 15,
16, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180,
200), we find that the greedy approach takes only seconds to
run and underperforms the ILP solution by at most 74 variants
(0.11% of SVs).

We also found that a balanced random selection performs
worse than a uniform random selection on these data.
Specifically, we performed 100 trials of a balanced random selec-
tion of 100 samples (i.e., a random sample of 20 individuals within
each of the five superpopulations). The median fraction of SVs
recovered by these trialswas 31.71355%,which is less than theme-
dian fraction of SVs recovered by 100 trials of a uniform random se-

lection of 100 samples (33.4944%). On
reflection, this result is expected because
a balanced random selection will be un-
der-selecting samples from the more
diverse African superpopulation. Recall
that the greedy solution chooses 57
African samples. However, the balanced
random selection will only choose 20
African samples, but theuniformrandom
solution on average will choose 26
African samples basedon thedistribution
of samples in the superpopulations.

A B C

Figure 1. topN versus greedy methods. (A) Presence/absence matrix for three samples and four vari-
ants. (B) When picking the two most diverse samples, the topN algorithm selects A and B because they
are the individuals with the greatest number of variants. However, this selection only includes three of the
four variants. (C) The greedy algorithm on the other hand selects A and C because it accounts for the fact
that the variants covered by B have already been included by A. The greedy selection includes all four
variants.
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By default, SVCollector maximizes the count of distinct vari-
ants, without taking into account the allele frequency of the vari-
ants. This often leads to an enrichment of rare or private variants in
the identified set, potentially at the expense of capturing more
common variants. However, SVCollector can also be run in a
mode that takes allele frequency into account. In this mode,
SVCollector also uses a greedy approach but optimizes for com-
mon variants in the population by weighting variants by their ob-
served allele frequency. We assessed SVCollector in this allele
frequency mode to choose the most diverse set of 10 samples in
the 1000 Genomes Project. In the allele frequency mode,
SVCollector selects samples that cover 92.47% of the total weight-
ed SV diversity, whereas in the normal mode SVCollector selects
samples that cover 91.25%. We also compared the two modes
when choosing the most diverse set of 100 samples. In the allele
frequency mode, SVCollector selects samples that cover 98.96%
of the total weighted SV diversity, but in the normal mode the
samples selected cover 98.89%. Furthermore, SVCollector chooses
51 African, 14 East Asian, 13 European, 12 South Asian, and 10
American samples. Thus, even in the allele frequency mode
SVCollector chooses a representative selection of samples across
all subpopulations.

Sample selection based on SNVs from 2504 human genomes

Next, we investigated the relationship between SNVs and SVs, es-
pecially tomeasure if SNV calls can be used as an approximation of

SV diversity. For this, we used the 1000 Genomes Project data and
compared three different methods for picking a sample of 100 in-
dividuals to optimize the total number of SVs covered. Overall we
find that SVCollector is effective at optimizing sample selection to
maximize the number of distinct SVs, even in the absence of SV
calls (Fig. 3B).

First we analyzed 100 trials each consisting of 100 randomly
picked individuals. Out of the 100 trials, the SVs covered ranged
from 21,627 to 23,792 with a median of 22,839.5 SVs. Next, we
ran SVCollector in the greedy mode on the SNV data from the
1000Genomes Project and picked the best ranked 100 individuals.
The number of SVs contained in this sample was 25,459.
Comparing this to the greedy selection of SVCollector based on
SVs resulted in only 3070 fewer SVs. Thus, selecting the best
ranked individuals from the SNV data is an improvement over a
random sample and approaches the upper limit of SVs covered.

Sample selection based on SVs from 3024 rice genomes

We also assessed SVCollector based on 3024 genomes from the
3000 Rice Genomes Project (The 3,000 Rice Genomes Project
2014). Figure 2 summarizes the results, and Supplemental Table
S3 lists the details. We first investigated the distribution of the
100 samples selected by SVCollector across the populations, using
the 2223 samples that can be confidently classified into one of the
nine populations (Supplemental Table S4; Wang et al. 2018). The
topN approach selects 42XI-3, 31 XI-2, 16 XI-1A, 7 cA, and 4XI-1B

E F

BA C

D

Figure 2. Density and PCA plots of the 1000 Genomes Project and the 3000 Rice Genomes Project. (A) Density plot of the number of SVs reported per
person for each of the five superpopulations in the 1000 Genomes Project. The variants include all nonreference alleles, with both homozygous and het-
erozygous variants considered equally. The peak for the African (AFR) superpopulation occurs around 3750 SVs per person, whereas the peaks for the other
superpopulations occur around 3250 SVs per person. (B,C) PCA plots of the 1000 Genome Project samples colored by superpopulation highlighting the
100 most diverse samples chosen by the topN or greedy approaches, respectively. The topN method oversamples from superpopulations with a greater
number of SVs, whereas the greedy method picks a representative sampling across all the superpopulations. (D) Density plot of the number of SVs per
sample for each of the nine populations in the 3000 Rice Genomes Project. (E,F ) PCA plots of the 3000 Rice Genome Project samples constructed by using
variants with an allele frequency >5%. The PCA plots are colored by population and highlight the 100 most diverse samples chosen by the topN or greedy
approaches, respectively. The topN method oversamples from populations with a greater number of SVs, whereas the greedy method picks a represen-
tative sampling across all the populations.
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samples, but no cB, GJ-subtrp, GJ-tmp, or
GJ-trp samples. The greedy approach on
the other hand selects a representative
sample consisting of all nine subpopula-
tions (24 XI-3, 23 cA, 17 XI-2, 9 XI-1A, 8
cB, 8 XI-1B, 5 GJ-trp, 3 GJ-subtrp, 3 GJ-
tmp) (Fig. 2E,F). The topNapproach over-
samples the XI-3, XI-2, and XI-1A popu-
lations because they have a greater
number of SVs than the other popula-
tions (Fig. 2D). We next investigated
the fraction of SVs covered by the 100
samples selected by SVCollector.
SVCollector’s greedy approach (19.2%)
outperformed the topN approach
(17.0%) when investigating the first 10
ranked samples. When extending the se-
lection to 100 genomes, the greedy ap-
proach (45.4%) outperforms the topN
approach (37.8%).

Estimating total population-specific

diversity

SVCollector creates a diagnostic plot of
population diversity in which the y-axis
is the cumulative count of variants up
to the chosen sample, and the x-axis is
the number of samples (Fig. 4). These
SVCollector curves (when produced us-
ing the greedy mode) allow us to

BA

Figure 3. Comparison of various sample selection methods. (A) Cumulative fraction of SVs covered for a given number of samples chosen by the ILP,
greedy, topN, and random approaches. SVCollector’s greedy approach approximates the true ILP solution and exceeds the topN and random approaches
at recovering unique SVs. (B) Number of SVs covered using three sample selection methods. In red is the median number of SVs covered over 100 trials of a
random sample of 100 individuals. The red ribbon comprises the minimum and maximum number of SVs covered over the 100 trials. In green is the num-
ber of SVs covered using the 100 best ranked (greedy) individuals from the SNV data, and in blue is the number of SVs covered using the 100 best ranked
individuals (greedy) from the SV data. Data are from the 1000 Genomes Project (The 1000 Genomes Project Consortium 2015).

B

A

Figure 4. SVCollector curves and best-fit cumulative power-law models for SNVs (A) and SVs (B). Data
are shown for one representative subpopulation for each superpopulation in the 1000 Genomes Project.
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visualize the rate at which the cumulative number of variants in-
creases as individuals are optimally added. Indeed, this rate is a
function of the genetic diversity of the population under consider-
ation. To see this, consider a population consisting of individuals
with a constant positive number of personal variants, but with
zero shared variants between each other. In this case, the rate of
change in the cumulative number of variants will remain constant
as individuals are added. Now consider a population consisting of
individuals with shared variants. A higher prevalence of shared
variants across individuals will result in a faster decrease in the
rate of change of cumulative variants as individuals are added.

We found that these curves are modeled well by a power-law
distribution (Supplemental Figs. S4–S29). This is true for both
SNVs (Fig. 4A) and SVs (Fig. 4B). These curves can be constructed
for each population in a cohort, and a corresponding popula-
tion-specific best-fit power-law curve can be modeled. The pow-
er-law distribution has been found to underlie many natural
phenomena and arises from situations involving a preferential at-
tachment process (i.e., new items are preferentially distributed
among individuals according to how many items they already
have) (Mitzenmacher 2004). The underlying power-law equation
that describes these curves and a more in-depth analysis of the in-
terpretation of these curves are described in Methods.

The central advantage of fitting a mathematical model to
these curves is that the model can then be extrapolated to larger
numbers of samples to estimate the total population-specific diver-
sity that is present. These extrapolations can then be used to deter-
mine the extent to which the pan-genome is open and to

determine how many individuals would need to be sequenced to
obtain a given proportion of the variants shared by at least two in-
dividuals. Fully capturing private variants unique to a single indi-
vidual would require sequencing every individual.

To test the robustness of these extrapolations with varying
numbers of samples, we first perform subsampling on the entire
1000 Genomes Project data set, fit a best-fit curve to each subsam-
ple, and extrapolate to the full data set. We run 100 trials each for
subsamples of 10, 25, and 100 random individuals (Fig. 5A,B). As is
expected, the extrapolation from subsampling produces an under-
estimation in the amount of diversity because the subsample
would have to include exactly the most diverse individuals for
the extrapolated diversity to match the actual diversity on the en-
tire data set. Consequently, increasing the sample size improves
the accuracy of the extrapolation.

Finally, for each subpopulation in the 1000 Genomes Project
data, we extrapolate the best-fit power-law curve out to 100,000 in-
dividuals to estimate a lower bound on the total number of vari-
ants shared by at least two individuals. Then, we calculate the
number of sequenced individuals necessary to obtain 90% of
this diversity. We find that relatively fewer East Asian individuals
would need to be sequenced and relatively more African individu-
als would need to be sequenced (Fig. 5C,D). For example, only 180
Chinese Dai (CDX) individuals are needed to capture 90% of the
shared SNVs of 100,000 CDX individuals, but at least 32,978
Luhya (LWK) individuals are needed to capture 90% of the shared
SNVs of 100,000 LWK individuals. Because these estimates are low-
er bounds, we conclude that many more individuals need to be

BA

C D

Figure 5. The 1000 Genomes Project extrapolated superpopulation diversity. (A,B) Extrapolating the number of shared variants covered with subsam-
ples. In black is the shared diversity of the full data set. The lines represent the median number of covered variants over 100 trials of the given sample size.
The ribbons represent theminimum andmaximum number of covered variants over 100 trials of the given sample size. The left panel is calculated on SNVs,
and the right panel is calculated on SVs. (C,D) Box plots of subpopulation diversity by superpopulation. For each subpopulation, the predicted total amount
of shared variants for 100,000 individuals is calculated. Then, the number of sequenced individuals necessary to obtain 90% of this diversity is calculated.
Finally, box plots of the number of required individuals (log scale) are plotted for the corresponding subpopulations in each superpopulation. The left panel
is calculated on SNVs, and the right panel is calculated on SVs.
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sequenced, especially of African descent, to fully capture the diver-
sity of human variants.

Discussion

SVCollector is a fast and powerful method to quantitatively and
optimally select samples for long-read resequencing or optical
mapping based on their genomic variation (SNV and/or SV) shared
in the population. SVCollector’s greedy mode substantially out-
performs the naive topN or random selections both in the repre-
sentativeness across populations and in the number of SVs
captured. These gains will in turn translate to cost savings for rese-
quencing and validation experiments. Indeed, SVCollector has al-
ready been applied to larger sequencing projects such as a detailed
study of 11 human genomes and 100 tomato genomes sequenced
with long reads (Alonge et al. 2020; Shafin et al. 2020).

We found that SNV variant callsets can be used to choose a
sample of individuals that maximizes the number of distinct
SVs. In the 1000 Genomes Project data set, this method results
in only 3070 fewer SVs captured than when using the SV variant
callset directly. Additionally, in the human data sets, female sam-
ples often contributed more SVs thanmale samples because of the
extra heterozygous SVs on the X Chromosome. Depending on the
application, researchers may want to exclude the sex chromo-
somes before analysis as we did in our analyses.

We found that plots of the cumulative number of variants in-
cluded in a selection versus the number of samples in the selection
follow a power-law curve. By constructing these plots for each pop-
ulation in a cohort, information can be extracted to estimate the
total population-specific diversity that would be captured by
sequencing increasing numbers of individuals. We show that the
human pan-genome is very diverse, and that capturing 90% of the
total shared diversity would require the sequencing of many more
individuals than has been done in any long-read cohort to date.

An important consideration for these analyses is that the def-
inition of a population is often arbitrary and based on geographic
origins, whereas real populations show varying levels of structure
as well as admixture. It is thus important that population genetic
studies be designed in ways that are tailored to particular down-
stream goals, and that experts such as anthropologists are consult-
ed in such decisions where appropriate. Decisions about sample
grouping will in turn influence the power-law curves, just as
they do the allele frequency spectrum. For example, if many close-
ly related individuals are sampled, there will be an excess of com-
mon alleles in the samples, and additional relatives will not result
in the discovery of many novel variants. Power-law curves should
thus be interpreted in the context of any known selection biases.

It remains challenging to create a population-wide variant
callset as the selection clearly depends on the quality of the initial
SV callset. Nevertheless, given a low quality (i.e., overrepresenta-
tion of false positive SVs) variation callset, SVCollector also overre-
presents false positives, which will help with the detection and
negative validation of these SV calls. We show that SVCollector
is robust in the presence of false positive calls (Supplemental
Table S5). In the case when an SV callset is limited in the detection
of SVs, SVCollector will still rank the samples, but it is unclearwhat
minimal sensitivity rate would be needed to accurately represent
the population.

Overall, we showcase a cost-efficient yet comprehensive way
to use long-read sequencing at population scale. This is particular-
ly important for population projects (CCDG, TOPMed, 1000
Genomes Project, etc.) where genotyping data are available. We

show that SVCollector identifies the optimal subset of samples
for further examination and at the same time provides popula-
tion-specific insights. Given the currentmany-fold price differenc-
es between long-read sequencing and Illumina sequencing,
together with the abundance of population studies (exons, arrays,
etc.), SVCollector will remain useful for quite some time.

Methods

Data sets

The 22 autosome SNV VCF files for the 1KGP project can be
downloaded at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/
20130502/. The 22 autosome SV VCF files for the 1KGP project
can be downloaded at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
phase3/integrated_sv_map/. The data used to generate the SV
VCF files for the 3000 Rice Genome Project Large Structural
Variants Dataset can be downloaded at https://snp-seek.irri.org/
_download.zul.

Integer linear programming

SVCollector ranks a list of samples in amultisample VCF file to pro-
vide a selection maximizing the variants included. Solving this
problem exactly is computationally demanding as it is a version
of the well-known NP-hard maximum coverage problem. We im-
plement the following integer linear programming (ILP) formula-
tions of the problem to solve it exactly, although this requires an
excessively long run time even for relatively small data sets.

The input for the ILP maximum coverage optimization prob-
lem is represented by an n×m binary matrix A= [ai,j]∈ {0, 1}n×m, in
which every entry ai,j∈ {0, 1} determines if in sample i the variant j
is present or absent. Given a matrix A and 1≤ k≤n, we define an
optimization problem as a search for a subset I⊆{1, 2,…, n} of sam-
ples with |I|≤ k, such that the total number of variants present
across all samples in I is maximized.

We formulate the following ILP to solve the aforementioned
optimizationproblem. First, wedefine the decision variables in our
ILP formulation:

∀i [ [1, 2, . . ., n]: xi [ {0, 1} (1a)

∀j [ [1, 2, . . ., m]: yj [ {0, 1} (1b)

where a variable xi encodes whether or not a sample i is selected to
be present in the problem solution I, and a variable yj encodes
whether or not a variant j is going to be represented in the problem
solution (i.e., present in at least one sample from I ).

We now define the constraints for the ILP formulation. We
start with the constraint that ensures that no more than k samples
are selected:

∑

i

xi ≤ k (2)

We then define constraints that ensure that when a variable
yj = 1, at least one sample xi in which variant j is present is selected:

∀j [ [1, 2, . . ., m]:
∑

i

xi·ai,j ≥ yj (3)

Finally, we define an objective function for our optimization
ILP, forcing themaximumnumber of variants to be represented in
the desired solution:

max
xi ,yj

∑

j

yj (4)

Although these ILP formulations solve the maximum cover-
age problem exactly, they are inefficient. Conversely, the greedy
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algorithm provides an efficient polynomial time solution that
closely approximates the optimal solution (Feige 1998). Conse-
quently, SVCollector uses a greedy approximation that starts
with the sample with the largest number of variants, and then
iteratively picks the sample containing the largest number of var-
iants not yet included in the subset. It also has a randommode that
mimics an arbitrary selection process and is helpful for evaluating
the diversity of the topN or greedy approaches.

Additionally, SVCollector has a mode in which the user may
supply a file of sample names and weighted factors. In this way, a
user can up-weight or down-weight whether to include particular
samples based on external factors. These weighted factors can be
set in terms of sample accessibility, breeding phenotypes, or other
factors unique to the particular experiment. For each mode,
SVCollector reports the rank, sample name, its unique contribu-
tion of SVs, the cumulative sum of SVs up to the chosen sample,
and the cumulative percentage compared to the total number of
SVs in the input VCF file.

Interpreting the power-law curves

We examined the distribution in the number of distinct variants
present for each individual selected by SVCollector and found
that it follows a power-law distribution. Similar analyses of the cu-
mulative population diversity in samples have been performed in
the context of determining the extent towhich the pan-genome of
a bacterial species is open or closed (Medini et al. 2005). In this
analysis, the pan-genome includes the “core” genome that is
shared among all individuals in a population and a “dispensable”
genome that is either shared between a subset of individuals (ac-
cessory genome) or is unique to a single individual (unique ge-
nome). Here, we define the “shared” genome as the union of the
core and accessory genomes. In one study, the pan-genome of
Streptococcus agalactiaewas concluded to be open owing to mathe-
matical extrapolation of the plot of the cumulative number of
genes present versus number of strains added (Tettelin et al. 2005).

To model the SVCollector curves, we fit the following equa-
tion:

f (n) =
∑n

i=1

(a(i)b + g) (5)

where n is the number of individuals included in the selection, f (n)
is the cumulative number of variants present after the nth individ-
ual is added, α is a population diversity metric that scales with the
total number of variants in the population, β is a population diver-
sity metric that describes the diversity of the population, and γ is a
variable that relates to the number of personal variants for each
individual. To determine the parameter values of the model that
best-fit the data, SVCollector uses nonlinear optimization. Specif-
ically, the nlsLM function in R is used (R version 3.6.3) (R Core
Team 2020), which implements the Levenberg-Marquardt algo-
rithm (Moré 1978), whereby an iterative procedure is performed
to update the initial estimate.

In thismodel, αmeasures the populationmutation rate, and β
measures the extent towhich variants are shared across individuals
in the population. A larger α value corresponds to a higher muta-
tion rate, and a smaller α value corresponds to a lower mutation
rate. A less negative β (i.e., closer to 0) corresponds to a relative ex-
cess of rare variants in the population, and a more negative β cor-
responds to a relative lack of rare variants in the population. Thus,
we would expect more genetically heterogeneous populations to
have a less negative β and more homogeneous populations to
have a more negative β.

To gain a deeper understanding of these curves, we sought to
interpret their shapes in light of existing population genetic theory

and metrics. To connect the parameters from our power-law curve
to well-established theory, we compare the α parameter of our
model to Watterson’s θ and the β parameter of our model to
Tajima’sD.Watterson’s θ and Tajima’sD are summary statistics de-
rived from the allele frequency spectrum (Fisher 1931; Wright
1938). The allele frequency spectrum considers counts of the num-
ber of samples possessing each variant. SVCollector instead consid-
ers counts of the number of variants contained within each
sample. As we have shown, the central advantage to using the
counts of the number of variants is that it is straightforward to ex-
trapolate the number of variants we would expect to see as the
number of individuals in the sample is increased.

For each of the 26 subpopulations in the 1000 Genomes Pro-
ject data, we calculated the value of α, β, Watterson’s θ, and Taji-
ma’s D over the autosomes (Supplemental Tables S6, S7). We
calculated one set of values on the SNV data and another on the
SV data. The program scikit-allel (https://github.com/cggh/scikit-
allel) was used to determine the values for Watterson’s θ and Taji-
ma’s D. From this analysis, we find that the parameters from the
power-law curves are correlated with these previously existing
diversity metrics. We first compared the α parameter to Watter-
son’s θ, which is used to determine the population mutation
rate.We find that α is highly correlatedwithWatterson’s θ both us-
ing SNV data and using SV data (Supplemental Fig. S30A,C). The
correlations also hold when performing a localized analysis of in-
dividual chromosomes, althoughwith varying levels of correlation
with r2 varying from 0.7812 (Chromosome 14) to 0.9026 (Chro-
mosome 19). We next compared the β parameter to Tajima’s D,
which is often used to test for deviations from neutrality or demo-
graphic equilibrium. Specifically, it compares themean number of
pairwise differences to the number of segregating sites. We find
that β is highly correlated with Tajima’s D both using SNV data
and using SV data (Supplemental Fig. S30B,D). The correlations
also hold when performing a localized analysis of individual chro-
mosomes, with r2 varying from 0.7738 (Chromosome 2) to 0.8683
(Chromosome 21).

To better understand whether the population structure of
structural variants within a population is similar to that of small
variants, we compared the values of each metric calculated using
SV data for each subpopulation to the values calculated using
SNV data for each subpopulation (Supplemental Fig. S31). We
find high correlation between the SV and SNV values for all four
metrics with r2 values of 0.8941, 0.9387, 0.9932, and 0.9459 for
α, β, Watterson’s θ, and Tajima’sD, respectively. These results indi-
cate that the population structures of structural variants and small
variants are highly analogous, providing further evidence to sup-
port previous findings (Sudmant et al. 2015).

Population substructure and signatures of selection

One consequence of this population genetic interpretation of the
power-law curves is that the β parameter can be used to compare
the genetic diversity of subpopulations. For example, after compar-
ing the values of β for each of the 26 subpopulations, we find β is
least negative (indicating a relative excess of rare variants) for the
seven African populations andmost negative (indicating a relative
lack of rare variants) for the five East Asian populations, as expect-
ed (Fig. 6A). This comports with previous analyses of intrapopula-
tion diversity showing the African superpopulation to be the most
genetically diverse and the East Asian superpopulation to be the
least genetically diverse (The 1000 Genomes Project Consortium
2015) as a result of serial founder effects during ancient humandis-
persal across the globe (Deshpande et al. 2009).

Furthermore, the β parameter can be used to find regions of the
genome showing signatures of positive or balancing selection. To

Ranallo-Benavidez et al.

916 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.264879.120/-/DC1
https://github.com/cggh/scikit-allel
https://github.com/cggh/scikit-allel
https://github.com/cggh/scikit-allel
https://github.com/cggh/scikit-allel
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.264879.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.264879.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.264879.120/-/DC1


perform a genome-wide scan for such signatures, we calculated β
over small genomic regions (5-Mbp nonoverlapping windows).
Specifically, for each of the 26 subpopulations, we calculated
β over each window using only the corresponding SNVs. On aver-
age, there were 28,760 SNVs per window. Then, for each subpopu-
lation, we computed the β Z-score across all windows to allow for
comparisons across the different subpopulations. For each window,
we then constructed a box plot of the β Z-scores across the 26 sub-
populations. We find that for the 26 subpopulations, the genomic
region spanning the HLA immune complex (window 7 on
Chromosome 6) has a more negative β value than all other regions.
This indicates a relative lack of rare variants in this region,which is a
signal of balancing/diversifying selection (Fig. 6B; Hughes and
Yeager 1998).

Finally, the β parameter can be used to discover regions of the
genome targeted byhistorical local adaptation, whereby positive se-
lection generated strong frequency differences across human popu-
lations. For example, we would expect that Northern European
populations, but not East Asianpopulations,would show signatures
of positive selection targeting the lactase gene (LCT) (Bersaglieri
et al. 2004; Bayless et al. 2017). Indeed we find that the British in
England and Scotland (GBR) population has the most negative β
Z-score (−0.920) for this region, but none of the East Asian popula-
tions have a negative β Z-score. The limited number of SVs in the
1000 Genomes Project data set, with an average of only 26 SVs
per 5-Mbp window, limits similar selective sweep analyses using
SVs. However, using our mathematical model we have reaffirmed
previously known facts about human population genetics. This val-
idates that our method can be used to discover new information
about less well-characterized populations.

Software availability

The SVCollector source code is available at GitHub (https://github
.com/fritzsedlazeck/SVCollector) and as Supplemental Code.
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