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Abstract: This review considers experimental findings on splenic repair, obtained in two types of
small animal (mouse, rat, and rabbit) models: splenic resections and autologous transplantations
of splenic tissue. Resection experiments indicate that the spleen is able to regenerate, though not
necessarily to the initial volume. The recovery lasts one month and preserves the architecture, albeit
with an increase in the relative volume of lymphoid follicles. The renovated tissues, however, exhibit
skewed functional profiles; notably, the decreased production of antibodies and the low cytotoxic
activity of T cells, consistent with the decline of T-dependent zones and prolonged reduction in T cell
numbers. Species–specific differences are evident as well, with the post-repair organ mass deficiency
most pronounced in rabbit models. Autotransplantations of splenic material are of particular clinical
interest, as the procedure can possibly mitigate the development of post-splenectomy syndrome.
Under these conditions, regeneration lasts 1–2 months, depending on the species. The transplants
effectively destroy senescent erythrocytes, assist in microbial clearance, and produce antibodies, thus
averting sepsis and bacterial pneumonia. Meanwhile, cellular sources of splenic recovery in such
models remain obscure, as well as the time required for T and B cell number reconstitution.
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1. Introduction

The spleen is the largest lymphoid unpaired parenchymal organ of the abdominal
cavity found in all vertebrates. The spleen is functionally and morphologically divided
into the red and white pulp with a marginal (in rodents) or perifollicular zone (in humans)
between them (Figure 1) [1]. Blood circulation in the spleen is open: blood enters the
tissues via the trabecular artery and becomes the central artery which gives rise to many
branches which enter the red pulp and surround the white pulp [2]. The red pulp is
responsible for blood filtration and removes opsonized, damaged, and dying cells from
circulation. It also serves as the depot of the organism’s iron, as well as red blood cells,
monocytes, and platelets. The spleen, as the largest secondary lymphoid organ, contains
about a quarter of the body’s lymphocytes and initiates an immune response to blood
antigens [3]. Although adaptive immune responses to such antigens are realized in the
white pulp, the cells of innate immunity (neutrophils, monocytes, dendritic cells, and
macrophages) could be easily found as residents of red pulp. The white pulp is divided into
T- and B-zones, similar to the lymph nodes of the immune system. The T cell zone is also
called the periarteriolar lymphoid sheath because it surrounds the central arterioles and
is composed of lymphocytes, reticular cells, and reticular fibers [3]. B cell zones represent
follicles where clonal expansion of activated B cells can take place [4]. The marginal zone
serves to monitor the circulation for antigens and pathogens and plays an important role
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in antigen processing and for lymphocytes releasing from the circulation and entering the
white pulp. The marginal zone mainly contains macrophages and a special subset of B cells
(marginal zone B cells) [1].

Life 2022, 12, 626  2  of  16 
 

 

serves to monitor the circulation for antigens and pathogens and plays an important role 

in antigen processing and for lymphocytes releasing from the circulation and entering the 

white pulp. The marginal zone mainly contains macrophages and a special subset of B 

cells (marginal zone B cells) [1]. 

 

Figure 1. Rat spleen histology. (A) Light microscopy, hematoxylin‐eosin staining (H&E), bars, 200 

μm. (B) Cryosection of spleen tissue after anti‐CD68 (FITC) immunostaining. The nuclei are coun‐

terstained with DAPI. RP—red pulp, WP—white pulp, LN—lymphatic nodule (follicle), bars, 200 

μm. Arrows indicate CD68 + macrophages in red pulp. Original image generated in the author’s 

laboratory. 

Total resection of the spleen is an option in a number of clinical situations including 

traumatic injury, thrombocytopenia, and severe portal hypertension [5]. Despite the ap‐

parent simplicity of the procedure, 2–10 years in the aftermath, a number of patients de‐

velop complications collectively  referred  to as post‐splenectomy syndrome, most  typi‐

cally manifested by recurrent infections of varying severity [5]. Clinical examples demon‐

strate a different patient survival rate after splenectomy [6]. In the early work of Bonnet‐

Gajdos and colleagues, it was shown that splenectomy performed in 21 patients with age 

from one to 23 years old had no pronounced negative clinical manifestations and did not 

affect the normal maturation of children [7]. In another study with a 19/21 survival rate, 

splenectomy caused by sporadic haemophagocytic lymphohistiocytosis (HLHs) showed 

a real diagnostic benefit in establishing the cause of HLHs and had a therapeutic effect [8]. 

Splenectomy leads to an increased risk of septic complications associated with high mor‐

tality, the most serious of which is the development of functional hyposplenism associated 

with overwhelming post‐splenectomy infection (OPSI), which can progress from flu‐like 

illness to fulminant sepsis in a short period of time and is accompanied by high mortality 

[9]. The first descriptions of OPSI date back to 1952, when King and Schumaker first de‐

scribed bacterial sepsis after splenectomy in infants and children [10]. In a large retrospec‐

tive study of 6942 patients, Bisharat and colleagues showed a low risk of postsplenectomy 

sepsis; however, approximately 40–50% of all people who develop postsplenectomy sep‐

sis died [11]. Now it is known that the predominant causative agents of postsplenectomy 

sepsis are resistant to phagocytosis encapsulated bacteria, Streptococcus pneumoniae [12]; 

therefore, the long‐term antibiotic therapy is designed to prevent the development of OPSI 

after splenectomy [13]. Some studies also claim increased risks of tumorigenesis after sple‐

nectomy [6,14–16]. Such complications indicate significant problems in both humoral and 

cellular wings of immunity. Considering the prevalence of such complications, regenera‐

tion of the spleen is extremely relevant. Apart from the issues of splenic repair per se, this 

review considers effects of the spleen on hepatic recovery after various kinds of damage. 

Figure 1. Rat spleen histology. (A) Light microscopy, hematoxylin-eosin staining (H&E), bars, 200 µm.
(B) Cryosection of spleen tissue after anti-CD68 (FITC) immunostaining. The nuclei are counterstained
with DAPI. RP—red pulp, WP—white pulp, LN—lymphatic nodule (follicle), bars, 200 µm. Arrows
indicate CD68 + macrophages in red pulp. Original image generated in the author’s laboratory.

Total resection of the spleen is an option in a number of clinical situations including
traumatic injury, thrombocytopenia, and severe portal hypertension [5]. Despite the appar-
ent simplicity of the procedure, 2–10 years in the aftermath, a number of patients develop
complications collectively referred to as post-splenectomy syndrome, most typically man-
ifested by recurrent infections of varying severity [5]. Clinical examples demonstrate a
different patient survival rate after splenectomy [6]. In the early work of Bonnet-Gajdos
and colleagues, it was shown that splenectomy performed in 21 patients with age from one
to 23 years old had no pronounced negative clinical manifestations and did not affect the
normal maturation of children [7]. In another study with a 19/21 survival rate, splenectomy
caused by sporadic haemophagocytic lymphohistiocytosis (HLHs) showed a real diagnostic
benefit in establishing the cause of HLHs and had a therapeutic effect [8]. Splenectomy
leads to an increased risk of septic complications associated with high mortality, the most
serious of which is the development of functional hyposplenism associated with over-
whelming post-splenectomy infection (OPSI), which can progress from flu-like illness to
fulminant sepsis in a short period of time and is accompanied by high mortality [9]. The
first descriptions of OPSI date back to 1952, when King and Schumaker first described
bacterial sepsis after splenectomy in infants and children [10]. In a large retrospective
study of 6942 patients, Bisharat and colleagues showed a low risk of postsplenectomy
sepsis; however, approximately 40–50% of all people who develop postsplenectomy sepsis
died [11]. Now it is known that the predominant causative agents of postsplenectomy
sepsis are resistant to phagocytosis encapsulated bacteria, Streptococcus pneumoniae [12];
therefore, the long-term antibiotic therapy is designed to prevent the development of OPSI
after splenectomy [13]. Some studies also claim increased risks of tumorigenesis after
splenectomy [6,14–16]. Such complications indicate significant problems in both humoral
and cellular wings of immunity. Considering the prevalence of such complications, regen-
eration of the spleen is extremely relevant. Apart from the issues of splenic repair per se,
this review considers effects of the spleen on hepatic recovery after various kinds of dam-
age. These effects are substantial due to the close anatomical and functional relationship
between the two organs.
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2. Splenic Regeneration after Resections

The most common indications for splenectomy are a wide variety of diseases and
conditions: raptured or enlarged spleen, blood disorders like idiopathic thrombocytopenic
purpura and thalassemia, cancer (chronic lymphocytic leukemia, Hodgkin’s lymphoma,
and non-Hodgkin’s lymphoma), infection, etc. The study of spleen regeneration after
splenectomy is often limited to patients and small laboratory animals, while for larger
species, splenectomy has only been studied in the context of survival. Thus, it was shown
that post-splenectomy, post-operative survival rate was 52% for dogs [17], 87.5% for Thei-
leria haneyi-infected, splenectomized horses [18], and almost complete post-operative
recovery was observed for cattle in more earlier works [19,20].

The first studies on mammalian spleen regeneration date back to the 19th century [21,22].
Dedicated research on the dynamics, cellular sources, and spleen microanatomy after
resections peaked in the 20th century [21,22]. Over recent years, the focus has shifted from
post-splenectomy regrowth to post-transplantation recovery. Data on spleen regeneration
after resection are summarized in Table 1.

The earliest known experimental studies on regeneration of the spleen after resections
were carried out in the 19th century by Jean-Marie Philipeaux [21]. In early experiments,
resections of the spleen ended with restoration of its shape and mass; occasionally, the
remnant overgrew the initial size of the organ. Later on, these results were questioned and,
by the turn of the century, the general opinion was that the spleen does not regenerate after
resections and the site heals by scarring [21].

A bunch of experimental studies on regeneration of the spleen after resections was
implemented by academic staff of the Laboratory of Growth and Development at the
Scientific Research Institute of Human Morphology, Moscow, Russia. One series involved
mice undergoing 50% splenectomy. The extent of regenerative outcomes considerably
varied: after 1 month, most of the remnants grew significantly in length and volume, while
preserving the architecture and showing no outgrowth at the wound surface. It should be
noted that, even in cases of intensive regrowth, the organs never reached their initial size.
Moreover, in a number of cases, the remnants progressively shrunk [22–24].

Resections of 90% of the splenic volume in mice produced functional spleen equiv-
alents of loosely cubic shape in 38 days [21,22]. Regeneration was accompanied by an
increase in the density of lymphoid follicles and their relative area, as assessed by light mi-
croscopy [25,26]. The earliest observable reaction of splenic tissues to the resection involved
the emergence of macrophages burdened with particles of destroyed nuclei. Six hours post
resection (p/r), reticular tissue cells started to proliferate and were followed by erythrocyte
and lymphocyte lineages enriched in cells with blast morphology [21,22]. Erythrocyte
progenitors reached their maximal mitotic activity by day 3 p/r. Interestingly, repeated re-
sections promoted a sharp increase in the content of erythrocyte lineages within the remnant
and a reciprocal decrease in the content of lymphocyte lineages [21,22]. Transplantations
of cells isolated from intact and regenerating spleens to lethally irradiated mice yielded
equal numbers of colonies, indicating the rapid recovery of stem cell populations [27]. The
rates of recovery for T and B cell populations in regenerating spleens differed: the slower
proliferation of T cells resulted in their significantly reduced numbers as late as 3 months
after the resection [21,22].

In addition to the morphological and cell lineage studies, the focus was expanded to
the functional profiles of splenic lymphocytes, including the production of antibodies and
participation in cellular immunity reactions. Following the resection and regrowth, splenic
lymphocytes produced lower amounts of antibodies and showed weaker graft-versus-host
reactions compared with the cells from intact spleens [28]. The observed functional decline
was explained by the enrichment with immature, functionally compromised lymphocytes
in the course of regeneration [21,22].

Species–specific differences in splenic regeneration are pronounced. Rabbits, by con-
trast with mice and rats, are incapable of splenic regrowth [25]. The difference is interesting
in terms of adaptive immunology: rabbits respond to splenectomy by compensatory in-
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crease in the volume of lymph nodes, which acquire structural features of the spleen.
Splenic regeneration in rabbits can be induced chemically [29]. In other model animals,
regeneration rates significantly depend on age (higher in younger animals) and season
(higher in summer). In addition, the regrowth can be inhibited by thymectomy [28] and
stimulated by injections of certain antigens [21,22].

Together, these studies indicate that classical experiments on spleen resection unequiv-
ocally indicate its ability to regenerate, which is accompanied by the preservation of tissue
architectonics and an increase in the size of lymphoid follicles. In the next section, we will
turn to the analysis of heterotopic (not in original location) transplantations of the spleen
as a frequent model for studying regeneration.

Table 1. Spleen regeneration after resection.

Authors Volume of
Resection

Regeneration
Period

Antibody
Production T Cell Activity Other

1. L. D. Liozner and
Kharlova [24] 50% 30 days

Decreased
production of

antibodies

Decreased T
cell activity

The observed functional decline
was explained by the enrichment

with immature, functionally
compromised lymphocytes in the

course of regeneration

2. Cameron and
Rhee [23] 50% 30 days

3. Macka and Scott
Polland [25] 50% 30 days

An increase in the density of
lymphoid follicles and their

relative area

4. Kharlova [22] 90% 38 days Slower recovery of T cells
compared to B lymphocytes

5. Pouché et al. [26] 50% 90 days

The results of histologic study
demonstrate a readjustment of the

vascular net and the lymphoid
tissue of the white pulp

3. Autotransplantations of the Spleen

The orthotopic regeneration of the spleen is clinically unfeasible. At the same time,
unattended splenectomies are fraught with delayed immunological complications [5]. The
problem can be solved by transplantation of splenic material to heterotopic locations.

The idea was born in connection with clinical cases of spontaneous splenic engraft-
ment. In the aftermath of splenectomy, functionally active fragments of splenic lymphoid
tissue may occasionally settle in the abdominal cavity, resembling accessory spleens. This
phenomenon is known as ‘splenosis’ [30,31].

Studies on the heterotopic recovery of autologous splenic grafts in rodent models
began in the early 20th century. Two major sites of heterotopic engraftment were abdominal
(mostly intraomental) and subcutaneous. The course of regeneration for these two sites
was similar and took about 1 month [32,33]. Data on heterotopic spleen transplantation are
summarized in Table 2.

An early series of such experiments was, oddly enough, performed on rabbits [34,35],
incapable of orthotopic splenic regrowth under standard conditions [25]. Nevertheless, the
splenic architecture was restored within 80 days after subcutaneous autotransplantations. In
younger rabbits or rabbits after total splenectomy, the regeneration proceeded faster [34,35].

These pioneering models were meticulously reproduced in other species of laboratory
animals [36]. In rats and mice, the abdominal engraftments proceeded similarly and
lasted about 1 month [33]. Other studies indicated longer regeneration in rats, about
2 months [23,37]. The early stage (days 0–3 post-transplantation, p/t) was marked with
degradation of the tissue architecture and massive death of lymphocytes. At 12–18 h p/t,
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two zones could be clearly distinguished within the graft: the central zone of necrosis and
the peripheral zone of viable cells, with reticular cells projecting towards the central zone.
First capillaries emerged at 48 h p/t. On day 7–9, clusters of cells with round dark nuclei
and lymphocytic morphologies appeared in the peripheral zone and around capillaries.
Starting from day 13–15, formation of lymphoid follicles with enlarged lymphocyte-like
cells was evident. By day 29 p/t, the graft acquired characteristic tissue architecture of the
spleen [23,33,38,39] and comprised differentiated B cells and red pulp macrophages [40].

Consistent with the previous findings on rabbits, in rat models, the engraftment was
more robust in younger animals, with accelerated vascularization and re-innervation of
the grafts, and higher numbers of Ki67+ cells and their distributions typical of the intact
spleens in young rats [39,41,42]. In contrast to rabbit models, in rats, the engraftment was
more robust after incomplete splenectomies [23,33,43].

Over recent decades, these techniques were refined. The optimal site for peritoneal
engraftments is the greater omentum, although autologous transplantations to the mesen-
tery or the inside of abdominal wall work as well [44–46]. Moreover, the whole ectomized
spleen can be attached surgically to the liver, with successful outcomes [47].

Subcutaneous splenic grafts provide a major alternative, although the scenario is
basically similar to the intraperitoneal splenic regeneration. In rats, the subcutaneous
engraftments are finalized within 1–1.5 months p/t. Identical to the peritoneal grafts, the
early phase is marked with necrosis. Subsequent morphological landmarks are blood
vessel ingrowth (day 3) and accumulation of larger lymphocytes with dark nuclei in
peripheral parts of the transplant (day 7). By day 14, the lymphocytes increase in number.
By day 28, the transplant recovers characteristic splenic architecture with red and white
pulp compartments [32]. These observations are corroborated by more recent studies of
neovasculogenesis in murine transplants, with precise measurements enabled by injection
of tracers (fluorescent polystyrene microspheres) and electron microscopy. Although the
new vessels at the periphery of the grafts started to form on day 3 p/t, microcirculation
within the marginal zone of white pulp remained rudimentary until week 10 p/t [48].

Most of the experiments indicate the universal capacity of autologous splenic grafts
to regenerate at a variety of anatomical sites. At the same time, several studies argue that
subcutaneous environments are less favorable due to the lower rates of angiogenesis and
specify the greater omentum as the optimal site for the engraftment [49]. Such conclusions
are based on functional metrics: only intraomental transplants, as opposed to intramuscular,
etc., ensured the ‘intact’ rates of pneumococcal clearance after regeneration [50].

Comprehensive functional assessment of the outcomes is important in connection
with the clinical relevance of splenic autotransplantations. In this regard, hematopoietic
status and resistance to particular infections and tumors in the aftermath of the intervention
are chief indicators of its success or otherwise.

Within 2 weeks p/t, the autografts begin to effectively sort erythrocytes, with the
concomitant clearance of senescent erythrocytes from the blood [51–53]. The first week p/t
is marked with a sharp increase in platelet counts and fibrinogen levels. These indicators
return to normal within 3–6 weeks as the splenic tissue regenerates heterotopically [51,52].

The main clinical goal of splenic autografts is to prevent the development of severe
infectious complications [54–56]. According to experimental findings, the prospects are
realistic. For instance, splenic autotransplantations to the great omentum in rat mod-
els ensured the anti-pneumococcal defense [57–59], and similar effects were achieved
with subcutaneous grafts [60]. Primary indicators are the ability of splenic autografts to
produce antibodies and promote bacterial clearance [49]. After experimental autotransplan-
tations in laboratory animals, total blood levels of IgM are restored within 8 months [61,62].
In functional tests with pneumococcal vaccination, autologous transplantations provide
partial response in the form of specific IgM and IgG antibodies, albeit not to all pneu-
mococcal serotypes [40]. Apart from the antibody production, the grafts effectively pro-
mote bacterial clearance; this was demonstrated for infections with E. coli, as well as
pneumococci [38,50,63]. Participation of splenic autografts in the immune response to
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Staphylococcus aureus was explored in mouse model. Splenectomized animals with splenic
autografts produced lesser colonies in seeded blood cultures along with higher titers of
S. aureus-specific IgM and IgG1 in comparison with flat splenectomies [64]. Despite the
encouraging results, the influence of autologous grafts on the circulating pools of T and
B cells remains understudied. In several studies, splenic autografts did not rescue the
lymphocyte blood counts, and after 8 months the circulating numbers of both CD3+ T
and CD19+ B cells remained reduced [52,61,62]. In other studies, the ability of spleen
autografts to confer immunity against fatal infections was either negligible, or the effect
was short-term [49].

In translational perspective, it is important to determine the critical mass of splenic
transplant, competent of protecting the body from fatal infections. Although such a value
may be of pure theoretical interest [49], several studies loosely define it as 30–50% of the
intact spleen mass [49,63].

Efficacy and safety of autologous splenic grafts were assessed in a number of clinical
trials (≥18). Sixteen of those involved engraftments in the greater omentum and two trials
involved engraftments at retro- and extraperitoneal locations. The general blood test indica-
tors returned to their pre-operative (or similar) values in all participants, and regeneration
of the transplant was confirmed scintigraphically in 95.3% of the cases. In 12 clinical trials,
the levels of IgM returned to normal values; in 3 trials, IgM levels were higher in patients
with splenic autografts than in patients after flat resections; and the other 3 trials found no
difference in IgM levels between these groups. Complications of the engraftment per se
were encountered in 3.7% of the cases; these included intestinal obstruction in four patients
and subdiaphragmatic abscess in one patient. The incidence of delayed severe infections
was evaluated in five trials, with a total of one case (pneumonia) recorded [65].

Apart from their pre-clinical significance, experimental models of splenic transplanta-
tion are of undoubted theoretical interest. The famously complex tissue architecture of the
spleen is reconstituted both morphologically and functionally after the total collapse. The
depth of the initial degradation can be explained by details of the technique: the surgeon
creates no anastomosis between the graft vasculature and the local microcirculatory bed at
the host site. Thus, the limiting stage (and also the critical stage, burdening and jeopardiz-
ing the whole process) is the ingrowth of new vessels into the autograft. Regeneration of
splenic parenchyma is delayed until the vascular connection has been established. In terms
of the repair process dynamics and angiogenesis, as well as hematopoietic and immune
recovery at systemic level, regeneration of splenic autografts represents a unique model.
Cellular sources of splenic regeneration are also of special interest. It is not clear which cells
are responsible for the replacement of the destroyed splenic architecture: hematopoietic
stem cells that arrive from circulation to populate the niche formed de novo by reticular
cells or the resident stem cell lineages that survive within the graft despite the severity of
the early necrosis. These questions have long been asked [49], but are only recently being
answered [66].

The splenic stroma is known to consist of reticular tissue constituted by respective cells
and fibers [66,67]. In seminal works on hematopoiesis, spleens devoid of hematopoietic
cells by a lethal dose of ionizing radiation were capable of harboring proliferation and
differentiation of newly transplanted hematopoietic cells [68]. These findings indicate the
possibility of colonization of the autograft by circulating hematopoietic progenitors after
elimination of its own hematopoietic lineages through necrosis. Such a scenario is all the
more likely given that migration of hematopoietic stem cells from the bone marrow to the
spleen in intact animals has been confirmed experimentally [69].

The spleen has a niche for hematopoietic stem cells, allegedly located in perivascular
spaces [70]. The niche comprises endothelial cells, PDGFRb+ mesenchymal cells, and
perivascular reticular cells of the red pulp which produce the stem cell factor (SCF) and
CXCL12 necessary for hematopoiesis [71]. Some of the perivascular reticular cells of the red
pulp also express Tcf21 and PDGFRb, thus being a unique Tcf21/PDGFRb/SCF/CXCL12
quadruple-positive cell type [72]. Stromal cells of the splenic hematopoietic niche are
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capable of myelopoiesis maintenance in vitro, as well as upon transplantation beneath the
renal capsule in NOD/SCID mice [68,73].

Despite the existence of the authentic splenic niche that supports proliferation and
differentiation of hematopoietic cells, determination of cellular sources for the splenic
autograft regeneration is still an issue. One study showed that splenic capsule of 3-day-old
mice transplanted allogeneically beneath the kidney capsule was able to induce genesis
of a spleen with histological structure indistinguishable from the normal mouse spleen.
Importantly, lymphocytes of the newly formed spleen were of the host origin [74]; the
same was true in transplantations of whole embryonic spleens [75]. Stromal cells of the
splenic capsule, which induced the heterotopic splenogenesis, exhibited the CD45+CD32
CD192CD11b2CD4+IL-7R+ hematopoietic lymphoid tissue inducer (LTi) phenotypes. Dy-
namic phenotyping of stromal cells isolated from splenic capsule in the course of postnatal
development revealed a specific capacity of CD31+MAdCAM-1+LTbR+ cells with the assis-
tance of lymphotoxin α1β2 (LT) signaling to induce the heterotopic splenogenesis [74,76].
These interesting findings are consistent with the higher regenerative capacity of splenic
autografts from younger animals observed in earlier studies. The authors demonstrated
that splenic capsules of >8-day-old animals failed to induce splenogenesis due to a sharp
decline of CD31+MAdCAM-1+LTbR+ cells [74,76]. Nevertheless, as splenic autografts of
mature animals regenerate well, the model may need a refinement.

Another potential cellular source of the splenic parenchyma in regenerating autologous
splenografts consists of their own low-differentiated cells that survive during the necrotic
phase. Some early findings suggested that the perivascular reticular cells may trans-
differentiate into hematopoietic cells [23,33].

The evidence presented in this section suggests that the heterotopic transplantations of
the spleen model is more complex for investigating splenic regeneration, but this approach
may be a promising method for alleviating post-splenectomy syndrome. The spleen
transplant is capable of properly clearing aging erythrocytes and bacteria and producing
antibodies. Although in the contemporary perspective this is ambiguous, it is important
to recognize the primacy of the hypothesis that autografts regenerate at the expense of
their own cells. A more convincing concept has yet to be developed. The proper functional
activity of the spleen certainly affects other organs of the abdominal cavity, and the issue of
this mutual influence will be considered in the next section of our review.

Table 2. Spleen regeneration after heterotopic transplantations.

Authors Animal, Autograft
Localization Regeneration Period The Effect of Autotransplantation

1. Manley and Marine [34,35] Rabbit, subcutaneous 80 days

2. Perla [36] Rat, abdomen wall 12–21 days

3. Calder and Scholar [33] Rat, mouse, omentum 30 days

4. Cameron and Rhee [23] Rat, mouse, omentum 60 days

5. Braga et al. [37] Rat, mesenterium 60 days

6. Han et al. [47] Rat, liver lobe 35 days

7. Han et al. [47] Rat, mesenterium 84 days

8. Miko et al. [52] Mouse, omentum 42 days

Clearance of senescent erythrocytes from the blood,
decreased platelet count and fibrinogen levels,

recovery of IgM levels, a numbers of the circulating
CD3+ T and CD19+ B cells remained reduced

9. Sipka et al. [53] Mouse, omentum Clearance of senescent erythrocytes from the blood,
decreased platelet count and fibrinogen levels

10. Patel et al. [57] Rat, omentum Anti-pneumococcal defense

11. Leemans et al. [40] Rat, omentum Spleen autotransplants improve humoral response
to pneumococcal capsular polysaccharides

12. Marques et al. [38,63] Rat, omentum Efficient clearance of E. coli and pneumococci

13. Teixeira [64] Mouse, retroperitoneum Production of high titers of S. aureus-specific IgM
and IgG1
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4. Splenic Influence on Repair Processes in the Liver

The immune system should be vigilant. Any minor failure in its functioning immedi-
ately affects the homeostasis, as exemplified by the post-splenectomy syndrome. Mean-
while, splenectomy is absolutely indicated in certain pathological conditions of the liver.
The close relationship between the two organs is reflected by the concept of hepatosplenic
axis (Figure 2) [77,78]. The apparent participation of the spleen in the regulation of hepatic
repair can be further redefined as the role of immunity in regeneration. Pioneering research
in this field was carried out by Anna G. Babaeva and her school [79–81].
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The spleen and the liver are anatomically connected via portal circulation and have
shared responsibilities (immune, barrier, metabolic, and hematopoietic). Clinical experience
shows that liver diseases often disrupt the normal splenic architecture [77,78]. At the same
time, splenectomy has a positive effect on hepatic repair, though its mechanisms remain
understudied [82,83].

Apart from experimental models, a significant portion of the evidence on the potential
splenic involvement was obtained in patients with liver cirrhosis. The disease is accompa-
nied by excessive production of extracellular matrix by the activated stellate cells (Ito cells)
of the liver [84,85]. The activation is triggered by multiple soluble factors, most prominently
TGFβ1 [85]. The elevated levels of pro-fibrotic TGFβ1, characteristic of hepatitis eventually
resolved in cirrhosis, may significantly depend on the increased production of this factor
by activated macrophages of the splenic red pulp. In a rat model of thioacetamide-induced
cirrhosis, splenectomy leads to a decrease in blood levels of TGFβ1, considered beneficial
for reparative processes in the damaged liver [86]. Consistent with these experimental find-
ings, immunohistochemical assessment of splenic tissues in patients with cirrhosis reveals
increased content of TGFβ1 and its colocalization with CD68+ cells (macrophages) [87].

The impact of splenectomy on macrophage and lymphocyte populations of the liver
in cirrhosis was emphasized in a number of studies. In a mouse model of concanavalin-
induced hepatitis and cirrhosis, splenectomy promotes polarization of liver macrophages
towards anti-inflammatory M2 phenotypes, which support the recovery [88]. In mice with
thioacetamide-induced cirrhosis, splenectomy reduces the degree of fibrotic lesions while
enhancing hepatocyte proliferation and augmenting the numbers of Ly-6C(lo) monocytes
and macrophages [89]. On the other hand, splenectomy in rats with induced cirrhosis allevi-
ates the damage, in particular, through increased production of TNFα by liver macrophages;
at that, the macrophage numbers remain unaltered [90]. It is noteworthy that in rats without



Life 2022, 12, 626 9 of 15

liver damage, the liver reacts to splenectomy by enhanced proliferation of hepatocytes.
Hepatic macrophages react as well: CD68+ cells increase in number, whereas the numbers
of CD206+ cells decrease, with concomitant enhancement of Il6, Il10, Tnfa, Hgf, and Nos2
expression in the liver [91].

The heavy-duty hepatosplenic circulation provides a permanent opportunity for the
transportation of splenic monocytes/macrophages to the liver. On systemic scale, the
spleen is viewed as a stock of monocytes to be released on demand for transportation and
deployment at inflammatory foci. This is true for a number of murine models, including
ischemic myocardial damage [92], ischemic brain damage [93], concussion spinal cord
injury [94], and muscular dystrophy in mice [95]. However, the effect may as well be disease-
specific; for instance, in a mouse model of lung carcinoma, the majority of monocytes arrive
to the tumor directly from the bone marrow, bypassing the spleen [96]. The arrival of
monocytes/macrophages to the liver in the aftermath of hepatotoxic damage or resection
has been demonstrated [97,98], albeit without clear specification of their source. In our
setting, intrasplenic injections of mesenchymal stromal cells (MSCs) labeled with a vital
dye PKH26 led to appearance of PKH26-positive CD68+ cells (macrophages) in the liver
24 h after the injections [99]. However, whether these are liver macrophages that have
engulfed the labeled MSCs arriving from the spleen, rather than splenic macrophages that
have engulfed MSCs on the spot before migrating to the liver, remains unknown.

Migration of monocytes from the spleen to the liver is disputable; for splenic lympho-
cytes, this route has been confirmed. In a murine model of cirrhosis, the spleen becomes
progressively depleted of CD4+ (helper) T lymphocytes, with a simultaneous increase in
the content of Th2 lymphocytes (thought to augment fibrosis) in the liver. Under these
circumstances splenectomy restores the Th1/Th2 balance and alleviates the fibrosis [100].
Apart from the lymphocytes arriving from the spleen, the liver harbors several minor lym-
phocyte subpopulations including γδT cells [101], NK cells [102,103], and NKT cells [104],
which exert modulatory effects on liver repair [105]. The impact of splenectomy on these
subpopulations remains unknown.

Splenectomy (splenectomized status) is also beneficial for regeneration of the liver
after massive resections. The majority of studies emphasize the elevated rates of hepa-
tocyte proliferation in splenectomized animals, although its mechanistic causes have to
be specified. The variants include (1) resolution of portal hypertension; (2) mitigation of
the damage to sinusoidal endothelium; (3) alleviation of the inflammatory side effects by
inhibiting the synthesis of pro-inflammatory cytokines, as well as the rates of macrophage
and neutrophil infiltration; and (4) hepatocyte apoptosis inhibition [77,106].

Splenectomy complementing 90% resections of the liver volume is accompanied
by decreased expression of multiple acute phase markers in the liver remnant and in-
creased expression of heme oxygenase-1 gene, considered beneficial for the repair [107].
Physical removal of the spleen abrogates the inflow of pro-inflammatory cytokines that
cause hepatocyte damage, as well as the proliferation blocker TGFβ1 [108–110]. These
conditions enhance the synthesis of HMOX1 in the liver, which inhibits the activity of
TNFα with a net cytoprotective effect on hepatocytes; moreover, the synthesis of TGFβ1
and its receptor TGFβ RII decreases, while the synthesis of HGF and its receptor c-met
increases [108,109,111,112]. Other studies argue that the beneficial effect may be due to
the withdrawal of IL10, which is a confirmed inhibitor of hepatocyte proliferation. IL10-
deficient mice exhibit higher rates of hepatocyte proliferation in response to resections
compared to ordinary animals. Partial hepatectomy promotes increased expression of IL10
not only in the liver, but also in the spleen; accordingly, splenectomy cuts off the inflow of
IL10 via portal vein [113]. A similar positive correlation between splenectomy and liver
repair is observed in liver transplantation models. The benefits include a decrease in portal
hypertension and alleviation of endothelial damage, apoptosis, and pro-inflammatory
cytokine synthesis [114].

On the other hand, some models question, and even disprove, the benefits of splenec-
tomy for liver repair. For instance, Babaeva et al. observed the opposite, inhibitory effect
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of splenectomy on the compensatory growth of the liver after resections. The strength of
the effect did not depend on the time lapse between the two interventions (splenectomy
followed by liver resection); [115]. At the same time, splenectomy promoted a significant
increase in the volume of intact liver through increased hepatocyte proliferation [115].

Contemporary studies on the role of immunity in regeneration involve model animals
depleted of particular lymphocyte populations. The data obtained in such models are often
controversial, which reflects the complexity of the regulatory mechanisms. In mice depleted
of T cells, resections of 70% liver volume have lower rates of necrotic complications than
in ordinary mice [116]. Similar results were obtained in a model of lipopolysaccharide-
induced hepatitis; animals depleted of T or B cells revealed lower degree of hepatotoxic
damage and better survival [117]. At the same time, the block of hepatocyte proliferation
in rats depleted of T cells or NK cells is accompanied by the lack of proliferative response
from hepatic oval cells, by contrast with the control animals, in which only the hepatocyte
proliferation remained blocked [118].

Other examples of lymphoid cell participation in repair processes include experiments
with adoptive transfer of lymphocytes from actively regenerating organs to the orthotopic
locations in non-operated syngeneic animals [115,119]. Upon the transfer, lymphocytes
retained their regeneration-supporting capacity to a degree depending on the organ, the
phase of repair, and the type (population) of the lymphocytes. Transfers of helper T cells had
the most pronounced effect [115,119]. The nature of regeneration-activating signals in this
case is obscure; possible transmitters are microRNA molecules contained in microvesicles
and exosomes secreted by lymphocytes and other cell types [120].

Thus, immune cells inside the liver, and some of those outside it, may influence
repair processes within the organ or its remnant. The impact can be either activating or
inhibiting; the latter is exerted by T killers, NK cells, and NKT cells. The stimulatory
effect of splenectomy on the hepatic recovery after various types of damage, as well as
the adoptive transfer of lymphocytes as the means for boosting liver repair, are subject
to further investigation. Overall, these results indicate that the liver and spleen actively
influence each other both at the level of cell migration and at the level of cytokine balance.

5. Conclusions

The spleen has been traditionally regarded an accessory immune organ. However,
this view is challenged by severe infectious and tumorigenic consequences of splenectomy.
Apart from its prominent role in immunogenesis, the spleen appears to control hepatic
repair, as has been confirmed in a number of experimental models. The spleen is also a
depot of monocytes, wherefrom they migrate to damaged organs. The problem of splenic
regeneration is of high clinical relevance; in this regard, the most important frontier is
splenic autografts. The possibility of heterotopic autologous transplantation of splenic
fragments has been comprehensively assessed in experimental models and a number of
clinical trials. The autografts successfully restore the normal splenic architecture of red
pulp and white pulp with the newly formed periarteriolar lymphoid sheaths and lymphoid
follicles. The issues still waiting to be explored include the extent of functional recovery
and stability of T and B lymphopoiesis, as well as cellular sources of de novo splenogenesis
in heterotopic autografts.
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