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A B S T R A C T   

Background: Clear cell renal cell carcinoma (ccRCC) is the most predominate pathological subtype of renal cell 
carcinoma, causing a recurrence or metastasis rate as high as 20% to 40% after operation, for which effective 
prognostic signature is urgently needed. 
Methods: The mRNA and miRNA profiles of ccRCC specimens were collected from the Cancer Genome Atlas. 
MiRNA-pair risk score (miPRS) for each miRNA pair was generated as a signature and validated by univariate 
and multivariate Cox proportional hazards regression analysis. Functional enrichment was performed, and im-
mune cells infiltration, as well as tumor mutation burden (TMB), and immunophenoscore (IPS) were evaluated 
between high and low miPRS groups. Target gene-prediction and differentially expressed gene-analysis were 
performed based on databases of miRDB, miRTarBase, and TargetScan. Multivariate Cox proportional hazards 
regression analysis was adopted to establish the prognostic model and Kaplan-Meier survival analysis was 
performed. 
Findings: A novel 10 miRNA-pair based signature was established. Area under the time-dependent receiver 
operating curve proved the performance of the signature in the training, validation, and testing cohorts. Higher 
TMB, as well as the higher CTLA4-negative PD1-negative IPS, were discovered in high miPRS patients. A 
prognostic model was built based on miPRS (1 year-, 5 year-, 10 year- ROC-AUC=0.92, 0.84, 0.82, respectively). 
Interpretation: The model based on miPRS is a novel and valid tool for predicting the prognosis of ccRCC. 
Funding: This study was supported by research grants from the China National Natural Scientific Foundation 
(81903972, 82002018, and 82170752) and Shanghai Sailing Program (19YF1406700 and 20YF1406000).   

Introduction 

Renal cell carcinoma (RCC) is one of the most lethal malignant tumor 
in urinary system, with a rising incidence and poor prognosis [1,2]. It 
was reported that the 5-year survival of RCC was 76% in the US [3]. 
However, the survival rate is highly dependent on the diagnosis stage, 
with a 5-year relative survival rate of 93% in stage I, 72.5% in stage II/III 

regional diseases, and only 12% in stage IV metastatic diseases [4]. 
Clear cell renal cell carcinoma (ccRCC) is the most predominate 

pathological subtype of RCC in approximately 80% of all cases [5,6]. 
Since there are no perceptible symptoms and signs in the early stage of 
ccRCC, more than one third of patients were found with distant metas-
tasis at the time of diagnosis [7]. As ccRCC is resistant to traditional 
radiotherapy and chemotherapy, and mRCC targeted therapy is 
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expensive, radical or partial nephrectomy have become the most com-
mon treatment for ccRCC [8–11]. Although ccRCC can be effectively 
resolved by surgical resection, the local recurrence or distant metastasis 
is still as high as 20% to 40% after operation [12]. Meanwhile, it is 
difficult to predict the outcome of patients accurately, despite a number 
of grading systems contributing to forming prognostic models, such as 
TNM staging system, Necrosis (SSIGN) Risk Score, Fuhrman grading and 
the University of California Los Angeles Integrated Staging System 

(UISS) [13–17]. Thus, it is crucial to screen out sensitive biomarkers and 
construct accurate prognosis models for early diagnosis and improve-
ment of prognosis. 

Recent studies suggest that a number of miRNAs are relevant to the 
development of ccRCC, including proliferation, invasion, migration, 
apoptosis, and carcinogenesis [18–20]. The aberrant expression of some 
miRNAs between ccRCC and the normal samples has been universally 
measured, presenting its value as marker in diagnosis, predicting 

Fig. 1. Work flow chart of the study.  
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prognosis, or potential therapeutic targets [21–23]. Nowadays, more 
and more studies applying gene and miRNA pairs risk signatures are 
used to predict the prognosis of different kinds of tumors [24–27]. 
However, due to the differences in testing or quantitative methods 
(miRNA-seq, microarray or qRT-PCR) and histological variations in 
study cohort, the effectiveness of miRNAs serving as prognosis bio-
markers is controversial in clinical practice. 

Although there are many ccRCC prognostic models based on tran-
scriptome study, there is still an urgent need to explore the disease from 
an overall perspective. MiRNA is an upstream regulatory factor con-
tained in limited numbers within the cell. Expression levels can reflect 
the overall state of the cell. We introduced the concept of miRNA pairs 
with the aim of constructing an unprecedented prognostic model of 
ccRCC that is widely generalized, robust, and stable. Inspired by the 
above observations, we tried to find a robust and novel model based on 
miRNA to predict the prognosis of ccRCC, which may provide new as-
pects for clinical treatment and pathological mechanism exploration of 
the disease. In the present study, we adopted the method of miRNA pair, 
and established a signature of ten miRNA pairs [28]. The miRNA-pair 
risk score (miPRS) was calculated and data of multiple -omics between 
high and low miPRS groups were compared, including gene expression, 
immune cell infiltration, tumor mutation burden, immunophenoscore, 
and drug sensitivity score. Our research has pioneering significance in 
the treatment and prognosis of ccRCC. 

Methods 

Work flow 

The work flow of the study was as Fig. 1 showed. 

Data collection and cohort partition 

The mRNA and miRNA profiles of 537 specimens of ccRCC were 
obtained from the database of “The Cancer Genome Atlas-Kidney Renal 
Clear Cell Carcinoma” (TCGA-KIRC, https://portal.gdc.cancer.gov/). A 
total of 512 specimens equipped with survival information and other 
clinical data were included in our study. The ratio of 6:4 was employed 
to divide the 512 samples into training cohort and validation cohort at 
random. Demographic baseline data is shown in Table 1. We also gained 
the variant aggregation and masking data of KIRC patients (n=336) 
from TCGA database (TCGA-KIRC, https://portal.gdc.cancer.gov/). 

The miRNA profile of 20 samples of ccRCC from GSE131959 were 
downloaded from Gene Expression Omnibus (GEO, https://www.ncbi. 
nlm.nih.gov/geo/), as well as the survival data and other clinical 
baseline features [29]. 

Intersection of miRNA from TCGA-KIRC and GSE131959 was per-
formed to construct the miRNA pairs and signature, which refers to the 
miRNAs equipped with -3p or -5p modification based on miRbase 
manually [30]. 

Signature construction and validation 

The expression levels of candidate miRNAs were compared in pairs 
to generate a score for each miRNA pair. If the expression level of the 
first miRNA in a certain sample was less than the second miRNA, the 
value of the pair in the sample was set to 0, otherwise the value was set 
to 1. Only miRNA pairs with a value of 1 in 20% to 80% of samples were 
included in the study [25,26]. Univariate Cox proportional hazards 
regression analysis was performed to explore the correlation between 
the miRNA pairs and the overall survival outcomes. In the training 
cohort, with the p-value set to 0.01, Least Absolute Shrinkage and Se-
lection Operator (LASSO) Cox regression analysis was performed to 
reduce the scale of miRNA pairs included in the signature. The best log 
(λ) was produced by 10 folds cross-validation. 

Based on the selected miRNA pairs, multivariate Cox proportional 

hazards regression analysis was performed with a backward stepwise 
regression. The selected miRNA pairs were considered as covariates and 
the overall survival states were regarded as the only outcome. Subse-
quently, the miRNA-pair risk score(miPRS) of each sample was calcu-
lated based on this signature. The cutoff of miPRS was determined by the 
highest point of the ROC curve of the TCGA training cohort, where the 
signature has the highest prognostic power according to the definition of 
the ROC curve. In addition, the same cutoff value to validate the model 
was used in the TCGA testing cohort and GEO validation cohort. Kaplan - 
Meier survival curve and time-dependent ROC curve were generated 
and both univariate and multivariate Cox proportional hazards regres-
sion analysis were performed. Overall survival state was regarded as the 
only outcome in all Cox proportional hazards regression analysis. 

Functional enrichment 

Gene Ontology (GO) database is a widely used ontology in the field of 
bioinformatics, which covers thousands of terms from three aspects of 
biology: Cellular Component (CC), Molecular Function (MF), and Bio-
logical Process (BP) [31]. Kyoto Encyclopedia of Genes and Genomes 
(KEGG) is a database used to understand the advanced functions and 
utility of biological systems [32]. Gene Set Enrichment Analysis (GSEA) 
is an analysis method for genome-wide expression profile chip data, 
which compares genes with predefined gene sets and analyzes gene 
expression profile data in order to understand their expression status in 
specific functional gene sets and their statistically significance [33]. 
"fgsea" package was used to perform the GSEA. The R package of 
"clusterProfiler" was applied to conduct GO and KEGG enrichment 

Table 1 
Demographic and baseline clinical features of the training, validation and 
testing cohorts.*  

Variables  Training 
Cohort N=307 

Validation 
Cohort N=205 

GEO Testing 
Cohort 
(GSE131959) 
N=20 

n(%)  n(%)  n(%)  

Age         
<65 204 

(66.45)  
119 
(58.05)  

12(60.00)   

>=65 103 
(33.55)  

86(41.95)  8(40.00)  

Gender         
male 200 

(65.15)  
113 
(55.12)  

/   

female 107 
(34.85)  

72(35.12)  /  

Grade         
G1 7(2.28)  6(2.93)  2(10.00)   
G2 136 

(44.30)  
79(38.54)  3(15.00)   

G3 110 
(35.83)  

91(44.39)  11(55.00)   

G4 48(15.64)  27(13.17)  4(20.00)   
GX 4(1.30)  1(0.49)  0   
unknown 2(0.65)  1(0.49)  0  

Stage         
Stage I 161 

(52.44)  
90(43.90)  20 

(100.00)   
Stage II 32(10.42)  22(10.73)  0   
Stage III 67(21.82)  55(26.83)  0   
Stage IV 45(14.66)  37(18.05)  0   
unknown 2(0.65)  1(0.49)  0  

Survival 
Status         

Alive 218 
(71.01)  

129 
(62.93)  

14(70.00)   

Dead 89(28.99)  76(37.07)  6(30.00)           

* 65 was chosen as the cutoff value of age based on previous literature 
[88–93]. 
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analysis with p-value filter set to 0.05 and q-value filter set to 1, after 
which "enrichplot" and "ggplot2" packages were employed to visualize 
the results of enrichment analysis by showing the enriched functions and 
pathways [34]. Additionally, miEAA (http://ccb-compute2.cs.uni- 
saarland.de/mieaa2/) was used for miRNA functional enrichment [35]. 

Immune cells infiltration evaluation 

CIBERSORT (A R script version) was applied to obtain the infiltration 
levels of 22 kinds of immune cells in the sample, including memory B 
cells, naive B cells, activated dendritic cells, resting dendritic cells, eo-
sinophils, macrophages M0, macrophages M1, macrophages M2, acti-
vated mast cells, resting mast cells, resting NK cells, plasma cells, 
activated memory CD4 T cells, naive CD4 T cells, resting memory CD4 T 
cells, monocytes, neutrophils, activated NK cells, CD8 T cells, T follicular 
helper cells, regulatory T cells (Tregs), and activated memory CD4 T 
cells, etc. [36]. We applied Wilcoxon signed-rank test to each type of 
immune cell to judge whether there was a significant difference in the 
infiltration level between high and low miPRS groups. The "fmsb" 
package was used to visualize the results in a radar chart. 

Tumor mutation burden (TMB) and immunophenoscore (IPS) 

The intersection of the patients with variant aggregation and mask-
ing data (n=336) and patients included in the training and validation 
cohorts (n=512) with survival data were used to conduct the TMB 
analysis (n=196). We used the “maftools” package to process the variant 
aggregation and masking data from TCGA, and the top 30 most signif-
icant mutated genes with different mutation categories were visualized 
by an onco-plot [37]. Next, the TMB of each sample was calculated, and 
four new groups (H-TMB&H-RISK, H-TMB&L-RISK, L-TMB&H-RISK, 
L-TMB&L-RISK) were generated after integration with the miPRS. 

IPS of TCGA-KIRC patients (n=533), z-scores from 0 to 10, were 
obtained from TCIA (the cancer-immune group atlas) (https://tcia.at/h 
ome), which contained the information of the two categories of 
immunogenicity-determining genes: CTLA-4 and PD-1. The IPS in high 
and low risk groups were then compared. The intersection of the patients 
with IPS data (n=533) and patients included in training and validation 
cohort (n=512) with survival data were used to conduct the IPS analysis 
(n=152). 

Target gene-prediction and differentially expressed gene-analysis 

We used the intersection of three distinguished databases: miRDB, 
miRTarBase, and TargetScan, to predict the downstream target genes of 
selected miRNA. Only genes identified in all three databases were 
considered as target genes [38–40]. Cytoscape was used to visualize the 
miRNA-mRNA network [41]. 

Differentially expressed genes between high (upper quantile) and 
low (lower quantile) miPRS were screened out with “limma” package (| 
log2Foldchange|≥1, adjusted P value<0.01) [42]. We then took the 
intersection of the downstream target genes and the DEGs to generate 
target-DEGs, and evaluate the target-DEGs’ prognostic value and cor-
relations with immune cells. 

Furthermore, we used the "ConsensusClusterPlus" package to classify 
genes using the k-means algorithm and euclidean to calculate the dis-
tance [43]. After clustering with the best number of clusters, we again 
compare the differences of OS and immune infiltration between the 
subgroups, as described above. 

Drug sensitivity evaluation 

Drug sensitivity data and gene expression profile of three widely- 
known databases, CellMiner (NCI-60), GDSC, and CCLE, were down-
loaded from their official websites [44–46]. 

CellMiner (NCI-60) is a database (https://discover.nci.nih.gov/ce 

llminer/home.do) that contains comparison of transcript expression 
levels of 22,217 genes, 360 microRNAs, and 18,549 compounds 
including 91 Food and Drug Administration (FDA)-approved drugs [47]. 
This database can be employed to explore transcript and drug patterns in 
the NCI-60 cell line set. The US National Cancer Institute 60 human 
tumor cell line (NCI-60) anticancer drug screen has been used for in vitro 
drug study of anticancer drug activity, genomic, molecular, and 
phenotypic data in order to replace the use of transplantable animal 
tumors in anticancer drug screening [48]. We downloaded tran-
scriptome sequencing data and drug susceptibility testing data of the 
NCI-60 cell line from the database, where the susceptibility of various 
cells to drugs is indicated by log10 (half maximal growth inhibition), 
abbreviated as log10 (GI50). 

The Genomics of Drug Sensitivity in Cancer (GDSC) database (www. 
cancerRxgene.org) is the largest public resource for information on drug 
sensitivity in cancer cells and molecular markers of drug response, in 
which data can be available for free [45]. GDSC database contains drug 
sensitivity information for 75000 experiments and response to 138 
anticancer drugs across 700 cancer cell lines [49]. The transcriptome 
sequencing data and drug susceptibility testing data were downloaded 
from the database, and the susceptibility of various cells to drugs is 
measured by half maximal inhibitory concentration, referred to as IC50. 

Cancer Cell Line Encyclopedia (CCLE) database (https://sites.broa 
dinstitute.org/ccle) is made up with a compilation of gene expression, 
chromosomal copy number, and massively parallel sequencing data 
from 947 human cancer cell lines [50]. The database provides identifi-
cation of genetic, lineage, and gene expression-based predictors of drug 
sensitivity in addition to pharmacologic profiles for 24 anticancer drugs 
across 479 of the cell lines [51]. The transcriptome sequencing data and 
drug susceptibility testing data are available from the database, and the 
susceptibility of various cells to drugs is represented by IC50. 

For CellMiner, we evaluate the correlation between target-DEGs and 
common chemotherapy drugs for ccRCC both in renal carcinoma cell 
lines and pan-cancer cell lines. For GDSC, we calculate the correlation 
between target-DEGs and common chemotherapy drugs for ccRCC in 
pan-cancer cell lines. For CCLE, ccRCC cell lines were selected to eval-
uate the correlation between target-DEGs and all of the 22 drugs in the 
database. 

Statistical analysis 

Signature construction and validation were mediated by the "sur-
vival", “glmnet”, "surviminer" etc., as described in previous studies [52]. 
Kaplan-Meier analysis and Log rank test were applied in survival anal-
ysis. Wilcoxon signed-rank test was used to compare the median value 
and Spearman correlation analysis was used to identify the relationship. 
The upper and lower quartiles of the risk score were applied when 
necessary. ROC-AUC, nomogram and calibrate curve were used for 
effectiveness assessment [53,54]. Analysis was done by R version 4.0.5 
(http://www.R-project.org/). Website tool hiplot (https://hiplot.com. 
cn/) and GEPIA (http://gepia.cancer-pku.cn/) were utilized when 
necessary [55]. 

Role of funders 

Shen Ziyan reviewed and revised the manuscript. Zhang Han served 
as scientific advisors and supervised data analysis. Zhang Xiaoyan and 
Ding Xiaoqiang were co-investigators and supervisors of the study. 

Results 

Signature construction and validation 

After intersection, a total of 168 miRNAs were adopted and 14028 
miRNA pairs were built, among which 508 were selected to construct the 
signature. Univariate Cox proportional hazards regression analysis was 
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conducted in the training cohort and 68 miRNA pairs related to the 
survival outcomes were screened out. By LASSO Cox regression analysis, 
the scale of miRNA pairs was reduced to 30 (Fig. 2a-b). Multivariate Cox 
proportional hazards regression analysis finally determined 10 miRNA 
pairs and their hazard ratios to constitute the signature (Fig. 2c), 
including hsa-miR-200b-3p | hsa-miR-342-3p, hsa-miR-215-5p | hsa- 
miR-223-3p, hsa-miR-139-5p | hsa-miR-193a-3p, hsa-miR-34c-5p | 
hsa-miR-431-5p, hsa-miR-148b-3p | hsa-miR-144-3p, hsa-miR-411-5p | 
hsa-miR-504-5p, hsa-miR-190a-5p | hsa-miR-454-3p, hsa-miR-330-5p | 
hsa-miR-130b-3p, hsa-miR-150-5p | hsa-miR-155-5p and hsa-miR-125a- 
3p | hsa-miR-183-5p. 

Based on signature, each of the 307 specimens in the training cohort 
was equipped with a miRNA-pair risk score (miPRS), after which the 
Kaplan-Meier survival analysis was used to demonstrate the difference 

of the survival outcomes between high and low miPRS groups with 1.4 
as a temporary cutoff value (Fig. 2d). Time-dependent ROC curve 
showed the Area Under Curve (AUC) of the 1-, 5-, and 10-year were 
0.81, 0.80 and 0.79 respectively (Fig. 2e). The contrast of demographic 
and baseline clinical features between high and low miPRS groups 
showed that, besides miPRS, gender, grade, and stage also have signif-
icant difference between the two groups (Table 2). 

In the validation process, the signature acquired by training cohort 
was applied to the validation cohort (n=205) to get the miPRS of each 
patient. With the cutoff value of 1.4, Kaplan-Meier survival analysis 
showed the different survival outcomes between high miPRS group 
(n=80) and low miPRS groups (n=125) (Fig. 2f), and 1.4 was considered 
as the best cutoff value to divide the cohort into high and low miPRS 
groups, which was regarded as the final best cutoff threshold. The Area 

Fig. 2. Signature construction and validation. (a-b) The Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analysis were carried out. (a) The 
coefficients of 68 miRNA pairs selected from univariate Cox proportional hazards regression analysis in the training cohort (n=307) vary in the penalized value. (b) 
The best log (λ) was determined by 10 folds cross-validation. (c) Multivariate Cox proportional hazards regression analysis filtered the pairs to 10 to construct the 
signature. (d) Kaplan-Meier survival analysis of training cohort (n=307) stratified by 1.4. (e) Time-dependent ROC curve of the training cohort (n=307). (f) Kaplan- 
Meier survival analysis of validation cohort (n=205) stratified by the best cut off value 1.4 of validation cohort (n=205). (g) Time-dependent ROC curve of the 
validation cohort (n=205) to evaluate the signature. 
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Under Curve (AUC) of the time-dependent ROC curve of 1-, 5-, and 10- 
year was 0.74, 0.72 and 0.71, respectively (Fig. 2g). 

Signature testing and evaluation 

By univariate and multivariate independent prognosis Cox regres-
sion analysis, miPRS was an independent factor influencing the survival 
outcomes in both training and validation cohort (Fig. 3a-d). Moreover, 
the signature was also applied to the GEO testing cohort (n=20), and 
stratified the specimens into high miPRS group (n=5), and low miPRS 
group (n=15) with cutoff value of 1.4. The Kaplan-Meier survival 
analysis presented obvious different survival consequences between the 
two groups (p=0.0045) (Fig. 3e), and both univariate and multivariate 
independent prognosis Cox regression analysis showed miPRS was an 
independent factor affecting OS (HR 2.519, 95%CI 1.076− 5.894, p- 
value = 0.033; HR 3.921, 95%CI 1.015− 15.142, p-value = 0.047) 
(Fig. 3f, g). 

Implementation of gene set enrichment analysis (GSEA) and immune cells 
infiltration evaluation 

We employed Gene Set Enrichment Analysis (GSEA) with GO gene 
set as reference gene set to find out the significant biological pathways 
between high and low miPRS groups. In the training cohort specimens 
were arranged in order of miPRSs. Samples with miPRSs of the highest 
25% (n=75) and the lowest 25% (n=75) were selected to carry out GSEA 
with p-value filter set to 0.05. A total of 34 pathways were found 
(Table S1), and pathways with the top 10 Normalized Enrichment Scores 
(NESs) were demonstrated in the bubble plot, including antigen binding, 
immunoglobulin complex, immunoglobulin receptor binding, etc. 
(Fig. 4a, Table S1). Partial GSEA results are shown in Fig. 4c. In addition 
to the validation cohort, specimens with miPRSs of the highest 25% 
(n=51) and lowest 25% (n=50) were selected to implement GSEA, and 
125 pathways were determined. The pathways with the highest 10 NESs, 
such as antigen binding, immune response by circulating immunoglob-
ulin, B cell mediated immunity, etc., are visualized in the bubble plot 
(Fig. 4b, Table S2). 

Then, CIBERSORT was employed to assess 22 types of immune cells 
infiltration. The difference of immune cell infiltration between high and 
low miPRS group in the training cohort are presented in the radar chart 
(Fig. 4e). The radar chart illustrated that infiltration of T cells regulatory 
(Tregs), Macrophages M0, and T cells CD4 memory activated were 
significantly upregulated in high miPRS group while dendritic cells 

resting was in contrast, which are intuitively presented through the box 
plots (Fig. 4d). Similar outcomes were confirmed in the validation 
cohort, whose radar chart and box plots turned out to be consistent with 
the training cohort (Fig. 4f, g). 

Tumor mutation burden (TMB) and immunophenoscore (IPS) 

Tumor Mutation Burden (TMB) analysis was conducted for 50 
specimens with the highest miPRSs and 50 specimens with the lowest 
miPRSs in the training cohort. The high miPRS group tended to have a 
higher TMB rate (median: 0.86 [95% CI: 0.64- 1.06] vs. 0.74[95% 
CL:0.50-1.01]) (Fig. 5d) and samples from two groups shared the same 
most common mutated genes, while the high miPRS group showed more 
missense mutation and less frame shift mutation rate of gene VHL than 
the low miPRS group. Furthermore, samples of the low miPRS group 
were inclined to display a higher mutation rate in gene PBRM1 (8% vs 
4% in high miPRS group), mainly in form of frame shift mutation 
(Fig. 5a, b). By Kaplan-Meier survival analysis, samples with both low 
miPRSs and low TMB had much better prognosis than those with both 
high miPRSs and high TMB (Fig. 5c). IPS analysis illustrated that the low 
miPRS group was prone to have higher IPSs than the high miPRS group 
in samples of both CTL4 and PD1 negative (Fig. 5e). 

miRNA Enrichment analysis and target gene prediction combined with 
differential expressed gene (DEG) analysis 

In order to clarify the detailed down-stream mechanism of the 
miRNAs in our signature, we conducted enrichment analysis onto the 20 
miRNAs involved in the 10-miRNA-pair signature, basing on miEEA 
database, and ascertained five pathways with significant relation to 
immune response and regulation, consisting of B cell differentiation, 
leukocyte migration, Ras protein signal transduction, receptor complex, 
and T cell receptor signaling pathway (Fig. 6a). To determine the target 
of the miRNAs, databases including miRDB, miRTarBase and TargetScan 
were employed to predict the target genes of the 20 miRNAs, and 621 
genes were consistent in all the databases. We then employed univariate 
Cox proportional hazards regression analysis to pick the 118 genes 
strongly correlating with survival prognosis to construct the ceRNA 
networks (Fig. 6b). 

Furthermore, samples with the highest and lowest 25% miPRSs in 
the training cohort (n=150) were used to conduct the Differential 
Expressed Gene (DEG) analysis and 839 DEGs were finally determined, 
which shared a 21-gene intersection with the target genes (Fig. 6c). 
Overall Survival (OS) and Disease-Free Survival (DFS) analysis were 
carried out on the 21 most important genes, consisting of FRMD3, 
MAPT, PANK1, RRAGD, CYB5A, KLF6, GRB10, EZR, KDR, PODXL, 
ZNF711, PLAU, GRIK3, RHOB, S1PR1, ENPP5, CD36, FLT1, EDN1, F3 
and PRUNE2, and most of the genes were confirmed to have higher 
expression levels in samples with better prognosis (Fig. 6d, Supple-
mentary Figs. 1, 2). 

Heatmap of correlation between 21 genes with 22 types of immune 
cells infiltration in Supplementary Fig. 3a demonstrated many of the 21 
genes had an obvious relationship with T cells regulatory (Tregs). 
Spearman Correlation Analysis were subsequently conducted between 
the 21 genes and T cells regulatory (Tregs). Three genes (KLF6, PANK1 
and RRAGD) that significantly and strongly correlated with T cells 
regulatory (Tregs) were screened out with |Spearman correlation coef-
ficient| > 0.4 and p-value <0.001 (Fig. 6e, Supplementary Fig. 3a). 

Drug sensitivity analysis 

In order to determine the relationship between the 21 genes and 
antitumor drugs from both ccRCC and pan-cancer cases, database 
including CCLE, CellMiner, and GDSC were used and the correlation 
coefficients were calculated through Spearman Correlation Analysis. In 
ccRCC cases, higher expression levels of gene RRADG, RGB10, and EZR 

Table 2 
Demographic and baseline clinical features between high and low miPRS 
groups*    

High miPRS N=153 n 
(%) 

Low miPRS N=154 n 
(%) 

p value 

Age  
<65 95(62.09) 109(70.78) 0.107  
>=65 58(37.91) 45(29.22) 

Gender  
male 109(71.24) 91(59.09) 0.0255  
female 44(28.76) 63(40.91) 

Grade  
G1~2 51(33.33) 92(59.74) <0.0001  
G3~4 100(65.36) 58(37.66)  
GX 2(1.31) 2(1.30)  

Stage  
Stage I~II 72(47.06) 121(78.57) <0.0001  
Stage 
III~IV 

80(52.29) 32(20.78)  

unknown 1(0.65) 1(0.65)  
Survival Status  

Alive 84(54.90) 134(87.01) <0.0001  
Dead 69(45.10) 20(12.99)  

* Specimens with grade or stage unknown were not included in the analysis. 
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tended to have a positive effect on certain antitumor drugs, such as ZD- 
6474, RAF265, Temsirolimus and Everolimus, and Panobisonstat was 
prone to be more sensitive to cases with more expression of RRAGD and 
ENPD5 (Fig. 7a, b). Of particular note is that gene FTL1 tended to have a 
positive impact on the all 8 types of drugs involved, which indicates an 
increase of drug sensitivity to pan-cancer specimens with higher 
expression levels of FTL1 (Fig. 7c, d). 

Differential expressed genes (DEGs) enrichment and clustering analysis 

To confirm the reliability of our signature, DEGs found in the above 
section 3.5 were applied to determine the clusters of the patients. First, 
GO and KEGG enrichment analysis impacted pathways strongly related 

to immune response and regulation like complement activation classical 
pathway, immunoglobulin complex and immunoglobulin receptor 
binding, etc., which were consistent with the above results (Fig. 8a). 
Univariate Cox proportional hazards regression analysis helped to select 
531 prognosis-related DEGs, based on gene clustering analysis and 3 
subgroups were determined (Fig. 8b, Supplementary Fig. 3b). Kaplan- 
Meier survival analysis illustrated a significant difference among the 3 
classes; class B had the best prognosis while class C had the worst 
(Fig. 8c). This could also be confirmed and explained by the boxplot in 
which specimens of class B had the highest miPRSs and class C had the 
lowest ones (Fig. 8d). Additionally, immune cells infiltration analysis 
also presented that class C had a higher infiltration level of T cells reg-
ulatory (Tregs) while class B had the least infiltration (Fig. 8e). 

Fig. 3. Signature validation and evaluation. (a) Univariate Cox regression analysis was conducted in the training cohort (n=307) to judge whether miPRS, age, 
gender, grade and stage are independent prognostic factors (b) Multivariate independent prognosis Cox regression analysis were conducted in the training cohort 
(n=307) to find out the judge whether miPRS, age, gender, grade and stage are independent prognostic factors. (c) Univariate independent prognosis Cox regression 
analysis of validation cohort (n=205). (d) Multivariate independent prognosis Cox regression analysis of validation cohort (n=205). (e) Kaplan-Meier survival 
analysis of GEO testing cohort (n=20) stratified by the signature. (f) Univariate independent prognosis Cox regression analysis of GEO testing cohort (n=20). (g) 
Multivariate independent prognosis Cox regression analysis of GEO testing cohort (n=20). 

Y. Wang et al.                                                                                                                                                                                                                                   



Translational Oncology 25 (2022) 101519

8

Generally, these studies verified the rationality and accuracy the miPRS. 

Signature reassessment combined with other clinical variates 

In order to better translate our signature into clinical application, we 
used multivariate Cox proportional hazards regression analysis to reas-
sess the signature by combining miPRS and other clinical variates 
including age, cancer grade, and stage (Fig. 9a). Kaplan-Meier survival 
analysis illustrated significant difference of prognosis between high and 
low risk group stratified by the signature combined with clinical variates 
both in the training and validation cohort (Fig. 9b, d). Furthermore, to 
evaluate the combined signature, time-dependent ROC curve was per-
formed, and the Area Under Curve (AUC) of the 1-, 5-, and 10-year 

presented 0.92, 0.84 and 0.82 in the training cohort and 0.76, 0.74 
and 0.72 in the validation cohort, higher than using miPRS signature 
only (Figs. 9c, e, 2e, h). Nomogram was employed to visualize the 
modified signature, in which all variates involved in the signature were 
quantified. Higher ages, grades, stages, and miPRSs contributed to lower 
total points, leading to poorer prognosis (Fig. 9f). Furthermore, the 
calibration curve demonstrated that when the actual survival rate was 
less than 20% or more than 80%, the signature tended to overestimate 
the risk while when survival rate was between 20% and 80% the 
conclusion was the opposite (Fig. 9g). 

Fig. 4. Functional enrichment analysis and immune cells infiltration evaluation. (a) Bubble chart of GO enrichment results of training cohort (n=150) from gene-set 
enrichment analysis (GSEA). (b) Bubble chart of GO enrichment results of validation cohort (n=101) from gene-set enrichment analysis (GSEA). (c) Partial outcomes 
of GSEA shared in training and validation cohort. (d) Partial results of immune cells infiltration evaluation between high and low miPRS in the training cohort 
(n=208). (e) Radar chart to evaluate infiltration of 22 types of immune cells between high and low miPRS in the training cohort (n=208). (f) Partial results of 
immune cells infiltration evaluation between high and low miPRS in the validation cohort (n=154). (g) Radar chart to evaluate infiltration of 22 types of immune 
cells between high and low miPRS in the validation cohort (n=154). 
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Discussion 

MicroRNAs (miRNAs) are small non-coding RNA with 18-24 nucle-
otides, which can act as regulators of mRNAs to perform multiple reg-
ulatory functions and are involved in various biological processes in the 
occurrence and metastasis of tumors [56,57]. Due to the significant 
biological functions of miRNA, more and more research demonstrated 
that miRNAs are effective prognostic markers for ccRCC. The aberrant 
expression of miR221 and miR32 can predict the mortality and the 
downregulation of miR-30a-5p is an indicator of metastatic dissemina-
tion as well as worse survival in ccRCC [58,59]. Recently, multiple 
prediction models utilizing miRNA have been published [60–62]. 
However, due to the discrepancy of sequencing platform and analyzing 
process, these models based on relatively-absolute quantity of miRNAs 
are not qualified to assess data from other studies. 

In this study, we introduced an evaluation system miPRS based on 

the comparison within miRNA pairs to predict the the survival of ccRCC 
for the first time in the world. This algorithm has better compatibility 
with data from different studies when analyzed with other conventional 
models. Our data demonstrated miPRS achieved impressive potency and 
was proven to be an independent coefficient in survival prediction 
within all training, validation, and testing cohorts (Fig. 2). Other than 
distinct survival status, patient groups with different miPRS also showed 
different intrinsic molecular characteristics. Additionally, the miPRS 
signature was also a prognostic factor independent from other clinical 
variates (Fig. 3). 

Transcriptional analysis revealed that low-miPRS group seemed to 
be immunocompetent individuals while patients with high-miPRS were 
immunocompromised. In low-risk group, more GO features concerning 
antigen presentation like antigen binding and immunoglobin complex 
were enriched (Fig. 4). However, activated dendritic cells (DCs) in both 
groups were low and there were even more resting DCs found in low-risk 

Fig. 5. Tumor Mutation Burden (TMB) analysis and immunophenoscore (IPS) analysis. (a) Heatmap of TMB of low miPRS (n=50). (b) Heatmap of TMB of high 
miPRS (n=50). (c) Kaplan-Meier survival analysis of TMB combined with miPRS in the training cohort (n=196). (d) TMB contrast between low and high miPRS 
(n=196). (e) IPS analysis between low and high miPRS in the training cohort (n=152). 
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Fig. 6. miRNA enrichment analysis and prediction and analysis of target genes of the miRNA signature. (a) Enrichment analysis of miRNA from the signature. (b) 
Network of target genes predicted from the miRNA signature. Differentially Expressed Gene (DEG) analysis between high and low miPRS in the training cohort 
(n=150). (c) Venn gram of DEGs and target genes. (d) OS and DFS Kaplan-Meier survival analysis (n=516) of partial survival related genes shared by DEGs and target 
genes. (e) Correlation profile (n=304) of T cells regulatory (Tregs) and survival related genes shared by DEGs and target genes. OS, Overall Survival; DFS, Disease- 
Free Survival. 
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group, indicating that the antigen presenting process within low-risk 
group was disturbed due to inept DCs [63]. As for high-miPRS group, 
there were far more Tregs within, correspondingly to the finding that 
there were less CTLA4- PD-1- IPS in high-risk group [64]. These results 
suggest two completely different treatment directions for low- and 
high-risk groups. Patients with the low miPRS might be good candidates 
for further study of DC-based immune therapy [27]. High-miPRS pa-
tients are more likely to benefit from immune checkpoint blockers or 
other therapies attempting to bypass the negative regulation of Tregs 
[64]. 

The difference between two groups was also reflected in genomic 
mutation. Though roughly analogous in genes mutated in two groups, 
low-miPRS group showed much higher frame shift mutation rate in the 
most commonly mutated genes VHL, and higher total mutation rate of 
PBRM1 (Fig. 5). VHL gene inactivation is the most common cancer 
driving event in ccRCC [65]. In low-miPRS group, more frame shift 
mutation might correspond with more impact on the structure and thus 
function of VHL. Low-miPRS group tends to acquire ccRCC at a younger 
age (p=0.107). PBRM1 is a subunit of the PBAF chromatin remodeling 

complex [66]. Its deficiency was discovered to display synthetic 
lethality with application of DNA repair inhibitors like PARPi and ATRi 
[67]. High-miPRS group also had higher TMB. Further, when we split 
each group according to their TMB respectively to create four new 
groups, survival analysis showed significant discrepancy among 4 
groups, with high-miPRS-high-TMB showing worst survival. Higher 
TMB has been found to be related with better response to immune 
therapy like ICBs, corresponding to our result derived from transcrip-
tional level analysis [68]. 

Next, the enrichment of miRNA showed that 20 miRNAs consisting 
miPRS mainly involved immune related biological processes like 
leukocyte migration, B cell differentiation, etc. Within 21 common genes 
of DEGs between two risk groups and downstream of 20 miRNAs, 4 
genes (MAPT, KDR, PANK1, FRMD3) are found significantly related 
with both OS and PFS and 3 genes (KLF6, PANK1, RRAGD) were 
correlated with infiltration of Tregs (Fig. 6). MAPT, or microtubule 
associated protein tau, has been reported to as promising biomarkers for 
the prediction of ccRCC, and knock-down of MAPT was found to in-
crease proliferation and invasion of ccRCC cells [69,70]. KDR or 

Fig. 7. Drug sensitivity analysis. (a) Heatmap of correlation coefficient profile between 21 genes and 22 types of drugs in ccRCC cell lines from CCLE. (b) Heatmap of 
correlation coefficient profile between 21 genes and 7 types of drugs in ccRCC cell lines from NCI-60 on CellMiner. (c) Heatmap of correlation coefficient profile 
between 21 genes and 7 types of drugs in pan-cancer cell lines from NCI-60 on CellMiner. (d) Heatmap of correlation coefficient profile between 21 genes and 8 types 
of drugs in pan-cancer cell lines from GDSC. 
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Fig. 8. DEGs functional enrichment and clustering analysis. (a) Functional enrichment of DEGs between high and low miPRS in the training cohort (n=150) from the 
respective of biological process, molecular function, cellular component and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. (b) DEG clustering analysis 
in the training cohort (n=304). (c) Kaplan-Meier survival analysis of training cohort (n=304) stratified by the gene clusters. (d) Contrast of miPRS between in-
dividuals from different gene clusters in the training cohort (n=304). (e) Evaluation of 22 immune cells infiltration between different gene clusters in the training 
cohort (n=208). 
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VEGFR2 were negatively correlated with survival of ccRCC [71] and 
multiple chemicals and mAbs have been proposed as promising treat-
ments in KDR altered patients [72–74]. PANK1 codes isotypes of 
pantothenate kinase associated neurodegeneration, of which the intron 
5 encodes a highly conserved microRNA. miR107 has been reported as 
an a tumor suppressor previously, analogous to finding to this article 
[75]. FRMD3 (4.1 protein ezrin, radixin, moesin [FERM] domain con-
taining 3) was broadly considered associated with diabetic nephropathy 
by genome wide association studies (GWAS) [76,77], but no publica-
tions have revealed its potential role in the pathogenesis of ccRCC, and 
deserves further research. KLF6 is a protective transcription factor in 
ccRCC that suppresses metastasis of ccRCC by activation of E2F1 [78]. 
However, activation of E2F1 was reported to increase CD39 and CD73 
on the surface Treg, leading to intensified Treg functions in hypoxic TME 
[79,80]. RRAGD, which has been identified as a tumor 
growth-promoting factor, is elevated when anti-oncogene FLCN (germ-
line mutations in the Folliculin) is mutated through the activation of 
TFE3/TFEB [81]. In the meanwhile, TFE3/TFEB could upregulate 

cytokines leading pathogen resistance [82]. 
Fig. 7 shows the drug sensitivity analysis of ccRCC to various anti-

tumor drugs. Previous studies have shown that sunitinib (a vascular 
endothelial growth factor receptor (VEGFR)-targeting biologic) is more 
potent than topotecan (a topoisomerase 1 toxicant and hypoxia- 
inducible factors 1α and 2α (HIFs) synthetic inhibitors) with stronger 
tumor-suppressive activity [83]. Another study claimed that when 
methylselenocysteine (MSC) was combined with sunitinib, topotecan, 
and S-1 (a 5-fluorouracil prodrug) durable drug responses would be 
obtained [84]. This synergy was proved to be associated with enhanced 
tumor vasculature stability, downregulation of 28 oncogenic miRNAs, 
and upregulation of 12 tumor suppressor miRNAs [85]. 

In DEG cluster analysis, we found that the high abundance of mac-
rophages M0 in class B shortened the overall survival of ccRCC patients, 
and the opposite was true in class A. Previous studies have demonstrated 
that immunosuppressive cells, such as M0 macrophages, are higher in 
high-risk ccRCC patients, while the proportion of active immune cells, 
including naive B cells, resting CD4 memory T cells, resting natural killer 

Fig. 9. Signature reassessment combined with other vital clinical characteristics. (a) Multivariate Cox proportional hazards regression analysis of miPRS, age, grade 
and stage. (b) Kaplan-Meier survival analysis of training cohort (n=299) stratified by median of risk score. (c) Time-dependent ROC curve of the training cohort 
(n=299). (d) Kaplan-Meier survival analysis of validation cohort (n=202). (e) Time-dependent ROC curve of the training cohort (n=202) to evaluate the signature. 
(f) Nomogram of the miPRS combined with other clinical characteristics. (g) Calibration Curve of the combined model. 
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(NK) cells were lower, indicating the presence of an immunosuppressive 
microenvironment [86,87]. 

Finally, we reconstructed a more clinically useful model using 
miPRS, age, gender, and stage, the four independent prognostic in-
dicators, and displayed the Nomogram. For each ccRCC patient, the 
corresponding risk score can be calculated through the four variables of 
miRPS, age, gender and tumor stage, and its corresponding 1-year, 3- 
year and 5-year survival probability can be found intuitively in the 
Nomogram. Furthermore, the robust performance of the model, 
compared with traditional clinical factors, shows a strong potential for 
clinical application. The predictive models based on miPRS and other 
clinical factors could serve as a promising tool for stratifying patients, 
thereby facilitating future ccRCC treatments. 

Although the performance of the model is very robust and stable, 
there are still some limitations that we cannot avoid in the present study. 
First, the biological mechanism of how the 20 miRNAs involved in the 
signature to regulate the occurrence and development of diseases re-
mains unanswered. Second, the disease progression-related pathways 
obtained by enrichment analysis still await evidence and interpretation 
from more omic data. Third, although most of the information is still 
retained, some miRNAs are inevitably lost when conducting intersection 
due to differences in the total number and nomenclature of miRNAs in 
various platforms. We are looking forward to witnessing the emergence 
of more unified and standardized miRNA platforms in the future. 

Conclusion 

In this study, we constructed and validated a high-potency prediction 
signature based on 10 miRNA pairs for ccRCC. Genomic, transcriptional 
and immune infiltration characteristics in patients with high or low 
miPRS were revealed, as well as tumor immune microenvironment and 
tumor immunogenicity, to clarify the significance of this prediction 
signature. Additionally, we also proposed potential therapeutic targets 
and agents for ccRCC with the signature by integrating multi-omics data. 
This study of the innovative miRNA signature sheds light on the pre-
diction and treatment of ccRCC to improve prognosis. 
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