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The huge amount of gene expression data generated bymicroarray and next-generation sequencing technologies present challenges
to exploit their biological meanings. When searching for the coexpression genes, the data mining process is largely affected by
selection of algorithms. Thus, it is highly desirable to provide multiple options of algorithms in the user-friendly analytical toolkit
to explore the gene expression signatures. For this purpose, we developed GESearch, an interactive graphical user interface (GUI)
toolkit, which is written in MATLAB and supports a variety of gene expression data files. This analytical toolkit provides four
models, including the mean, the regression, the delegate, and the ensemble models, to identify the coexpression genes, and enables
the users to filter data and to select gene expression patterns by browsing the display window or by importing knowledge-based
genes. Subsequently, the utility of this analytical toolkit is demonstrated by analyzing two sets of real-life microarray datasets from
cell-cycle experiments. Overall, we have developed an interactive GUI toolkit that allows for choosing multiple algorithms for
analyzing the gene expression signatures.

1. Introduction

High-throughput gene expression technologies, such as
microarray or RNA-seq, can rapidly generate expression pro-
files of a large number of transcripts at a time, which extract a
snapshot of global expression at a certain cellular state of sam-
ples [1, 2]. Such technologies are powerful for exploring the
genome-wide expression signatures of transcripts. However,
the efficient and effective methods in the context of analyzing
large expression datasets remain challenging.

To facilitate the data processing and mining, the orig-
inal dataset is commonly needed to be transformed into a
reduced-dimension matrix [3, 4]. Then, the unsupervised
clustering algorithms, mainly including hierarchical cluster-
ing,𝐾-means clustering, and self-organizing neural network
(SOM), are widely employed to interpret the expression data
[5–7]. Since formats of expression data vary greatly, clustering

algorithms generally require to reformat the original data,
which might cause loss of useful information [8, 9]. During
clustering analysis, it is hard to determine the number of
categories. A small number of categories tend to merge the
unrelated groups into one category. On the contrary, a large
number of categories lead to separating the related members
into different categories [8, 9]. Therefore, clustering algo-
rithms might be helpful in understanding the global profiles
of gene expression but might not be suitable for identifying
coexpression genes with defined expression signatures.

Identifying the gene expression signatures (or molecular
signatures) is critical in different biological studies, such as
studies on cancer [10, 11], on cell growth and differentiation
[12], and on disease diagnose [13, 14].The group of genes with
similar expression profiles in response to internal or external
factors could further be used to model biologically relevant
networks, which were essential for better understanding the
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underlying molecular mechanisms [15, 16]. For instance,
Pujana et al. constructed a network relevant to breast cancer
by integrating the gene coexpression signatures with func-
tional genomics data and by using prior known information
of tumor suppressors [17]. More recently, Aijo et al. pro-
posed methods based on nonparametric Gaussian process to
characterize the time-course RNA-seq data and to determine
temporally correlated genes during human T helper 17 cell
differentiation [18]. More andmore attentions have been paid
to the extracting gene expression signatures, and there are
several public databases, such as gene expression omnibus
(GEO) [19, 20], molecular signatures database (MSigDB)
[21, 22], and gene signatures database (GeneSigDB) [23], that
provide useful platforms for analyzing the gene networks
[19, 21–23].There are also several public servers, such as Cell-
Montage, CRCView, and FARO, that allownovel and content-
based search for identifying gene expression signatures [24–
26].The efficient approaches for candidates identification and
for functional analysis will allow developing new applicable
biomarkers, as well as facilitating the understanding of bio-
logical processes. To date, several computing packages have
been developed for identifying gene expression signatures
based on similarity searching. For instance, Fujibuchi et al.
defined the periodically expressed genes in different cell-
cycle phases by using the sine and cosine vectors [27];
and Xiang et al. designed a method that queried data
repositories based on gene expression patterns rather than
textual annotations on gene expression omnibus (GEO) [28].
However, it is still challenging to identify meaningful groups
of coexpressed genes in many biological scenarios. Different
clustering algorithms might produce outputs of genes with
distinctly different functions. So it is of great importance
to provide a user-friendly platform allowing selecting and
comparing of different algorithms and models for biologists.
Also the capability of inputting priori knowledge is helpful
for functional analysis of specific biological pathways.

In this study, we report an interactive GUI-based package
written in Matlab, GEsearch, which can be easily used by
click-and-pick. This package enables us to filter the input
data, to import the prior knowledge for specific group
of genes or expression profiles, and to choose different
searching models. Another feature of this package is that
the output of coexpression genes can be grouped based on
expression abundance and be transferred or visualized for
further analysis. We subsequently tested the feasibility of this
package by using two independent gene expression datasets
from cell-cycle experiments. The results showed that this
package is not only efficient to find periodically expressed
genes in different cell-cycle phases but also highly capable of
predicting the downstream coexpressed genes regulated by
a cell-cycle specific transcription factor. Taken together, this
package is a useful analytical toolkit for dealing with large-
scale gene expression datasets in functional genomic studies.

2. Methods and Implementation

The GEsearch package was implemented in MATLAB. Users
without access to the MATLAB need to use the MATLAB

Runtime Compiler (MRC) for deploying the package. The
GEsearch allows users to filter the input data and to select
appropriate algorithms. Then, users can select the number
of displaying genes within a window to browse the candi-
dates (Figure 1(a)). Also, users can import expression data
with prior knowledge to identify the coexpressed genes
(Figure 1(a)). The package and user manual can be found on
the webpage (http://115.29.234.170/software/).

2.1. Data Filtering and Preprocessing. Some gene expression
profiles might not meet for the variation requirement (e.g.,
all-zero expression) and thus could not provide meaningful
“signature” information. Such data would be eliminated in
the analyzing process. To filter the input data, genes with
small variations can be removed by selecting an appropriate
threshold as described by the following formula (Figure 1(b)):
𝑦
𝑖𝜎
= √(1/𝑁)∑𝑁

𝑗=1 (𝑦𝑖𝑗 − 𝜇𝑖)
2, where 𝑦

𝑖𝑗
stands for the value

of row 𝑖, column 𝑗 in the gene expression dataset,𝜇
𝑖
represents

the mean value of row 𝑖,𝑁 is the number of columns, and 𝑦
𝑖𝜎

is the standard deviation for data in row 𝑖.The range of values
in row 𝑖 is determined by formula: Δ

𝑖
= max(𝑦

𝑖
) − min(𝑦

𝑖
),

where max(𝑦
𝑖
) is the maximum value of data in row 𝑖 and

min(𝑦
𝑖
) is the minimal value of data in row 𝑖. If Δ

𝑖
< 𝑇, the

record will be removed in data analysis. In the established
toolkit, a scrolling bar provides the threshold information
for data filtering (Figure 1(b)), and 𝑇 threshold for filtering
is defined by the value from slider selection (Figure 1(b)).

2.2. Selections of Models

2.2.1. The Mean Model. One has 𝑦 = (∑
𝑘

𝑖=1 𝑦𝑖)/𝑘, where 𝑘
stands for the number of selected genes, 𝑦

𝑖
is the expression

level of gene 𝑖, and 𝑦 represents the mean value of selected
genes. The mean model is suitable for analyzing datasets
with more uncertain prior knowledge, which calculates the
average gene expression level. With this model, the similarity
is strengthened by suppressing the Gaussian noise.

2.2.2.The RegressionModel. The regressionmodel developed
a scale-independent algorithm to fix the flaw of strong
noise in the mean model. A nonlinear regression model is
derived from the linear regression model through regression
transformation listed as follows:

𝑦
𝑖
= 𝛽0 +𝛽1𝑥1 +𝛽2𝑥2 + ⋅ ⋅ ⋅ + 𝛽𝑝𝑥𝑝 + 𝜀𝑖,
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Figure 1:The input interface of GESearch. (a)Themainwindow of GESearch, popping-upwindows describe the utilities of software. Detailed
manual is available at http://115.29.234.170/software/. (b) Panel for data filtering, (c) panel for selecting the searching models, and (d) panel
for setting up parameters in GESearch package.
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Calculate the coefficients of regression equation:

𝑏 = 𝐴
−1
𝐵 = (𝑋

𝑇
𝑋)
−1
𝑋
󸀠
𝑌. (3)

The regression model is suitable for datasets with gradient
changes among sampling points, for example, time-series
datasets.

2.2.3. The Delegate Model. The delegate model selects a
“delegate” based on a group of records. The delegate model
can enhance the scale-independence ability. In many cases,
the gene expression level varies greatly.This model is suitable
for analyzing expression datasets with dramatic variation
ranges.

Therefore 𝑦 = max(max(𝑦
𝑖
) − min(𝑦

𝑖
)), where max(𝑦

𝑖
)

and min(𝑦
𝑖
) stand for maximal and minimal values of

selected genes, respectively, and the one with maximal range
value was chosen as delegate.

2.2.4. The Ensemble Model. The ensemble model mixes the
above three models to give the user a balanced solution for
both accurate matching and general searching.The best opti-
mization of this algorithm is to deliver a best-effort matching
of all possible results. The ensemble model is developed for
the flexible identification of candidates. For each record, this
model extracts multiple signatures for similarity searching,
which can provide more information for the final results.
Comparing to the methods using single signature, ensemble
model can be more efficient and accurate.

Therefore 𝑦 = 𝑈𝑅(𝑦
𝑖
) 𝑖 = 1 ⋅ ⋅ ⋅ 𝑘, where 𝑘 stands for

the number of selected genes, 𝑈 stands for the total searched
genes after removing redundancy, and 𝑅(𝑦

𝑖
) stands for the

results by using gene 𝑖.

2.3. Multiple Rounds of Click-and-Pick Search. Users can
start selecting genes of interest by randomly browsing the
displayed genes. On the interface, options for the numbers
of genes are provided. According to the size of the screen
and the data, pop-up window allows user to pick an option
from 6 × 6, 8 × 8, and 10 × 10 displaying genes (Figure 1(d)).
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Figure 2: The main output interfaces of GESearch. (a) Popping-up windows display the utilities of output. (b) In “separate” model, results
are split. (c) Heat map displays the final results.

At the same time, users are allowed to select the number of
candidates for identifying coexpression genes (Figure 1(d)). If
a subset of candidates is already identified, a pop-up window
for importing priori knowledge will initialize the input of the
designated gene group.

2.4. Characterization and Exportation of the Output Genes.
There are four options of models, including the mean, the
regression, the delegate, and the ensemblemodels, that can be
selected for identifying the coexpressed genes (Figure 1(c)).
After model selection, users can define the threshold of
output data by scrolling the correlation 𝑝 value. In the

output panel, numbers of identified genes with correlation 𝑝
values are shown (Figure 2(a)). After optimizing the output
parameters, the results can be exported into a text file
by selecting the “export data” button (Figure 2(a)). In the
output window, the final results can be visualized into
three separated panels according to expression abundance
(Figure 2(a)). By selecting the “separate” button, the output
data will be deposited in three files according to expression
abundance. To better display the outputs, red color is used to
highlight the highly expressed genes, and blue color is used
to highlight the low expressed genes in the displayingwindow
(Figure 2(b)). Furthermore, each output of genes can be easily
visualized by the heat map (Figure 2(c)).
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(a) (b)

Figure 3: An example of random selecting gene profiles of interest. (a) Display the input data before searching. (b) Resulting panel after
selection and search.

3. The Utility of GEsearch

For initial exploration of gene expression dataset, a random
selecting and searching approach can be efficient to identify
genes of interest. For example, we developed an in-house
RNA-seq dataset containing over 90,000 transcripts (derived
from de novo assembly), with 8 time points. After randomly
picked profiles of interest, GESearch found a group of 304
coexpressed genes with highly similar expression patterns
(Figure 3). This approach is efficient and straightforward for
small or moderate scale datasets in which gene expression
signatures can be easily detected and visualized. To examine
the feasibility of GESearch, we retrieved and analyzed two
large gene expression datasets from human and yeast cell-
cycle studies.

3.1. An Example of Using Priori Knowledge. In this example,
we selected the human Hela cell-cycle dataset to test the
feasibilities of this package [27]. Previous studies have
shown that there were specified marker genes representing
phases of cell cycle, so we chose a subset of the dataset
containing 118 time points and used 20 cell-cycle marker
genes representing G1/S, S, G2, G2/M, and M/G1 as priori
knowledge to search for the coexpressed periodic genes
(http://genome-www.stanford.edu/Human-CellCycle/Hela/
data/). This dataset also contained 42920 transcript IDs in
which the periodic patterns were not easily seen. In this
case, the use of prior known genes was essential for the
identification of coexpression genes with defined expression
signatures. By using the mean model and default filtering
parameter (𝑝 value threshold < 0.67), the searching process
identified five groups of genes which had very similar
periodic expression patterns (Figure 4(a)). The final results
were visualized by a heat map chart (Figure 4(a)). To further
evaluate the accuracy of the output results, the mean values
of each group were plotted together and the expected
progression of cell-cycle phases was evident (Figure 4(b)).
As a result, this example addressed a complex dataset by
using priori knowledge, and the resulting groups of genes
were ready for further functional analysis.

3.2. Identification of Downstream Targets of a Transcription
Factor. Another useful application of coexpression analysis
is to identify potential downstream targets for transcription
factors, such as in yeast. The yeast cell-cycle data are from
website (http://genome-www.stanford.edu/cellcycle/data/ra-
wdata/) [29], which contains 6187 genes and 18 samples. We
select yeast cell-cycle transcription factors MBF (YNL309W)
as priori knowledge. Analyzed with GESearch, 74 genes were
detected to have the similar expression pattern (results are
not shown), among which YGR109C, YHR153C, YPL256C,
and YGR221C had been proved to be the targets of MBF,
and participating the regulation of cell cycle [30]. Contrast
to this study, it was reported that there were 41 downstream
targets of YNL309W (http://www.yeastract.com/), and four
of them, including YGR109C, YOR372C, YGR221C, and
YPL256C, were cell-cycle target genes (Figure 5(a)) [30, 31].
Compare these two studies; it was notable that YOR372C was
not detected by GESearch. A detail check showed that the
expression pattern of YOR372C shifted and peaked about 3-4
hours earlier than that ofMBF (Figure 5(b)).This observation
showed that YOR372C did not coexpress with MBF and
explained why it was not detected by GESearch. It was
also noteworthy that our search engine detected a new cell-
cycle gene (YHRL153C) in the coexpression group of MBF
(Figure 5(a)), which encoded the G1 cycling activating G1
to S phase transition, and its expression level was regulated
by MBF complex [31, 32]. This example confirmed that the
GESearch package was efficient in finding coexpression genes
as well as in predicting the target genes of transcription factor.

4. Conclusions and Discussion

The design of this package follows the logic that gene
expression profiles contain biologically relevant signatures;
gene expression signatures are predictable and complement
for understanding biological processes. And these notions
have been extensively investigated by studies on cancer. For
example, gene expression analysis of microarray data has
played pivotal roles in breast cancer classification, prognos-
tication, and prediction [33, 34]. It was noteworthy that
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Figure 4: Results of using priori knowledge of cell-cycle marks in human Hela cell data. (a) Heat map displays the searching results. (b)
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Figure 5: Coexpression analysis of yeast cell-cycle transcription factor YNL309W. (a) GESearch detected four cell-cycle target genes,
including the known targets of YGR109C, YPL256C, and YGR221C, and the newly detected YHR153C. (b) The target gene of YOR372C
was in shifted expression profiles, which was not detected by GESearch, but was identified by the time delay analysis.

gene expression signatures based predictions were severely
affected by themeasuringmethods and selected datasets [34].
To obtain reliable and repeatable results from gene signatures
extraction, multiple choices and comparisons of algorithms
are essential.

GESearch provided a comprehensivemeaning for finding
coexpression genes set of interest, and its multiple choices
of searching models allowed rapid identification, regardless
of dependent variables. Moreover, this analytical platform
is user friendly. As shown previously, the output datasets
from cell-cycle experiments were ready for visualization
(Figure 2). With the availability of functional information,
output datasets could be transformed to be adopted for
the functional enrichment tools [35]. GESearch was not

only limited to coexpression analysis [36] but also useful
for identifying the downstream candidates. Although the
time delay analysis was successful for target prediction, the
resolution of sampling affected the outcomes of expression
signatures due to the specific interaction of transcription
factors [37]. It needs further investigations on the defined co-
and shift-expressed genes to find the true downstream targets
of a transcription factor.

In conclusion, GESearch provides an interactive platform
for exploiting the large-scale gene expression datasets. Its
choice of multiple models is more users friendly for identi-
fying the coexpressed genes, and its options for data output
and visualization provide an efficient way to integrate data,
which can help the further analyses.
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[23] A. C. Culhane, M. S. Schröder, R. Sultana et al., “GeneSigDB:
a manually curated database and resource for analysis of gene
expression signatures,”Nucleic Acids Research, vol. 40, no. 1, pp.
D1060–D1066, 2012.

[24] M. P. Manijak and H. B. Nielsen, “FARO server: meta-analysis
of gene expression by matching gene expression signatures to
a compendium of public gene expression data,” BMC Research
Notes, vol. 4, article 181, 2011.

[25] M. L.Whitfield, G. Sherlock, A. J. Saldanha et al., “Identification
of genes periodically expressed in the human cell cycle and their
expression in tumors,”Molecular Biology of the Cell, vol. 13, no.
6, pp. 1977–2000, 2002.

[26] J. M. Engreitz, A. A. Morgan, J. T. Dudley et al., “Content-based
microarray search using differential expression profiles,” BMC
Bioinformatics, vol. 11, article 603, 2010.



8 BioMed Research International

[27] W. Fujibuchi, L. Kiseleva, T. Taniguchi, H. Harada, and P.
Horton, “CellMontage: similar expression profile search server,”
Bioinformatics, vol. 23, no. 22, pp. 3103–3104, 2007.

[28] Z. Xiang, Z. S. Qin, and Y. He, “CRCView: a web server
for analyzing and visualizing microarray gene expression data
using model-based clustering,” Bioinformatics, vol. 23, no. 14,
pp. 1843–1845, 2007.

[29] P. T. Spellman, G. Sherlock, M. Q. Zhang et al., “Comprehensive
identification of cell cycle-regulated genes of the yeast Sac-
charomyces cerevisiae by microarray hybridization,” Molecular
Biology of the Cell, vol. 9, no. 12, pp. 3273–3297, 1998.

[30] J. A. Ubersax, E. L.Woodbury, P. N. Quang et al., “Targets of the
cyclin-dependent kinase Cdk1,” Nature, vol. 425, no. 6960, pp.
859–864, 2003.

[31] R. A. M. de Bruin, T. I. Kalashnikova, and C. Wittenberg, “Stb1
collaborates with other regulators to modulate the G1-specific
transcriptional circuit,”Molecular and Cellular Biology, vol. 28,
no. 22, pp. 6919–6928, 2008.

[32] S. Takahata, Y. Yu, and D. J. Stillman, “The E2F functional
analogue SBF recruits the Rpd3(L) HDAC, via Whi5 and
Stb1, and the FACT chromatin reorganizer, to yeast G1 cyclin
promoters,” The EMBO Journal, vol. 28, no. 21, pp. 3378–3389,
2009.

[33] P.-E. Colombo, F. Milanezi, B. Weigelt, and J. S. Reis-Filho,
“Microarrays in the 2010s: the contribution of microarray-
based gene expression profiling to breast cancer classification,
prognostication and prediction,” Breast Cancer Research, vol. 13,
no. 3, article 212, 2011.

[34] L. Ein-Dor, I. Kela, G.Getz, D.Givol, and E.Domany, “Outcome
signature genes in breast cancer: is there a unique set?”
Bioinformatics, vol. 21, no. 2, pp. 171–178, 2005.

[35] The Gene Ontology Consortium, “Gene ontology consortium:
going forward,”Nucleic Acids Research, vol. 43, no. 1, pp. D1049–
D1056, 2015.

[36] S. J. Kiddle, O. P. F.Windram, S.McHattie et al., “Temporal clus-
tering by affinity propagation reveals transcriptionalmodules in
Arabidopsis thaliana,” Bioinformatics, vol. 26, no. 3, Article ID
btp673, pp. 355–362, 2009.

[37] Y. Shi, T. Mitchell, and Z. Bar-Joseph, “Inferring pairwise
regulatory relationships from multiple time series datasets,”
Bioinformatics, vol. 23, no. 6, pp. 755–763, 2007.


