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Systematic in vivo evaluation of 
the time-dependent inflammatory 
response to steel and Teflon insulin 
infusion catheters
Jasmin R. Hauzenberger1, Julia Münzker1, Petra Kotzbeck1, Martin Asslaber2, Vladimir 
Bubalo3, Jeffrey I Joseph4 & Thomas R. Pieber1

Continuous subcutaneous insulin infusion (CSII) catheters are considered the weak link of insulin 
pump therapy. Wear-time considerably varies between patients and the choice of catheter material 
is based on personal preferences rather than scientific facts. Therefore, we systematically assessed 
and quantified the inflammatory tissue response to steel versus Teflon CSII catheters over a maximum 
wear-time of 7 days in swine. Tissue surrounding catheters was analysed using histopathology and 
quantitative real-time PCR. The area of inflammation increased significantly over time independent 
of material which was confirmed by an increase in CD68 expression and an increase in mononuclear 
and neutrophil cell infiltrate around the catheters. We observed substantially higher fibrin deposition 
(p < 0.05) around steel on day 4 of wear-time. IL-6 gene expression increased within 24 hours after 
insertion, returned to normal levels around Teflon (p < 0.05) but remained high around steel (p < 0.05). 
IL-10 and TGF-β levels did not resolve over time, indicating impaired wound healing. In conclusion, 
there was a major temporal effect in the acute inflammatory response to CSII catheters but we found 
little difference between materials. This study setup presents a robust tool for the systematic analysis of 
the tissue response to CSII catheters.

Continuous subcutaneous insulin infusion (CSII) catheters are the most crucial part of insulin pump therapy 
for insulin dependent patients1–5. They have been on the market since the late 1980s and are manufactured with 
both Teflon (polytetrafluoroethylene) and steel cannulas6,7. The choice of one material over the other is largely 
based on the patient’s personal preference, his or her endocrinologist’s or diabetes educator’s opinion and therapy 
costs8–10. There is a trend in both the United States and Europe towards using Teflon sets (90% and 75%, respec-
tively) but approximately 40 to 45% of pump users in Germany use steel catheters4,8,11. Compared to Teflon, steel 
catheters are easier to insert and are less prone to kinking, and can be worn by patients allergic to Teflon. Patients 
using steel catheters report better metabolic control, less variable insulin absorption and less unexplained hyper-
glycemia8,12. However, especially during exercise, steel may cause discomfort and the softer and more flexible 
Teflon catheter is assumed to be more comfortable to wear8,13,14. The wear-time of the CSII catheter considerably 
varies between patients (from 2 to 10 days), although recommendations for the optimal frequency of changing 
an insulin infusion set (2 days for steel and 3 days for Teflon) exist3,9,15. Independent of material, the introduction 
of a cannula into the subcutaneous adipose tissue elicits an inflammatory response. The degree of inflammation 
and tissue response, however, depends on the cannula material properties, including stiffness or rigidity, sur-
face nanostructure and the cannula shape, e.g. presence of a sharp tip16–18. Interestingly, most studies on CSII 
catheter tolerability, complications and wear-time are based on patient questionnaires and are thus assessing 
mainly subjective data2,3,15,19,20. Studies are lacking that assess the inflammatory tissue response as determinant 
on material-tolerability and optimal wear-time of CSII catheters in order to scientifically underline the choice of 
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one material over the other. To close this gap, we systematically evaluated the inflammatory subcutaneous adipose 
tissue response to the steel and Teflon cannulas of commercially available CSII catheters over 7 days of wear-time.

Research Design and Methods
All animal experiments were performed according to Austrian law and ethical regulations. The animal study 
including 10 female farm swine (sus scrofa domesticus) was approved by the Austrian Federal Ministry of Science, 
Research and Economy and performed in consent with Directive 2010/63/EU on the protection of animals used 
for scientific purposes (BMWFW Gz).

Animal Care.  The animals arrived at the animal facility (Institute for Biomedical Research, Medical University 
of Graz, Austria) 7–10 days prior to the first study day for acclimatisation. Animals were housed in groups of 2 
per corral before study start and separately after insertion of the first catheters. The corral size provided at least 
2.5 m² per animal and was equipped with enrichment devices (bale of straw, balls and rubber rings). The animals’ 
well-being, health condition and the catheter sites were checked regularly.

CSII Catheters.  We used 2 different commercially available CSII catheters (Medtronic MiniMed, Northridge, 
CA). A CSII catheter consists of a plastic hub or connector which is attached to the skin via an adhesive, and 
a cannula that is inserted into the subcutaneous adipose tissue. For insulin infusion an insulin pump can be 
connected to the hub via plastic tubing and insulin will be delivered into the subcutaneous tissue through the 
cannula. The Medtronic MiniMed™ Sure-T™ insulin infusion set has a 6 mm 29 gauge steel cannula with a sharp, 
slanted bevel tip to allow manual insertion. The Medtronic MiniMed™ Quick-set™ has a 6 mm 25 gauge Teflon 
cannula with a blunt end and is introduced into the subcutaneous tissue via a 27 gauge introducer steel needle 
with sharp tip. After insertion, the introducer needle is removed and discarded.

Insertion of Catheters.  The study duration was 8 days. On days 1, 4 and 7, catheters were inserted to assess 
wear-time of 7 days (insertion on day 1), 4 days (insertion on day 4) and 1 day (insertion on day 7) in the same 
animal (Table 1). On day 1 of the study (wear-time = 7 days), swine were anesthetised and shaved on the back and 
the flanks. Skin was washed with soap and water, disinfected and covered with a layer of clear medical adhesive, 
to ensure better adhesion of the catheters and avoid loss of catheters due to movement or friction. Four catheters 
were implanted (2 Sure T™, 6 mm steel and 2 Quick-set™, 6 mm Teflon). An insulin pump (Medtronic MiniMed 
Paradigm™) containing a saline filled reservoir was connected to each hub of the Quick-sets directly after inser-
tion. A bolus of 3–4 units (30–40 µl) of saline was infused to ensure that none of the catheters had kinked during 
insertion. In case of kinking, pressure in the cannula increases and the insulin pump produces an occlusion 
alarm. After ensuring that the cannulas had been properly inserted into the tissue, the tubing was disconnected, 
the hub closed with a cap and covered with a small piece of medical gauze. Another layer of medical adhesive was 
applied, followed by Kinesiology tape to firmly secure the catheters and hold them in place over the duration of 
the study. A stockinet was pulled over the animals and 4 holes cut out for the legs. Sharp edges were padded with 
cotton. On days 4 (wear-time = 4 days) and 7 (wear-time = 1 day), animals were sedated, the stockinet removed 
and additional CSII catheters (4 each day) inserted. Catheters were covered with clear medical adhesive and 
Kinesiology tape, and the stockinet put back on. On days 2, 3, 5, and 6, animals were able to move freely. Animals 
were euthanised before tissue excision and after methylene blue dye infusion on day 8. In total, 120 catheters were 
inserted (60 steel and 60 Teflon). Half of the samples were dedicated for histopathological analyses and the other 
half for quantitative real-time PCR. A piece of non-traumatised reference tissue was excised for messenger RNA 
analysis and for calculation of relative expression fold change.

Excision and Histology.  On study day 8 the stockinet and the medical adhesive were carefully removed 
to avoid pulling out catheters. Teflon catheters were infused with 4 units (40 µl) of methylene blue surgical dye, 
using an insulin pump to check for occlusion alarms caused by kinked catheters, catheter obstruction or mor-
phological changes in the subcutaneous tissue. A fatty tissue specimen (approximately 5 × 5 × 2 cm) was removed 
from around the catheters and placed in 4% PBS-buffered formaldehyde for 72 hours with the CSII catheter 
still remaining in the tissue. The catheter was removed right before grossing the tissue specimen to locate the 
insertion channel and the surrounding region of interest. The specimen was dehydrated in Formalin for 2 hours, 
followed by a rising ethanol series over 6 hours at 40 °C and embedded in paraffin wax. Four micrometer thick 
paraffin-tissue sections were stained with Hematoxylin and Eosin (H&E) and Masson’s Trichrome following 
standard protocols. Sectioning was repeated 3 times for each sample with approximately 9 µm spacing. The first 
section confirmed the location of the insertion channel. The consecutive sections represented deeper layers of 
the tissue (i.e. areas more distant from the center of the insertion channel). All slides were scanned with Aperio 
ScanScope AT and analysed using the ImageScope Version 12 software (both: Aperio Technologies, Inc., Leica 
Biosystems). On whole slide images, the area of inflammation (mm2), fibrin deposition (mm2) and fat necrosis 
(mm2) around the insertion channel was measured by the pathologist. The distance from epidermis to lowest 
point of observed inflammation was measured (mm). Furthermore, the area of chronic inflammatory reaction 

Study day no. 1 (Fri) 2 (Sat) 3 (Sun) 4 (Mon) 5 (Tue) 6 (Wed) 7 (Thu) 8 (Fri)

Catheters 4 4 4
Tissue explantation

Wear time 7 days 4 days 1 day

Table 1.  Study design; n = 10 animals.
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(lymphocytes and monocytes) and the density of diffuse infiltrates of neutrophil granulocytes was evaluated 
and categorised as none, some, mild, moderate or severe (0, 0.5, 1, 2, 3). Slides were analyzed twice to exclude an 
intra-observer bias. After all sections of each sample had been analysed, we considered only the largest value of 
the 3 sections per sample (=maximum trauma observed in all tissue sections) for further calculation. Unblinding 
and statistical analyses were performed after the histopathological evaluation was completed.

Quantitative Real-time PCR.  For RNA isolation, the tissue plug was grossed down to about 5 mm dis-
tance from the cannula. The cylinder-shaped specimen was separated into 2 different sections along the cannula 
(subcutaneous region). Tissue was placed in an RNA stabilising solution (RNAlater, QIAGEN, Germany) at 4 °C 
for at least 24 hours before isolating the RNA (RNeasy Mini Kit, QIAGEN, Germany). RNA was transcribed to 
cDNA (Applied Biosystems High Capacity cDNA Reverse Transcriptase kit, Thermo Fisher Scientific, Austria) 
and quantitative real-time PCR was performed using the SYBR Green method (LightCycler® 480 SYBR Green 
I Master, Roche, Austria) for animal samples. We analysed expression of macrophage marker CD68 and the 
cytokines interleukin-6 (IL-6), interleukin-8 (IL-8/CXCL8), tumor necrosis factor alpha (TNF-α), transforming 
growth factor beta (TGF-β) and interleukin-10 (IL-10). All qPCRs were run on a Roche 480 Light Cycler® system. 
Relative expression fold change was calculated using the ddCt method with 2 reference genes, namely beta-Actin 
(ACTB) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) 
according to the MIQE guidelines21. Expression was corrected for primer efficiency and is shown relative to gene 
expression in non-traumatised tissue (no catheter).

Statistical Analyses.  Continuous data (e.g. cytokine gene expression) were examined for normality using 
Shapiro Wilks tests with Lilliefors significance correction as well as by visual data inspection using Q-Q plots. 
Catheter material (steel versus Teflon) as well as catheter wear time (1, 4, and 7 days) and the interaction term 
were included as within subject factors in generalised linear mixed models (GLMM) with a log normal distribu-
tion for longitudinal non-Gaussian data (e.g. IL6, IL8, IL10 or TNF-alpha) and identity link function for normally 
distributed data (distance to lowest point of inflammation). The model selection process to define the appropriate 
covariance structure (first order autoregressive, compound symmetry, diagonal or unstructured) was based on 
Akaike’s Information Criterion (AIC), an index of relative goodness-of-fit to model the subject variation. The 
smaller the information criteria value, the better the model fits, i.e. the model that minimized AIC was preferable. 
To compare different covariance structures for the same fixed effects model, we used the change in 2 REML logL 
for an approximate Likelihood Ratio Chi-Square test additionally.

Generalised estimation equations (GEE) models with an exchangeable (compound symmetry) correlation 
structure and a cumulative logit link-function were used for ordinal data (e.g. grade of cellular infiltration) to 
specify differences between catheter materials over wear time.

All analyses were based only on available data without imputation. P-values were adjusted for multiple testing 
with Bonferroni correction. Resulting adjusted p values less than 0.05 were considered significant. All statis-
tical tests were performed using SPSS version 23.0 (SPSS Inc., Chicago, IL) and GraphPad Prism version 5.0 
(GraphPad Software, San Diego, USA) for visualisations.

Results
Throughout the study, 120 CSII catheters were inserted. 4/120 cannulas (2 steel and 2 Teflon) kinked above the 
medical adhesive covering the animal skin. Insertion channels after excision and grossing of specimens were 
located in 115 specimens. In total, 9 samples were rejected (failed insertion or no insertion channel located), 
leading to a dropout rate of 7.5%. The infusion of saline into the Teflon catheters after insertion did not result in a 
single occlusion alarm or leakage. Infusion of methylene blue dye into the 30 Teflon catheters used for histology 
prior to excision resulted in 3 “no delivery” occlusion alarms by the Paradigm™ pump (10%). Tissue specimens 
were excised down to the fascia planes that exhibited nearly no inflammation below Teflon cannulas but revealed 
substantial fibrosis and inflammation below steel cannulas inserted for 4 days or 7 days (Fig. 1a). Figure 1b shows 
representative examples of subcutaneous adipose tissue stained with H&E after the removal of the CSII cathe-
ters. We could observe substantial tissue disruption by the movement of a stiff steel cannula (Fig. 1b, top row) 
while the void left by Teflon was consistent with the cylindrical shape of the cannula (Fig. 1b, bottom row). 
Inflammatory cells (stained dark purple) migrated towards the site of trauma and, by day 7, formed a layer around 
the foreign body.

The area of inflammation, measured by the pathologist, increased significantly around both materials between 
day 1 and day 4 as well as day 1 and day 7. The area of inflammation around the steel catheter plateaued after 
4 days but further increased around Teflon (p < 0.05; Fig. 2a). We could detect no temporal effect for fibrin 
deposition around steel catheters and only a trend around Teflon catheters (p = 0.097 between day 1 and day 4, 
p = 0.059 between day 1 and day 7). We observed a significantly larger area of fibrin around steel catheters on day 
4 (p = 0.029, Fig. 2b). The area of necrosed fat cells was significantly increased on days 4 (p = 0.001 for Teflon, 
p = 0.002 for steel) and 7 (p = 0.005 for Teflon, p = 0.009 for steel) compared to day 1 with no difference between 
day 4 and day 7 (Fig. 2c).

Both cannulas had a length of 6 mm but Teflon cannulas were inserted into the skin using a slightly longer 
introducer steel needle with a sharp tip. Therefore, the distance to the lowest point of observed inflammation 
was longer for Teflon catheters on day 1 (7.1 mm versus 5.7 mm; p = 0.033; Fig. 2d). This initial trauma caused by 
the introducer needle decreased until day 4 (6.0 mm; n.s.) while the inflammation distance from the epidermis 
increased for steel catheters in that time (p = 0.007). The distance further increased between day 4 and day 7 to 
8.4 mm along steel and 8.0 mm along Teflon catheters (p = 0.048 and p = 0.001, respectively). The distance to 
lowest point of observed inflammation was significantly higher for steel than for Teflon on day 4 of wear time 
(p = 0.019) but similar on day 7.
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Qualitative grading of density of inflammatory cells (none, some, mild, moderate, severe) around the insertion 
channel was not significantly different between materials. However, density of mononuclear infiltrate and neutro-
phils was significantly elevated on day 4 (p < 0.0001 and p = 0.02, respectively) and day 7 (p = 0.01 and p = 0.03, 
respectively) compared to 24 hours of wear-time (Fig. 3a and b).

Quantitative real-time PCR are shown in Fig. 4. We detected an increase of macrophage marker CD68 gene 
expression between 1 day and 7 days of wear-time for both steel ((1.4 ± 1.2-fold vs. 5.2 ± 3.4-fold; p = 0.006) and 
Teflon (1.7 ± 0.9-fold vs. 7.2 ± 5.6-fold; p = 0.065). We could not identify a significant difference between mate-
rials on either day. After 24 hours, there was almost no change in CD68 expression independent of material. IL-6 
expression was highest on day 1 and decreased significantly around Teflon over 4 and 7 days of wear-time (both 
p = 0.034). IL-6 levels were significantly higher around steel than Teflon after 4 days (p = 0.005) and after 7 days 
(p = 0.047) of wear-time. Mean IL-8 levels were higher for steel on day 7 of wear time (p = 0.029).

TNF-α gene expression increased to a maximum of 2-fold expression around both materials but there was 
no statistical effect detected over time or between materials. TNF-α expression was slightly higher around steel 
compared with Teflon on day 7 (p = 0.083). TGF-β levels were not significantly different over time and between 
materials. TGF-β gene expression levels around steel showed a rather high variability on day 4 with values rang-
ing from 0.9-fold to 49.7-fold among samples (mean 10.2 ± 5.0-fold). There was a trend towards an increase in 
expression of TGF-β around Teflon catheters between day 7 and day 1 of wear-time (p = 0.058).

Anti-inflammatory IL-10 gene expression increased approximately 4-fold within the first 24 hours of wear 
time and remained stable and at similar levels around both materials throughout the week of wear-time.

Discussion
We performed a systematic in vivo evaluation of the inflammatory response to commercially available CSII cath-
eters to identify determining factors for tolerability of steel versus Teflon.

Independent of material, the insertion of a CSII catheter causes the disruption of capillaries leading to fibrin 
and platelet deposition22. Proteins non-specifically adsorb to the material surface and neutrophils, platelets and 

Figure 1.  Tissue after excision and representative histology slides. (a) Fascia layer photographed after removal 
of square specimens of skin and adipose tissue around CSII catheters after 7 days of wear time (left: Teflon, right: 
steel). Arrows are pointing at locations where tip hit the muscle. Tissue is severely inflamed below the sharp 
tip of the steel cannula. (b) Examples of tissue sections stained with hematoxylin & eosin (20 × magnification) 
revealing the void (V) left by steel (top row) and Teflon (bottom row) cannulas in the dermis (D) and 
subcutaneous adipose tissue (AT). The inflammatory tissue (IT) is mainly characterised by mononuclear 
inflammatory cells migrating towards the site of trauma and central fibrin deposition that form a layer around 
the insertion channel.
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monocytes form a layer around the foreign body, releasing pro-inflammatory cytokines to recruit more white 
blood cells and to initiate the differentiation of monocytes into macrophages22–26.

Our results suggest that small movement of the sharp tip of the steel cannula continuously damaged microvas-
culature in swine adipose tissue which results in significant higher fibrin deposition after 4 days of wear-time and 
a significant difference in trauma depth in the subcutaneous tissue. Studies show that the shape of the implanted 
material has a major effect on tissue reaction and macrophage attachment, suggesting that round shapes elicit a 
less severe response than shapes with sharp edges17,27,28. However, the overall area of inflammation and fat necro-
sis did not differ between materials and the only effect observed was attributed to wear-time rather than material. 
The increase in area of inflammation over wear-time could be confirmed by grading the density of inflammatory 
cells which was also not different between steel and Teflon. Additionally, these results were confirmed by an 
increase in macrophage gene expression over time.

Several published in vivo and in vitro studies exist, regarding the recruitment and attachment of inflammatory 
cells to steel or Teflon but are sometimes contradicting and difficult to interpret29,30. While a study by Bussutil 
et al. showed significantly less macrophage and neutrophil adhesion to intraperitoneally implanted steel disks29, 
Hallab et al. claim a five-fold increase in adhesion strength of macrophages to steel surfaces compared to Teflon30. 
Furthermore, it has been shown that a Even though the Teflon cannula was thicker, had a larger inner diameter 
and thicker walls than the steel cannula (29 versus 25 gauge), it did not elicit a less severe tissue reaction. The area 
of inflammation even increases significantly between day 4 and day 7, while it remains unchanged around steel 
after 4 days.

The stiffness of the material can also determine the extent of trauma, with sheer forces continuously damaging 
the adipose and connective tissue in the cannula’s vicinity and is a major influential factor in inflammatory cell 
activation18,31. Softer materials elicit less scaring by decreasing the strain on the tissue18.

This cell activation further depends on the release of pro-inflammatory cytokines, such as IL-6, IL-8 and 
TNF-α by macrophages and other cells adherent to the cannula25,32. Macrophages are said to respond to bio-
materials immediately via IL-6 secretion33. Our results show that the secretion of IL-6, which is associated with 
reepithelisation and scarring34, is increased approximately 9-fold (steel) and 6-fold (Teflon) within 24 hours after 
initial trauma and decreases significantly with wear-time. Interestingly, IL-6 gene expression levels are signifi-
cantly higher around steel cannulas than around Teflon cannulas on days 4 and 7. Levels in tissue surrounding 
Teflon return to values comparable with non-traumatised adipose tissue by day 4. A possible explanation for this 
could be that the sharp tip of the steel cannula continuously injures the tissue throughout wear time. Concordant 
with literature35, we showed that the major chemotactic factor IL-8/CXCL8 is highly expressed within 24 hours 
after cannula insertion. High levels of IL-8 are known to be associated with impaired wound healing, which is the 

Figure 2.  Trend curves for histopathological characteristics over 7 days of wear time. (a) Area of 
inflammation = total area of disrupted and inflamed tissue, including inflammatory cells, fat necrosis and 
fibrin deposition; (b) Fibrin deposition = area of fibrin in the immediate vicinity of the cannula; (c) Fat 
necrosis = area of destroyed fat cells in the immediate vicinity of the cannula; (d) Distance to lowest point of 
inflammation = distance from skin surface to the last point of observed inflammatory tissue in an approx. 90° 
angle. The cannula length was 6 mm. (***/§§§p < 0.0001; **/§§p < 0.005; */§p < 0.05; #p < 0.05 difference between 
materials; note the different scales on y-axis. Data are presented as mean ± SEM).
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case when a foreign body is present36. We showed that after 7 days, steel cannulas elicit an approximately 100-fold 
increased IL-8 expression and a 23-fold increase caused by Teflon, indicating that independent of material, the 
presence of a foreign body itself leads to unresolved inflammation. Immediately after trauma, TNF-α production 
is upregulated to enhance phagocytosis22. In our results, this is the case for both materials although in average 
the induction was minor compared with results from other studies. Pachler et al., for instance, showed a 25-fold 
increase in TNF-α protein levels within 8 hours after inserting a Teflon open-flow microperfusion probe subcu-
taneously37. However, the group perfused the probe continuously which may alter the resulting inflammatory 
response.

During wound healing, macrophages undergo a phenotype switch and release anti-inflammatory IL-10 and 
TGF-β32,38. TGF-β release activates fibroblasts which start to synthesize collagen to lay down new extracellular 
matrix32. In our study, TGF-β gene expression levels are immediately upregulated within the first 24 hours of wear 
time and while they steadily increase around Teflon cannulas, their levels around steel peak on day 4 of wear time. 
Interestingly, TGF-β levels showed a rather large variability around steel on day 4 compared to Teflon. IL-10 gene 
expression remains high throughout wear time which can be explained by the fact that there is a constant release 
of reactive oxygen species and degradative enzymes in the cannula’s microenvironment, and therefore IL-10 can-
not execute its full potential as an anti-inflammatory cytokine39.

The lack of insulin infusion presents the main limitation of this study, since there is an undoubted need for 
linking catheter longevity, immune response and glycemic control. The effect of insulin has previously only been 
studied over a couple of hours after catheter insertion37,40. Therefore, the question, to what extent insulin infusion 
influences the inflammatory response and catheter longevity, remains unanswered thus far. Since the methods 
used in this study require large amounts of tissue material, we studied the effects of catheter implantation in an 
animal model with similar skin and adipose tissue structure to humans41. Although the pig has proven to be an 
excellent model to study adipose tissue inflammation, the reaction may be somewhat different in humans41,42. 
Concepts of tissue explantation in humans have been proposed, but they raise ethical and methodological limita-
tions. We experienced kinking of 2 Teflon and 2 steel cannulas during our study, all of which did not result in an 
occlusion alarm of the pump. Reasons for kinking of the steel cannula could be the considerable amount of force 
needed to insert the cannula through the medical adhesive and/or the rather rigid swine skin.

Insulin infusion sets are recommended to be changed every 2 to 3 days. In this study set-up, we chose 4 days 
of wear time to increase the likelihood of seeing a difference between the two cannula materials. We extended 

Figure 3.  Results of ordinal grading of the density of (a) mononuclear cells ( = lymphocytes, monocytes, 
neutrophils) and (b) neutrophils around the insertion channel. The grades on the y-axis are as follows: 0 = none; 
0.5 = some; 1 = mild; 2 = moderate; 3 = severe. (*p < 0.05; **p < 0.005; ***p < 0.0001; data are presented as 
median and range).
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the wear time to 7 days, to systematically assess the time-dependent inflammatory response in an adequate ani-
mal model. This is of special of interest in the development of closed-loop artificial pancreas systems where 
continuous glucose monitoring devices have a longevity of 7 days43. In recent years, attempts have been made to 
combine both glucose sensor and insulin delivery in one device (“single-port”), reducing the burden of multiple 
insertions for a functioning AP system44–48. This is of special interest for children with small body surface areas for 
the insertion of CSII catheters and sensors. In order to combine CSII and continuous glucose monitoring in one 
device and to reduce the lifelong burden and the number of inserted catheters in a lifetime, the longevity of CSII 
catheters has to be increased substantially.

The quantitative as well as the qualitative histopathologic evaluation, gene expression analysis and the sub-
jective observations during tissue excision did not suggest a better tolerability of flexible Teflon cannulas with a 
blunt end over rigid steel cannulas with a sharp tip in terms of tissue histology. However, an increased expression 
of pro-inflammatory cytokines after 7 days of wear-time was observed. The sharp tip and the stiffness of the steel 
cannula caused more bleeding in the first 4 days of wear-time.

Figure 4.  Relative expression fold change of CD68 macrophage marker and pro- and anti- inflammatory 
cytokines in the vicinity of the catheter over 7 days of wear time. The intermitted line represents 100% 
expression under non-traumatic conditions (**/§§p < 0.005, */§p < 0.05; ##p < 0.005 and #p < 0.05 difference 
between materials; note the different scales on y-axis. Data are presented as mean ± SEM).
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Our study design was robust enough to show temporal changes in inflammation caused by a CSII catheter and 
thus presents a possibility for a standardised method assessing tissue-device interfaces systematically. The combi-
nation of different methods assessing the tissue reaction over time is a major strength of this study. The results of 
the quantitative and qualitative histopathological assessment and the gene expression analysis confirm each other 
and underline the robustness of the methods applied. Furthermore, each animal served as its own control, making 
the results more reliable despite the small sample size. Although some aspects cannot be directly translated from 
swine to humans, this study design serves as a strong and robust tool for further studies. Our study setup can be 
directly transferred and applied for any implantable device to generate more data on tissue response to materials 
considered biocompatible and safe by regulatory bodies.

Interestingly, cannula materials remain fairly unregulated for market entry, while insulin formulations are 
heavily regulated. In-depth studies of the inflammatory response to CSII catheters, not only assessing more time 
points but also including insulin infusion, should be considered to create a complete picture of the impact of 
cannula material and design on tolerability and longevity of CSII catheters. This information could be crucial 
for future recommendations for catheter use and catheter design, such as the development of anti-inflammatory 
coatings for cannulas, regulating cell and complement attachment.

Conclusions
Both steel and Teflon are routinely used in clinical practice independent of their drawbacks which include bleed-
ing for steel and kinking for Teflon6,8. The results of this study show that there was no superiority of one material 
over the other in terms of inflammation. However, a final statement can only be made when insulin infusion is 
added to the study setup. To our knowledge, this is the first systematic study to assess the difference in inflamma-
tory response to commercially available steel and Teflon CSII catheters over wear-time.
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