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Characterizing advanced breast cancer heterogeneity
and treatment resistance through serial biopsies
and comprehensive analytics
Allen Li 1,8, Jamie M. Keck1,2,8, Swapnil Parmar1, Janice Patterson 1, Marilyne Labrie 1, Allison L. Creason 1, Brett E. Johnson 1,2,3,
Molly Downey 4, George Thomas1,5, Carol Beadling1, Laura M. Heiser3, Annette Kolodzie1,2, Alexander R. Guimaraes1,4,6,
Christopher L. Corless1,5, Joe W. Gray 1,2,3, Gordon B. Mills 1,6,7, Raymond C. Bergan 1 and Zahi I. Mitri 1✉

Molecular heterogeneity in metastatic breast cancer presents multiple clinical challenges in accurately characterizing and treating
the disease. Current diagnostic approaches offer limited ability to assess heterogeneity that exists among multiple metastatic
lesions throughout the treatment course. We developed a precision oncology platform that combines serial biopsies, multi-omic
analysis, longitudinal patient monitoring, and molecular tumor boards, with the goal of improving cancer management through
enhanced understanding of the entire cancer ecosystem within each patient. We describe this integrative approach using
comprehensive analytics generated from serial-biopsied lesions in a metastatic breast cancer patient. The serial biopsies identified
remarkable heterogeneity among metastatic lesions that presented clinically as discordance in receptor status and genomic
alterations with mixed treatment response. Based on our study, we highlight clinical scenarios, such as rapid progression or mixed
response, that indicate consideration for repeat biopsies to evaluate intermetastatic heterogeneity (IMH), with the objective of
refining targeted therapy. We present a framework for understanding the clinical significance of heterogeneity in breast cancer
between metastatic lesions utilizing multi-omic analyses of serial biopsies and its implication for effective personalized treatment.
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INTRODUCTION
Heterogeneity in breast cancer can be observed across metastatic
lesions (intermetastatic heterogeneity [IMH]) within an individual
patient and can even be seen within a singular lesion
(intratumoral heterogeneity)1,2. Heterogeneity is observed at
many biological levels, including morphologic, phenotypic, and
molecular. Furthermore, both spatial and temporal heterogeneity
can affect clinical outcomes in breast cancer3,4. Therefore, biopsies
of multiple lesions at multiple time points provide a more
comprehensive profile of a patient’s cancer and are critical for
selecting the most appropriate therapy. Current algorithmic
treatment guidelines do not sufficiently address the complexity
of IMH and its therapeutic challenges, representing an unmet
need in heterogeneous diseases like breast cancer.
Classification of breast cancer based on the clinical immuno-

histochemistry (IHC) status of estrogen receptor (ER), progesterone
receptor (PR), and human epidermal growth factor receptor 2
(HER2) is fundamental in clinical subtyping, prognostication, and
treatment selection. Although the receptor status is largely
preserved throughout treatment course, there are clinically
significant exceptions. Receptor status alterations have been
documented following neoadjuvant chemotherapy in loco-
regional breast cancer5–7, as well as between matched primary
and metastatic breast cancer lesions8–10. Reports suggest that ER,
PR, and HER2 changes following neoadjuvant treatment or
throughout tumor progression is a potential indicator of poor
prognosis when taken into consideration with the tumor’s original

receptor status6,11–13. A recent study of primary breast cancers
found HER2 discordance following neoadjuvant HER2-directed
therapy was associated with a reduced disease-free survival14.
Receptor status discordance may represent tumor heterogeneity
resulting from clonal selection based on therapeutic stress10,15,16.
Routine ER, PR, and HER2 IHC assays may provide an initial
sampling of heterogeneity, but these markers provide a limited
picture of tumor biology and may not always correlate with gene
expression levels17. Beyond the clinical receptor status, gene
expression profiling with breast cancer intrinsic subtyping further
informs tumor characterization. PAM50 intrinsic subtypes (luminal
A, luminal B, HER2-enriched, basal, and normal-like) can reveal
changes in RNA expression of ESR1, PGR, and ERBB2 along with
genes involved in processes such as proliferation and cell cycle18.
Discordance of intrinsic subtypes between primary and metastatic
tumors have been reported10. Studies comparing primary and
metastatic lesions observed conversion to more aggressive
molecular subtypes within luminal and HER2-enriched intrinsic
subtypes, often due to decreased luminal-related genes and
increases in proliferation and migration genes 19,20.
In addition to heterogeneity identified in receptor status, IMH

can also manifest as subclonal genetic alterations within critical
signaling and growth pathways. Studies comparing metastatic
breast cancer to primary tumors have shown that while they share
many genomic alterations, metastatic breast cancers can exhibit
different genomic profiles than early stage disease, including
acquisition of driver alterations not present in the primary
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disease21–24. Metastatic tumors may also have an increased
mutational burden and/or higher subclonal diversity compared
to primary tumors21,25. Phylogenetic analysis of metastatic breast
cancer within individual patients has indicated that two modes of
disease progression exist, one in which all metastases are
monoclonal, sharing a common metastatic origin, and another
in which multiple metastases arise from different subclones within
the primary tumor26, leading to molecularly heterogeneous
metastases. IMH can also play a significant role in patient
response to treatment and resistance. A recent study found
different clinically significant genetic alterations in PIK3CA across
metastatic sites within the same individual, who had a mixed
response to PI3 kinase (PI3K) inhibitor treatment27. In addition,
ESR1 mutations arise with aromatase inhibitor (AI) treatment and
contribute to resistance to therapy28,29. Therefore, the navigation
of treatment for heterogeneous tumors may benefit from clinical
tumor profiling data provided by repeat biopsies that inform
rational and effective precision therapy combinations, taking into
account disease-type, toxicities, and emerging resistance
mechanisms30.
The mechanisms underlying IMH and the evolutionary paths of

metastatic lesions in individual patients remain poorly under-
stood. There is no routine clinical assays or reliable predictive
models for consistently assessing IMH throughout the disease
course and under therapeutic pressure. Because of the effect of
IMH on prognosis and treatment resistance, there is a compelling
need to develop a reliable means for assessing IMH in clinical
settings to enable rational modification or addition of therapy. We
have previously described the design of our Serial Measurements
of Molecular and Architectural Responses to Therapy (SMMART)
program in the context of workflows for successfully acquiring
tissue in real-time from patients with advanced cancer and
performing comprehensive clinical and exploratory analytics on
the specimens31. Here we discuss the importance of repeat
metastatic biopsies in capturing clinically significant IMH and this
program’s multi-omic translational oncology approach in an
individual breast cancer patient, with a focus on understanding
the role of IMH in treatment response.

RESULTS
Clinical description
A 35-year-old female presented with sudden onset of blurry vision
in her left eye. She had a history of right breast stage IIb
(pT2N1M0) ER/PR positive, HER2-normal (non-amplified), infiltra-
tive ductal carcinoma that was diagnosed four years previously. At
her initial presentation, she was treated with bilateral mastec-
tomies and right axillary lymph node dissection, adjuvant
anthracycline/taxane based chemotherapy, and endocrine therapy
with tamoxifen. Germline genetic testing with the Myriad MyRisk
breast panel did not identify pathogenic mutations in the tested
genes, including BRCA1/2.
Metastatic evaluation including ophthalmologic exam showed

metastatic disease involving the left choroid (leading to visual
symptoms), pathologic adenopathy (mediastinal, paratracheal,
prevascular, suprahilar, and subcarinal), and multiple bilateral
pulmonary metastasis. A mediastinal node biopsy was positive for
recurrent metastatic breast carcinoma, ER/PR positive and HER2-
normal (1+) by IHC. She underwent radiotherapy to the choroid
lesion.
At this time, the patient was started on systemic therapy with

palbociclib and letrozole with ovarian function suppression.
Treatment course outlined in Fig. 1a. Despite initial partial
response, repeat scans 10 months after treatment initiation
showed progression, with multiple new hepatic and osseous
lesions. Therapy was changed to everolimus and exemestane, on
which she had rapid progression as evident on repeat imaging

within 2 months of therapy. A new biopsy was performed under
the IRB-approved observational study, “Molecular Mechanisms of
Tumor Evolution and Resistance to Therapy” (MM-TERT)31, within
the precision oncology SMMART-program at Oregon Health and
Science University, Knight Cancer Institute. This program aims to
benefit individual patients by identifying potential actionable
biology through multi-omic analysis of serial metastatic biopsies
to guide novel precision combination therapies. Study biopsy #1
of a new lesion, liver 3 segment 2 (L3 seg2 in Fig. 1b) was
consistent with metastatic breast adenocarcinoma, ER/PR nega-
tive, and HER2 positive (3+) by IHC; different from the prior ER/PR
positive and HER2-normal primary and mediastinal lesions. Based
on the change in HER2 status, the patient was started on
paclitaxel, trastuzumab, and pertuzumab. Remarkably, 3 months
after initiation of therapy, restaging scans showed that the Study
biopsy #1 lesion (L3 seg2) was resolved (Fig. 1b), along with
several other hepatic lesions (not shown in Fig. 1b). However,
response was mixed and 12 hepatic lesions did not respond,
including L1 seg7 and L4 seg5/6 (Fig. 1b). Given the mixed
response, the patient underwent a second biopsy of a progressing
lesion, liver 4 segment 5/6 (L4 seg5/6) (Study biopsy #2, Fig. 1b),
revealing metastatic breast carcinoma, ER/PR negative, HER2-
normal (1+) by IHC, consistent with triple-negative breast cancer
(TNBC). New brain metastases were also identified and treated
with whole brain radiotherapy. Based on this new data, the
patient’s treatment was changed to carboplatin in combination
with trastuzumab, and she received two cycles of therapy with
improvement in hepatic enzymes. This therapy was complicated
by side effects requiring hospitalization. Her performance status
deteriorated, and the patient elected to transition to hospice care.

Multi-omic analytics
To comprehensively characterize tumor biopsy tissue, clinical
assays were performed within the OHSU Knight Diagnostic
Laboratories that are CLIA-licensed/CAP-accredited, including IHC
(ER, PR, HER2, AR, and PD-L1), a targeted next-generation
sequencing (NGS) panel covering 125 genes (GeneTrails© Com-
prehensive Solid Tumor Panel), whole transcriptomic sequencing
(Illumina TruSeq RNA exome), and a multiplex protein analysis of
22 key cancer proteins and phosphoproteins (the Intracellular
Signaling Protein Panel) developed on the NanoString Vantage
3D™ Solid Tumor Panel. In addition, an exploratory assay, reverse
phase protein array (RPPA), was used to profile 450 proteins and
phosphoproteins. Due to limited material from Study biopsy #1,
extended analysis outside of IHC and genomic sequencing could
not be performed on this specimen.

Characterization of heterogeneity in receptor status and
intrinsic subtype
Examination of receptor status of the study biopsies confirmed the
dramatic changes in ER and HER2 levels from the previous breast
and mediastinal biopsies. IHC on Study biopsy #1 showed loss of
ER expression and gain of HER2 expression: ER negative (0%), PR
negative (0%) and HER2 positive (3+, with 80% of tumor cells
positive). This HER2 positivity correlated with marked amplification
of ERBB2 (45 copies, Table 1), as detected by NGS. After 4 months
of paclitaxel, trastuzumab, and pertuzumab, a progressing hepatic
mass (Study biopsy #2) was found to be consistent with TNBC: ER
negative (<1%), PR negative (0%), and HER2-normal (1+) by IHC.
The tumor was also positive for androgen receptor (AR, 30%).
Previous biopsies were not tested for AR; therefore, it is unknown
if this was a new hormonal activation. The striking differences in
HER2 IHC staining between Study biopsies #1 and #2 are
illustrated in Fig. 2. NGS on Study biopsy #2 confirmed that
ERBB2 was not amplified (3 copies, Table 1). Finally, the
Intracellular Signaling Protein Panel found very low HER2 protein,
when comparing relative level of Study biopsy #2-derived protein
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expression compared to two cohorts of metastatic breast cancers:
all subtypes (BC) and TNBC (Fig. 3, HER2 box plot under
“Receptor”).
Comparative RNA expression analysis of genes associated with

receptor status in Study biopsy #2: ESR1 (ER), PGR (PR), ERBB2
(HER2) and AR, showed high RNA expression in relation to basal
intrinsic subtypes from The Cancer Genome Atlas (TCGA) primary
breast cancer cohort (Fig. 4a). When compared to other TCGA
intrinsic subtype cohorts (HER2, luminal A, and luminal B) and a
SMMART-program cohort (40 metastatic breast cancers), AR was
moderate, while ESR1 was low. ERBB2 expression in Study biopsy
#2 was moderate compared to luminal A/B TCGA and SMMART-
program cohorts. The fact that this immunohistochemical HER2-
negative (1+), ERBB2 non-amplified lesion had moderate ERBB2
RNA expression could indicate heterogeneity or differential
regulation.
PAM50 intrinsic subtyping allows for tumor characterization

beyond receptor status, using expression of hormone, cell
proliferation, differentiation, and cytokeratin genes32. Study
biopsy #2 showed a predominantly basal-like intrinsic subtype
(Fig. 4b), which was consistent with the clinical receptor status
subtype (ER, PR, and HER2 negative). In addition, Study biopsy
#2 showed a correlation, albeit lower, to the HER2-enriched
intrinsic PAM50 subtype. Analysis of the specific genes within the
PAM50 signature that were shared between the basal and HER2-
enriched subtypes provided clarification for the detection of both

subtypes. Study biopsy #2’s low expression of ESR1 and SLC39A6,
combined with moderate to high expression of most proliferation-
related genes (such as MKI67 [Fig. 4d], CCNB1, CENPF, CDC20,
CCNE1, CDC6, and TYMS) contributed heavily to both the basal and
HER2-enriched intrinsic subtypes. High MYC expression was
unique to the basal subtype (Fig. 4d). The HER2-enriched subtype
in Study biopsy #2 was influenced by high expression of GRB7
(same amplicon as ERBB2), moderate expression of ERBB2,
TMEM45B, FGFR4, and FOXA1 and low expression of MIA,
GPR160, SFRP1. This data reveals an atypical TNBC lesion with
characteristics of both basal and HER2 intrinsic subtypes, which
may help to inform the treatment strategy. Further characteriza-
tion of the basal PAM50 subtype with gene expression related to
immune, microenvironment, and AR provides critical insight into
treatment response and survival within TNBC patient popula-
tion17,33. This expanded intrinsic subtyping distinguishes four
subtypes: basal-like immune-activated (BLIA), basal-like immuno-
suppressed (BLIS), luminal androgen receptor (LAR), and mesench-
ymal (MES)17. Study biopsy #2 was LAR (Fig. 4c), which was
supportive of AR IHC positivity. Overall, the expression pattern in
Study biopsy #2 was most consistent with a basal intrinsic subtype
but was not fully aligned with one subtype due to its unique
expression within disparate pathways including MYC, HER2,
proliferation, and AR.
Protein and phosphoprotein levels within Study biopsy #2 were

evaluated by RPPA in relation to breast cancer intrinsic subtype
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Fig. 1 Overview of clinical timeline and response. a Treatment (colored boxes) and biopsy (red stars) timeline, in months, following disease
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clustering (Fig. 5a). The tumor’s protein expression was normalized
within the TCGA breast cohort (“batch-types”, red) and a SMMART-
program cohort (31 metastatic breast cancers, “batch-types”, blue).
Study biopsy #2 did not clearly cluster with any specific intrinsic
subtype but primarily clustered within luminal-like subtypes
(“subtype”, blue and brown), rather than basal (“subtype”, green).
This luminal clustering most likely reflects consequences of AR
expression, which was high by RPPA. In contrast, RPPA pathway
profiling assessment of the hormone receptor signaling pathway
downstream ER signaling was low compared to the SMMART-
program cohort but higher than the TCGA basal cohort (Fig. 5b),
similar to the analysis of ESR1 RNA expression (Fig. 4a).

IMH within cellular proliferation and signaling pathways
Unexpected intermetastatic genomic heterogeneity within cellular
proliferation and cell signaling pathways was found by sequen-
cing both Study biopsy #1 (liver lesion with 65% tumor content)
and #2 (liver lesion with 75% tumor content) with the GeneTrails©

Comprehensive Solid Tumor Panel (Table 1). Study biopsy #1 and
#2 shared only two alterations, a PIK3CA E542K hot spot mutation
(29% and 25% variant allele frequency [VAF], respectively) and a

TP53 splice site mutation (84% and 74% VAF, respectively). In
Study biopsy #1, a variant of unknown significance (VUS) within
the mTORC2 complex, RICTOR V1358M (30% VAF) was identified,
while in Study biopsy #2 a VUS within the mTORC1/2 complex was
reported, MTOR E706K (8% VAF). Copy number alterations in Study
biopsy #1 included bi-allelic copy losses in CDKN2A (0 copies, p16
negative IHC confirmed), RB1 (0 copies, RB1 negative IHC
confirmed), and BRCA2 (0.16 copies), and large copy gains in
CCND1 (cyclin D1, 48 copies), FGF3/FGF4/FGF19 (18/22/17 copies,
respectively), MYC (16 copies), CDK12 (10 copies), and ERBB2 (45
copies). However, Study biopsy #2, obtained ~4 months later, was
largely absent of copy number alterations. CDK12 (2 copies), ERBB2
(3 copies), and BRCA2 (2 copies) were wildtype, and a lower level
of copy gain in CCND1 (17 copies), FGF3/FGF4/FGF18 (9/10/7
copies), and MYC (5 copies) was found. Furthermore, only one
copy of RB1 and CDKN2A was lost (0.8 and 0.7 copies, respectively).
RNA expression profiling of genes related to G1 cell cycle

confirmed a lack of significant copy gains or losses, showing an
average gene expression in Study biopsy #2 compared to the
SMMART-program and TCGA cohorts (Fig. 4d). However, expres-
sion of MET and PIK3CA, which harbored the hot spot mutation,
was high compared to all cohorts. As previously discussed, Ki-67

Fig. 2 HER2 immunohistochemistry (IHC) comparison of Study biopsies. Strong HER2 IHC staining in the first hepatic biopsy (Study biopsy
#1, left) and negative HER2 IHC staining in the second hepatic biopsy (Study biopsy #2, right). Images are shown at ×20 magnification.

Table 1. Comparison of alterations in Study biopsies identified by NGS panel sequencing.

Genomic alterations Liver Study Biopsy #1 (5.3 yrs from diagnosis)
Following everolimus/exemestane

Liver Study Biopsy #2 (5.7 yrs from diagnosis) Following paclitaxel;
On treatment with trastuzumab/pertuzumab

Microsatellite status MSI Stable MSI Stable

Gene fusions Negative Negative

PIK3CA p.E542K (29% VAF) p.E542K (25% VAF)

TP53 Splice site c.375+ 1 G > T (84% VAF) Splice site c.375+ 1 G > T (74% VAF)

ERRB2 Copy Gain (45 copies) Not reported (3.2 copies)

CDKN2A Copy Loss (0 copies) Not reported (0.7 copies)

MYC Copy Gain (16 copies) Not reported (5 copies)

BRCA2 Regional Chr13 Loss (0.16 copies) Not reported (1.2 copies)

RB1 Regional Chr13 Loss (0 copies) Not reported (0.7 copies)

CCND1 Regional Chr11 Gain (48 copies) Regional Chr11 Gain (17 copies)

FGF4 Regional Chr11 Gain (22 copies) Regional Chr11 Gain (10 copies)

FGF3 Regional Chr11 Gain (18 copies) Regional Chr11 Gain (9 copies)

FGF19 Regional Chr11 Gain (17 copies) Regional Chr11 Gain (7 copies)

RICTOR p.V1358M (30% VAF) Not reported

CDK12 Copy Gain (10 copies) Not reported (2 copies)

MTOR Not reported p.E706K (8.6% VAF)

Genomic alterations identified in the two study liver biopsies (Study biopsy #1 and Study biopsy #2) taken 4 months apart, highlighting genomic
heterogeneity. Not reported= below threshold for reporting and not on clinical report.
VAF variant allele frequency.
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(MKI67) had higher expression compared to all cohorts but that
of basal.
Protein profiling by the Intracellular Signaling Protein Panel and

RPPA upstream and downstream of PI3K-AKT and MAPK pathways
demonstrated little activation within Study biopsy #2. Upstream
analysis of receptor tyrosine kinases (RTK) by the Intracellular
Signaling Protein Panel showed overall low HER2 (Fig. 3, HER2 box
plot under “Receptors”) but above average protein levels for MET
in comparison to the BC cohort (MET box plot under ‘Other’). This
correlated with results from RPPA pathway profiling that showed
an average signal from the RTK pathway (which includes
phosphorylated MET and HER2) compared to the basal TCGA
and SMMART-program cohorts (Fig. 5b). Downstream signaling

was not observed within the MAPK pathway using the Intracellular
Signaling Protein Panel, represented by low phospho-cRAF,
phospho-MEK, and phospho-ERK1/2 (Fig. 3, box plots under
“MAPK-RAS Pathway”). However, RPPA profiling of the MAPK
pathway showed an average signal (Fig. 5b). Downstream
signaling within the PI3K-AKT pathway was observed, but lower
than expected based on genomic evidence of the PIK3CA
mutation and high expression. Several phosphoproteins within
the PI3K-AKT pathway analyzed by the Intracellular Signaling
Protein Panel were within the low to average quartiles of the BC
and TNBC cohorts, such as phospho-AKT, phospho-PDK1, and
phospho-PRAS40, while phospho-GSK3β was above average in
both cohorts (Fig. 3, box plots under “PI3K-AKT Pathway”). Within

Fig. 3 Pathway analysis of protein and phosphoproteins within Study biopsy #2 by the Intracellular Signaling Protein Panel. Box and
Whisker plots Y-axis showing the distribution of antibody levels (log batch correct counts) of Study biopsy #2 (red asterisks) compared to a
cohort of 32 metastatic breast cancers of all subtypes (BC) or 15 metastatic TNBC specimens, X-axis. Cohort consists of predominantly HER2
negative samples. Boxes show the 25th, 50th (median line), and 75th percentiles of the cohorts. Protein and phosphoproteins are grouped
under pathways including “PI3K-AKT”, “mTOR”, and “MAPK-RAS”, and the categories “Proliferation” and “Other”. ND=Not detectable or below
level of background, measured with non-specific antibody.
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the mTOR pathway, phospho-S6 and phospho-4E-BP1 were within
the higher quartile of the TNBC cohort (Fig. 3, box plots under
“mTOR Pathway”). RPPA profiling of the PI3K pathway was
comparatively low, while the TSC-mTOR pathway was average

(Fig. 5b). Feedback from the mTOR pathway could contribute to
the apparent low PI3K-AKT activity. Minor discrepancies in
pathway results from the two assays may be explained by the
larger number of proteins defining the RPPA pathway profiles (see

Subtypes:
SMMART program breast cohort
TCGA basal breast cohort

a

b

Hormone Signaling AR Apoptosis

Receptor Tyrosine Kinase RAS-MAPK PI3K-AKT TSC-mTOR

G0-G1Cell cycle progression G1-S G2-M

Fig. 5 Reverse Phase Protein Array (RPPA) profiling by subtype clustering and pathway analysis of proteins and phosphoproteins in
Study biopsy #2. Protein expression values were normalized within the TCGA breast cancer cohort. a The heat map represents a rank sum
ordering of the protein expression across TCGA (red), 31 SMMART-program samples (purple), and Study biopsy #2 (arrow). The red and blue
colors represent higher and lower expression proteins, respectively. b Pathway profiling by RPPA. The data were z-scored and pathway activity
was assessed using pathway scores calculated as described previously56. The histogram represents the distribution of the pathway’s activity
(Y-axis= density) of the TCGA basal breast cancer cohort (white) and SMMART-program cohort (gray) as well as the pathway activity of Study
biopsy #2 (black line). See Supplementary Table 1 for proteins comprising each RPPA pathway.
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RPPA Supplementary Table 1), the analysis of different biopsy
cores, and differences in comparator cohorts.
Protein profiling of cell cycle and proliferation demonstrated a

high mitotic index. Phosphorylated histone-H3, a mitotic marker
on the Intracellular Signaling Protein Panel, was high compared to
both cohorts, whereas interphase cell proliferation assessed by
Ki67 was moderate compared to the BC cohort and lower than the
highly proliferative TNBC cohort (Fig. 3, box plots under
“Proliferation”). RPPA pathway profiling revealed a high cell cycle
progression signal, which includes markers from all cell cycle
phases (Fig. 5b). Deeper analysis of cell cycle phases from
individual pathway plots, showed that this was not due to cyclin
D1 (G0-G1) or S phase cell cycle regulators (G1-S), but high signal
from G2/M that may reflect slow progression through the later cell
cycle phases. Furthermore, RPPA identified low apoptotic signal,
consistent with the tumor cells being resistant to apoptosis.

DISCUSSION
Identification and assessment of IMH in real-time is an urgent
challenge, as it is becoming increasingly established that
heterogeneity can affect cancer treatment selection and prog-
nosis. Breast cancer receptor discordance, as signified by a change
in ER, PR, or HER2 receptor status, represents IMH that is critical in
treatment selection and correlates with poor outcome. IMH
presenting as receptor discordance has been documented
between primary and metastatic lesions in breast cancer. Multiple
studies have indicated that receptor status can be dynamic and
may evolve during the course of treatment and tumor progres-
sion8,13,34. Studies showed an overall 16–30% receptor status
change after neoadjuvant treatments35,36, with change in
HER2 status being less common than that of ER or PR35–37.
Between primary and metastatic breast cancer, a meta-analysis of
39 studies showed a total discordance rate of 10.3% for HER2,
19.3% for ER, and 30.9% for PR9. Similar findings were confirmed
by two other recent reports38,39, showing HER2 discordance rate
of 8.5% and 10%. Most recently, a study with matched primary
and metastatic tumors showed 24.6% and 36.9% discordance
based on receptor status and PAM50, respectively10. However,
receptor discordance among different metastatic lesions through
tumor progression remains poorly understood, likely due to the
lack of routine serial biopsies across metastatic sites. Our study
directly addresses this important knowledge gap. It demonstrates
that the patient’s metastatic lesions were discordant among
biopsies, starting as ER/PR positive, HER2-normal in both primary
and initial mediastinal metastasis, then ER/PR negative, HER2-
positive in the liver Study biopsy #1, and finally TNBC (with AR
positivity) in the liver Study biopsy #2.
Given the clinical and therapeutic implications of IMH, it is

important to perform biopsies on metastatic lesions under specific
circumstances in breast cancer to capture the heterogeneity in
order to aid treatment selection. The first hepatic Study biopsy #1
was performed due to the unexpected rate of disease progression
through two lines of treatment prescribed for a presumed ER/PR
positive, HER2-normal breast cancer based on a prior biopsy.
Specifically, the patient had rapid progression on both palbociclib
and everolimus-based therapies. The MONALEESA-7 study showed
that median progression free survival (PFS) for premenopausal
women with ER/PR positive, HER2-normal, advanced breast cancer
receiving similar cyclin-dependent kinase 4/6 (CDK4/6) inhibitor
therapy is ~23 months, much longer than the 10 months seen in
this case40. While CCND1 amplification and CDKN2A loss have
been associated with sensitivity to CDK4/6 inhibition in some
studies41,42, the co-occurring loss of RB1 found in the biopsy is
associated with resistance43,44 and its likely presence in additional
lesions may be responsible for the shorter PFS. After progression
on palbociclib and letrozole, the patient received everolimus and
exemestane, which in the second line setting has PFS ranging

from 8.5 to 11 months45–47, again, significantly better than the
2 months for this patient. On progression, repeat imaging
identified new lesions including both study biopsy lesions
(L3 seg2 and L4 seg5/6, Fig. 1b) that were resistant to everolimus.
Due to the limited specimen from Study biopsy #1, we were
unable to explore mechanisms of resistance to everolimus outside
of ERBB2 amplification, such as a potential lack of downstream
mTOR signaling or activation of compensatory pathways. Overall,
a biopsy of the progressing metastatic lesion (Study biopsy #1)
was pursued given the unusual clinical course and uncovered a
HER2-positive lesion, allowing for treatment change accordingly.
Additional metastatic biopsies are warranted when treatment

response is suboptimal, compared to expected results, in order to
inform treatment decisions. Molecular profiling can provide
insights into resistance mechanisms or further characterization
of the tumor. The first imaging event following paclitaxel,
trastuzumab, and pertuzumab treatment showed complete
resolution of five lesions, including the Study biopsy #1 lesion
that harbored the ERBB2 amplification; however, the patient had
overall mixed response to HER2-directed therapy. Study biopsy #2
was performed on a liver lesion that dramatically progressed on
trastuzumab and pertuzumab alone in order to understand this
lesion’s biology and identify potentially targetable alterations.
Clinical characterization revealed a TNBC tumor, with low HER2
protein level that was corroborated by the Intracellular Signaling
Protein Panel. Intrinsic RNA subtyping showed a basal
PAM50 subtype (Fig. 4b) based on its high proliferation-related
gene expression and MYC but also indicated moderate expression
of ERBB2 RNA. Additional TNBC-specific intrinsic subtyping
showed an LAR subtype (Fig. 4c) suggesting luminal attributes
due to AR expression, and RPPA supported this heterogeneous
phenotype (Fig. 5a). The clinical data along with some insight from
exploratory assays revealed mechanisms of resistance to HER2-
directed therapy and prior endocrine therapy (everolimus and AI
combination). AR expression and resulting luminal characteristics
can contribute to AI resistance and can decrease efficacy of
chemotherapy and everolimus combinations in TNBC tumors,
even with PI3K pathway mutations 48,49.
Study biopsy #2’s genomic landscape was quite different from

the targeted alterations found in the previous biopsy, taken only
4 months prior. PIK3CA and TP53 mutations were still present, but
surprisingly five of six clinically relevant copy number alterations
were absent, including those in cell cycle regulators and ERBB2.
This genomic profile was corroborated by RNA and protein
profiling of the lesion showing little to no expression changes or
deregulation within G1 or S cell cycle phases or cell signaling
pathways. The exception being high G2/M and phospho-histone-
H3 signal, with downregulated apoptosis. The repeat metastatic
biopsy offered clinical implications in the patient’s treatment and
provided biological insight into this heterogeneous cancer in
terms of genomic alterations and adaptive RNA and proteomic
regulation. The variable clinical response of the four hepatic
lesions tracked in the clinical timeline (Fig. 1b) suggests the
possibility of further heterogeneity among metastatic lesions that
were not biopsied. Ideally, repeat biopsies of multiple lesions at
the same time would help fully assess the temporal and spatial
nature of IMH and its evolution. Unfortunately, this can lead to
increased procedural risk and undue burden for the patient, which
needs to be balanced carefully.
The origin and mechanisms leading to IMH remain under

investigation. Multiple driving forces likely contribute to IMH,
including subclonal expansion from selective treatment pressure,
tumor microenvironment composition and function, cellular
plasticity, and genomic instability1,16,50. The dramatic differences
in ERBB2 and other copy alterations between the biopsied lesions
could have resulted from selective pressure for pre-existing ER-
negative subclonal populations that arose, with subsequent
branching of clones with or without ERBB2 amplification. This
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would result in IMH causing heterogeneous response to HER2
treatment and would benefit from strategic combination treat-
ments for effective tumor control. HER2-directed treatment can
result in tumor evolution and the loss of HER2 overexpression in
some lesions51, which could be possible even with only 4 months
of treatment. HER2 treatment resistance can also result from high
RNA MET expression, as was observed in Study biopsy #2 (Fig. 4d).
HER2-positive basal-like breast cancers can activate MET with
expression of its ligand, the hepatocyte growth factor (HGF),
particularly in liver where HGF is high. For HER2 lesions with a
known resistance mechanism, such as MET expression, preclinical
studies have shown that adding crizotinib to the HER2 treatment
in effort to reconstitute HER2 dependency is encouraging and
should be explored further52. IMH beyond receptor status can be
explored with tumor genome sequencing. The alterations
identified in this case are generally consistent with our current
understanding of the metastatic breast cancer genomic land-
scape, with PIK3CA and TP53 mutations and CCND1 copy
alterations being the most common21–23. Previous studies showed
genomic alterations between primary and matched metastatic
lesions in ER positive breast cancer are largely concordant25, which
highlights the unusual molecular divergence between the two
metastatic lesions in this patient. The possibility that the different
metastatic lesions originated from separate primary lesions cannot
be excluded. In clinical practice, a different or occult primary
tumor can very-well contribute to IMH and should not be
overlooked. However, while not conclusive, we believe these
two metastatic lesions are derived from the same progenitor
neoplastic cell population based on the presence of the same
PIK3CA E542K and TP53 splice site mutation in both samples
identified by NGS. Both mutations were determined to be somatic
and the likelihood that they arose independently in the same
individual is low. Furthermore, low pass whole genome sequen-
cing to assess chromosomal copy alterations in both biopsies
showed an overall similar chromosomal gain and loss profile,
providing further evidence that these subclonal lesions originated
from the same primary clone (data not shown). Rather, our
findings could be consistent with a recent phylogenetic study that
identified copy number alteration differences between the
primary and metastatic lesions, as well as among metastatic
lesions26. This study suggested that independent seeding events
from a primary tumor can give rise to genetically distinct
metastatic lesions and that genomic divergence can be found at
various time points, including after the establishment of meta-
static disease26. A process that could lead to a population of
diverse subclones in neoplastic disease is telomere crisis during
transformation. Early in breast cancer, a critical transition and crisis
event occurs, where shortened telomeres are rescued by re-
expression of telomerase, allowing for immortalization and
widespread genome instability in ductal carcinoma in situ as cells
transition to invasive cancer18. This tumor could have undergone
this early event, as evidence of chromosome instability and high
levels of phosphorylated histone-H3 suggests delays in mitosis
that could be due to defects in chromosome division. This was
supported by the RPPA cell cycle signatures, specifically finding
G2/M phases to be the most affected. The exact mechanism and
source behind the receptor discordance throughout this patient’s
course remained elusive. However, despite its source, capturing
this discordance during her metastatic treatment course allowed
informed therapy refinement.
While the mechanisms that give rise to tumor heterogeneity

remain incompletely understood, managing tumor heterogeneity
clinically remains a challenge, especially in the cases of hetero-
geneous lesions harboring mutations that suggest different
treatment sensitivities. In current practice, repeat clinical biopsies
are rarely performed in the metastatic setting, which in our
experience might result in missed opportunities in identifying
clinically significant IMH. While routine serial biopsies may not be

indicated or feasible, clinical scenarios of unanticipated rapid
progression or mixed response should prompt suspicion of
clinically significant IMH and consideration for a repeat biopsy
to refine therapy options. Evaluation of IMH is possible using a
serial approach that prioritizes the most aggressive lesion for
biopsy, which may change throughout the clinical course.
Measuring blood-based serum biomarker levels can assist with
monitoring and provide a more frequent, non-invasive assessment
of treatment response that can prompt an imaging or biopsy
event. In addition, liquid biopsies based on sequencing of cell free
DNA from peripheral blood has emerged as a promising
technique to monitor genetic alterations from many different
lesions, and should be explored in future studies to closely
monitor arising heterogeneity and treatment response. With the
development of new targeted agents in breast cancer and wider
implementation of multi-omic analyses, analytical assessment of
IMH holds investigational promises. The paths to implementation
of and financial coverage for the emerging assays are not yet clear
and need to be established. It is important to note that the multi-
omic translational oncology approach remains investigational and
clinical tumor profiling should remain focused on receptor status
and actionable mutations with approved matched therapies.
However, serial biopsies with appropriate testing should be
encouraged in selected clinical circumstances as presented above.
Further study will be necessary to better understand the temporal
and spatial nature of IMH and to better predict and target changes
under therapeutic pressure.

METHODS
Patient enrollment, tissue processing, and DNA extraction
Specimens and data were acquired from the participant by obtaining
informed written consent to use their coded de-identified data and/or
specimens for research and publication purpose under regulation by the
Oregon Health & Science University (OHSU) IRB# 16113 MM-TERT.
Formalin-fixed paraffin-embedded biopsies and tumor tissue were
collected and DNA extraction was carried out using a FFPE DNA extraction
kit (QIAGEN). DNA was extracted from plasma and buffy coat using
Macherey-Nagel NucleoSnap and QIAgen Blood and Tissue kits, respec-
tively. DNA isolated from both FFPE samples and buffy coat were
fragmented by sonication to 150 bp using a Covaris E220 prior to library
preparation.

Clinical immunohistochemistry
Tissue is formalin-fixed for ~12 h (meets ASCO/CAP guidelines). Immuno-
histochemical stains are performed on formalin-fixed, paraffin-embedded
tissue, using a biotin-free protocol (Ventana Ultraview) that includes
appropriate positive and negative controls. All antibodies are sourced
through Ventana and come pre-diluted. The ER (Catalog# 790-4324, Clone:
SP1, Rabbit monoclonal, 1 µg/mL), PR (Catalog# 790-2223, Clone: 1E2,
Rabbit monoclonal, 1 µg/mL), and Her-2/neu (Catalog# 790-2991, Clone:
4B5, Rabbit monoclonal 6 µg/mL primary antibody) immunohistochemical
stains are performed with FDA status 510(k) cleared kits from Ventana
according to manufacturer’s instructions, with appropriate controls. OHSU
participates in proficiency testing for ER, PR and Her-2/neu IHC.

NGS: GeneTrails® comprehensive solid tumor panel
Preparation of DNA and sequencing was performed at the Knight
Diagnostics Laboratories. Total nucleic acid was extracted from macro-
dissected, tumor-rich areas from FFPE sections was purified and used for
NGS. 50 ng of DNA was used to prepare a custom amplicon-based
sequencing library (QiaSeq) that covers target exons and flanking intronic
sequences for 125 cancer-associated genes. 100 ng of RNA was converted
to cDNA and amplified using another custom QiaSeq library that can
detect gene fusions involving 24 clinically informative target genes in a
partner-agnostic approach. Sequencing was performed on an Illumina
NextSeq500.
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RNA transcriptome sequencing
Preparation of RNA and transcriptome sequencing was performed at the
Knight Diagnostics Laboratories using the TruSeq RNA Access library
preparation kit and sequenced on the Illumina NextSeq500. Approximately
100 million reads were generated per sample. RNA sequence reads were
processed following the methods described by Tatlow & Piccolo53. Briefly,
sequenced reads were trimmed with Trim Galore (http://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/) using default para-
meters. Trimmed reads were quantified for transcript expression by Kallisto
to the GENCODE release 24 reference transcriptome (https://pachterlab.
github.io/kallisto)54.

RNA expression profiling
Expression abundance in transcripts per million (TPM) were batch
corrected using batch control replicates with removal unwanted variation
method. Expression levels were compared by mean centered and scaled
gene expression within the cohort of 40 metastatic breast cancers
SMMART-program samples to the mean centered and scaled expression
levels of TCGA breast cohort.

PAM50 intrinsic subtyping/TNBC-specific intrinsic subtyping
PAM50 analysis of 50 genes that correlate with five breast cancer subtypes
(basal, normal, HER2, luminal A and luminal B), and TNBC-tumor subtype
analysis of 77 genes that correlate with four TNBC subtypes (BLIA, BLIS,
LAR, and MES). The sample is assigned to a molecular subtype with the
highest Spearman correlation between the subtype’s centroid and the
corresponding gene expression pattern32,55.

Intracellular signaling protein panel
This clinical assay is based on the Vantage 3D Protein Solid Tumor Panel
(FFPE) available from Nanostring Technologies. It consists of a cocktail of
24 oligonucleotide-tagged antibodies designed to bind to specific proteins
involved in intracellular signaling or to specific sites of phosphorylation on
these proteins. In addition, non-specific mouse IgG1 and rabbit IgG
antibodies are included as controls for background binding (total of 26
antibodies). The oligonucleotides are joined to the antibodies via a UV-
sensitive chemical linker. Following heat-induced epitope retrieval in
citrate buffer, 5 micron sections of tumor core biopsies and control FFPE
cancer cell lines were incubated with the antibody cocktail for 12 h at 4
degrees. After washing, slides were placed on a UV light box for 3 min, and
released oligonucleotides were collected, hybridized to code sets, and
counted on a Nanostring MAX nCounter system. Signals from the FFPE cell
lines were used to normalize the data from different runs.

Reverse phase protein array
Protein extracts from tumor samples were analyzed with a panel of 450
proteins and phosphoproteins as previously described56,57. In order to
scale the protein expression values, the RPPA data from the patient sample
was merged within the TCGA primary breast cancer and SMMART-program
metastatic breast cancer RPPA datasets, using the replicate-based
normalization method58. The protein expression values were then z-scored
by using the median and standard deviation and a heat-map was
generated from the Study biopsy #2. The heat map was produced using
publicly available Cluster 3.0 and TreeView software.

Protein pathway analysis
RPPA Pathways were calculated as previously described57. Proteins used as
predictors of the different pathways are listed in Supplementary Table 1.
To determine a pathway score, for each sample, all positively associated
predictors were summed minus the predictors that are negatively
associated with the pathway. The total was then divided by the numbers
of predictors in the pathway. To generate the pathway scores histograms,
the distribution of TCGA basal subtype breast cancer samples and 31
SMMART metastatic breast cancer samples were plotted and the value of
the patient sample was added to the histograms.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The raw RNA sequencing data generated during the current study, are available in
the dbGaP repository: https://identifiers.org/dbgap:phs002321.v1.p159. As these files
are controlled access, researchers must request access to the dbGaP data. The
repository also includes clinical and phenotypic metadata and molecular data
(including gene and protein expression). The normalized gene expression (RNAseq)
data and the reverse phase protein array data (protein expression data), are publicly
available in the Synapse repository under the following project accession:
syn2297591660. HER2 immunohistochemistry data, Intracellular Signaling Protein
Panel assay data, and data from the GeneTrails Solid Tumor Panel assay, are not
publicly available, but will be made available on reasonable request. Please contact
the Knight Diagnostic Laboratories at Oregon Health and Science University (OHSU),
email: KDLClientServices@ohsu.edu, for more information on these datasets. The
TCGA RNAseq and the TCGA RPPA data analyzed during the study, are available in
the Open Science Framework repository: https://osf.io/gqrz9/61. The data generated
and analyzed during this study are described in the following metadata record:
https://doi.org/10.6084/m9.figshare.1361571262.
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