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Type I diabetes (T1D) is an autoimmune disease that can be managed, but for which

there is currently no cure. Recent discoveries, particularly in mouse models, indicate that

targeted modulation of the immune response has the potential to move an individual

from a diabetic to a long-term, if not permanent, healthy state. In this paper we develop

a single compartment mathematical model that captures the dynamics of dendritic cells

(DC and tDC), T cells (effector and regulatory), and macrophages in the development

of type I diabetes. The model supports the hypothesis that differences in macrophage

clearance rates play a significant role in determining whether or not an individual is likely

to become diabetic subsequent to a significant immune challenge. With this model we

are able to explore the effects of strengthening the anti-inflammatory component of the

immune system in a vulnerable individual. Simulations indicate that there are windows

of opportunity in which treatment intervention is more likely to be beneficial in protecting

an individual from entering a diabetic state. This model framework can be used as a

foundation for modeling future T1D treatments as they are developed.

Keywords: type I diabetes, tolerogenic dendritic cells, regulatory T cells, macrophage clearance, immunotherapy,

mathematical model, treatment simulation

1. INTRODUCTION

Type I diabetes (T1D) is a chronic disease, often diagnosed in early childhood, that is characterized
by an inability to regulate levels of glucose in the blood. Managing T1D requires daily injections of
the hormone insulin. Even with proper management, individuals with T1D are at higher risk for
serious health issues, including vision problems as well as heart, kidney, and nerve disease (Isley
and Molitch, 2005). The causes of T1D are still not completely understood, but it is believed to be
the result of a combination of environmental and genetic factors (Freiesleben De Blasio et al., 1999).

Type 1 diabetes is characterized by chronic elevated blood-glucose levels. These elevated glucose
levels result from an abnormal auto-immune attack on insulin-producing β-cells in the pancreas.
Cells in the body, such as fat, blood, and muscle cells, respond to insulin by absorbing glucose
from the blood, thus lowering blood glucose levels. When insulin-producing pancreatic β−cells
are damaged via an auto-immune attack, normal insulin production is disrupted, and blood glucose
rises above healthy levels.

Specific clones of cytotoxic T-cells are thought to be the major culprit for this autoimmune
response that invades the pancreatic islets of Langerhans (Varela-Calvino et al., 2017). However,
many other types of immune cells are implicated in facilitation of the onset of disease. For example,
Nerup et al. (1994) proposed that while the adaptive immune system does play a role in late stages
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of β-cell destruction, initial attacks are the result of macrophages
secreting cytokines that are toxic to β-cells (Nerup et al., 1994).
Dendritic cells (DC), which participate in antigen presentation,
can contribute to initial onset and further development of the
disease (Price and Tarbell, 2015). In non-obese diabetic (NOD)
mice in particular, DCs appear in the pancreatic islets early on
(3–4 weeks) and present self-peptides to auto-reactive T cells
(Calderon et al., 2011; Carrero et al., 2016).

The non-obese diabetic mouse (NOD) has been an invaluable
animal model system for the study of T1D, since in humans
this disease is difficult to study non-invasively. In female NOD
mice the timeline of the disease can be structured in stages.
Specifically, as early as 2 weeks after birth immune cells infiltrate
the pancreatic islets, at the 2–5 weeks mark macrophages and
dendritic cells appear (Carrero et al., 2016), and at 6–10 weeks
CD4+ and CD8+ T-cells engage with islets (Dahlén et al.,
1998) (although CD8+ cells that are weakly insulin specific can
emerge as early as 4–5 weeks; Trudeau et al., 2003). In NOD
mice diabetes occurs when 95% of the β-cells are destroyed.
Although incidence of T1D and time of onset can vary among
different NOD mouse populations, typically 70–90% of female
NOD mice develop T1D by 30 weeks of age, depending on
strain, environment, and other factors (Alanentalo et al., 2010;
Chaparro and DiLorenzo, 2010; King and Sarvetnick, 2011; The
Jackson Laboratory, 2019). Prior to T1D onset when immune
cells invade the islets, a general inflammatory state, referred
to as insulitis, emerges. Interestingly, while almost all NOD
mice develop insulitis, many do not develop T1D. A variety of
genetic and environmental factors correlate with T1D. There
are a few immune deficiencies that are thought to aid in the
development of T1D in NOD mice, which in turn could mimic
the factors that lead to T1D in humans. We highlight a few
key NOD T1D related deficiencies that we examine closely in
this paper. First, as part of normal development in neonatal
rodents (both NOD mice and non-diabetes-prone Balb/c mice),
the pancreas undergoes structural changes due to a high rate
of apoptosis of β-cells during weaning, referred to hereafter as
the apoptotic wave (Trudeau et al., 2000). Secondly, experiments
have shown that macrophages from NOD mice have defective
phagocytosis (O’Brien et al., 2002; H. et al., 2003; Maree et al.,
2005). In addition, there is evidence that NOD mice have an
IL-2 defect, which most likely affects proliferation and survival
of Tregs (Tang et al., 2008), and in fact, T1D has been shown
to be accelerated in Treg-deficient NOD mice (Feuerer et al.,
2009). These factors collectively indicate that macrophages
set the stage for the disease, and that Tregs are required to
prevent disease progression. Antigen presenting cells, such as
dendritic cells, can play a role in an important connection
between macrophage engulfment and Treg expression
(Creusot et al., 2014).

Understanding all the elements and complex interactions that
contribute to differing immune system responses continues to
be an active area of investigation. How cells die and how cell
death and immune dynamics interact is a critical piece of the
immune response puzzle. As discussed in Green et al. (2009),
there are multiple varieties of cell death (including apoptosis,
autophagic cell death, necrosis, secondary necrosis, pyropotosis,

and mitotic catastrophe), and the conditions under which cells
die (including cell death pathway, timing, and location) will
trigger different cascades of events that can ultimately lead
either to an immunogenic (inflammatory) or tolerogenic (anti-
inflammatory) immune response. For example, it is generally
understood that normal physiological cell death (apoptosis)
contributes to tolerogenic immunity, whereas pathological
cell death (necrosis) triggers an immunogenic (inflammatory)
response. There is evidence that there are some exceptions to
these categorizations, but for the sake of the model-building
that we will do in this paper, we will adopt this simplified
framework (i.e., apoptosis → tolerogenic response and necrosis
→ immunogenic response). For our purposes in this paper,
we focus on the role that an engulfed dying cell has on DC
activity. Specifically, the state of an engulfed cell (i.e., whether
it is apoptotic or necrotic) in our framework dictates whether a
DC will present an immunogenic (“fight”) signal that increases
the action of effector T cells, or a tolerogenic (“stand down”)
signal that increases the effects of regulatory T cells. We highlight
that this function-based DC classification omits many details
that are known about categorization of DC subsets, based
on, for example, origin, phenotype, or function (Collin et al.,
2013). For example, Steinman (1991, 2012), Banchereau and
Steinman (1998), and Steinman et al. (2000, 2003) proposed a
framework that broadly categorized monocyte-derived DCs as
either immature or mature. In this framework, once DCs are
resident in tissue, they are continually active in either immature
or mature states. Immature DCs are more likely to be tolerogenic
(that is, they contribute to the cascade of events that leads to
an increase in the tolerogenic response). Once an immature
DC is exposed to a danger signal (from a necrotic cell, for
example), the DC matures, and is then more likely to contribute
to an immunogenic response. Thus, we categorize DCs as
either tolerogenic (and refer to these as tDCs), or immunogenic
(simply referred to as DCs), with the understanding that tDCs
are more likely to be immature, and DCs are more likely to
be mature.

A number of mathematical models have been created to
explore various hypotheses regarding key factors in T1D
onset and progression (c.f. Nelson et al., 2009; Shoda et al.,
2010; Jaberi-Douraki et al., 2014). One hypothesis referred to
as the “Copenhagen model" in Freiesleben De Blasio et al.
(1999) postulated that differences in macrophage engulfment
rates can be sufficient to result in autoimmunity. While,
Freiesleben De Blasio et al. (1999) performed preliminary
mathematical analysis of this model, the results presented were
primarily qualitative, and did not investigate the model for
biologically grounded parameters of NOD mice. Motivated
by the Copenhagen model, Marée et al. (2006) performed a
quantitatively rigorous evaluation of the earlier, preliminary
modeling; the key idea they tested was that NOD mice have a
diminished ability to clear apoptotic β-cells, which then become
necrotic. The core of their model relied on bistability between
a healthy and a disease state, a transition which could be
achieved with the help of variations of macrophage clearance
rates. The role of T cells was then subsequently investigated
first in Alexander and Walh (2011) where they studied a generic
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model of autoimmune disease that could be controlled by Tregs.
Magombedze et al. (2010) extended the Maree et al. model to
include generic Treg control of the autoimmune response. In
Mahaffy and Edelstein-Keshet (2007), amathematical model with
activated, memory, and effector T cells was examined in the
context of late disease progression when cyclic fluctuations in
the levels of T cells in the blood were observed by Trudeau
et al. (2003). Khadra et al. (2009) followed up with a simplified
model that tracked various T cell clones with a primary focus on
understanding the role of low avidity memory T cells that can
shield β-cells, thereby generating a bistable system including a
healthy and a diseased state. More recently, Jaberi-Douraki et al.
(2015) examined the role of ER stress in β-cell death, whereas
Moore and Adler (2016) used a model with many immune
populations to explore the role of viral infection in the rate of
progression of T1D in NOD mice. While all the above models
have used nonlinear ODEs, recently Wedgwood et al. (2016)
proposed an agent based spatial model using data from human
pancreata collected close to the onset of T1D, with particular
focus on the mechanisms underlying the development of insulitis
in pancreatic islets.

In this paper, we propose a nonlinear ordinary differential
equation mathematical model that explores the role of
tolerogenic DCs in the initiation and progression of T1D
in NOD mice. Our model relies on previous modeling strategies,
such as Marée et al. (2006), where the implementation of
the Copenhagen model that accounts for differences in
macrophage clearance rates could recreate the healthy and
NOD mouse natural histories in the context of blood glucose
levels. In contrast to the approach by Marée et al. (2006), our
model includes healthy β-cell counts as well as APC (antigen
presenting) and T-cell populations. The primary goal of our
model is to examine the role played in disease development
by DC cell populations that have both immunogenic and
tolerogenic properties. While, Moore and Adler (2016) also
included multiple classes of immune cells, such as tolerogenic
DCs in the context of viral infection, in our case we are interested
in the specific generation of tolerogenic DCs from normal β-cell
apoptosis in the pancreas. At the same time, we only include two
categories of T cells, such as effectors and regulatory cells. Our
approach extends prior work but also provides a new framework
for testing curative DC based vaccine therapies. This is based
on recent attempts to use DC injection in both mice (Machen
et al., 2004) and a Phase I clinical trial (Giannoukakis et al., 2011)
that showed DC treatments to be safe for human subjects. DC
therapies have shown tremendous promise in cancer treatment
(reviewed in Palucka and Banchereau, 2013), however, in their
immature state DCs can show tolerogenic properties that can
lead to stimulation of Tregs, which can have beneficial effects
in autoimmune disease and transplant rejection (reviewed in
Creusot et al., 2014). Indeed, Machen et al. (2004) showed that
a single injection of DCs into 5–8 week old female NOD mice
could significantly delay T1D onset and abolish insulitis in NOD
mice that did not develop diabetes. Interestingly, while a single
unmodified DC injection into 4–8 week old NOD mice can
delay disease onset, a single injection into 10–12 week old NOD
mice does not have the same effect (Creusot et al., 2014) unless

supplemented with IL-4. The primary two questions we seek to
answer through modeling here are:

• What role do tolerogenic DCs play in the development of the
disease in the presence of a β-cell apoptotic wave in NOD
(diabetes prone) and Balb/c (non-diabetes-prone) mice?

• What role do the timing and dosing of tDC injections have on
the ability of NOD mice to escape T1D onset?

We show that tolerogenic DCs do not significantly affect
disease onset. Instead, slowed macrophage clearance rates are
the primary drivers for NOD T1D development. The addition of
DC clearance narrows the range of model bistability, but overall
produces results in agreement with prior work of Marée et al.
(2006). Second and most important, we show that dose timing
is critical for prevention of T1D onset. Using various DC dosing
schedules we show that injections administered too early or too
late can prove ineffective, indicating a sweet spot for changing
the course of disease. Our simulated injection studies show that
Tregs have a primary role in helping revert disease and that
nonlinearities can produce interesting counter-intuitive results.
Our simulated dosing results are in qualitative agreement with
Machen et al. (2004). Our mathematical model can be used as
a first step in the study of the role of timing and dosing of DC
injections in NODmice.

2. MATERIALS AND METHODS

2.1. Model Formulation
The mathematical model we developed here consists of a single
well mixed pancreatic compartment that includes various types
of β-cells and immune cells, diagrammed in Figure 1. For the
β-cell populations, we included healthy (B), apoptotic (Ba), and
necrotic (Bn) populations, similar to Marée et al. (2006). For
the immune cell populations, we restricted our attention to
APC populations of macrophages and DCs, as well as T cell
populations including effector, regulatory, and memory T cells.
While it is likely that more immune populations are involved,
our goal is to keep a simple framework in which two classes of
DCs compete for activation of either effector or regulatory cells.
All the model populations are listed in Figure 1.

There are specific target behaviors that we seek to capture
in our model structure in order to effectively characterize the
development of T1D, and to improve the accuracy of DC
treatment simulations. As observed in Marée et al. (2006), there
are differences in macrophage clearance rates between NOD
and Balb/c mice that can lead to T1D in some mathematical
models. Thus, our model is constructed to have the property
that differences in macrophage clearance rates between NOD
and Balb/c mice lead to differences in the development of the
disease. For the macrophage population equations, we use the
same formulation as the model examined in Marée et al. (2006),
which captures interactions between resting/inactive (M) and
active (Ma) macrophages, apoptotic, and necrotic β-cells. The
equations governing macrophage behavior are

d

dt
M =J + (k+ b)Ma − cM − fMMBa − fMMBn

− e1M(M +Ma), (1)
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d

dt
Ma =fMMBa + fMMBn − kMa − e2Ma(M +Ma). (2)

Following Marée et al. (2006), in Equation (1) resting
macrophages are recruited in the pancreatic compartment with
constant influx rate J, whereas activated macrophages recruit
additional resting macrophages into the compartment with rate
b. In Equations (1)–(2), a resting macrophage becomes activated
when it engulfs either a necrotic or an apoptotic β-cell with rate
fM . In turn, activated macrophages convert back (or deactivate)
into the resting population with rate k. Finally, both populations
are decreased in response to macrophage crowding which
could result in reduced macrophage entry into the pancreatic
compartment with rate e1, e2, respectively.

Next, we incorporate the dynamics of healthy β-cells, glucose,
and insulin in addition to their interactions with T cells with the
following equation

d

dt
B = αBK1(G)B− δBB− ηe(t)K2(E,R)B−W(B, t). (3)

We assume that healthy β-cells are produced at a rate
proportional to glucose levels K1(G). We employ the glucose
dependent growth term derived in Equation (5.2) of Graham
(2012)

K1(G,Ghb) =
G2

G2 + G2
hb

. (4)

This term is similar to the glucose-dependent β-cell growth term
of De Gaetano et al. (2008) (Appendix 1, Equation 6). This form
postulates a slow saturating growth term with half max glucose
level of Ghb. In addition, healthy β-cells die at a constant rate
δB due to a natural lifespan of the cells. There is evidence that
effector T cells kill their targets by programming them to undergo
apoptosis (Janeway et al., 2001). Thus, in the model, when β-cells
encounter effector T cells, we will have them enter an apoptotic
state with rate ηe(t)K2(E,R). The T cell apoptosis term is given by
the nonlinear saturating function

K2(E,R) =
(sEE)2

1+ (sEE)2 + (sRR)2
, (5)

which includes both a saturating effect in effector T cells and
a slow down in β-cell apoptosis in the presence of regulatory
T cells, similar to Moore (2015). The rate ηe(t) captures the
effectiveness of β-cell killing by effector T cells and it is an
increasing function in time given by

ηe(t) = η + 2η(1+ tanh(αe(t − βe))). (6)

A plot illustrating the functional form of this time-dependent
rate is shown in Supplementary Figure S3. The rapidity of the
ascent to the steady state maximum value in ηe(t) is controlled
by the parameters η,αe, and βe. This form is chosen so as
to capture an increasing avidity of effector T cells against β-
cells as a function of time. This may be because presumably
more antigen becomes available with disease progression, thereby
increasing the number of autoantigen-specific T cells (Trudeau

et al., 2003; Krishnamurthy et al., 2006). The parameters αe, βe,
which describe the rate at which effector T cell avidity increases
over time, are estimated here from glucose data of Li et al.
(2010). The term W(B, t) captures death of healthy β-cells due
to a normal developmental apoptotic wave, as first postulated
in Trudeau et al. (2000). We use a slightly modified term from
Marée et al. (2006) with

W(B, t) = .1wBe−
(

t−9
9

)2

(7)

which encodes that the wave peaks at approximately 9 days
corresponding to 10% of the β-cell population mass. The scalar
multiplier w is a parameter we vary in order to control the
magnitude of the wave in our simulations.We note that we do not
incorporate new cell growth which occurs in the growing mouse
pancreas. This assumption results in a more pronounced model
β-cell mass decline in the presence of the apoptotic wave than
what has been observed in experiments (Finegood et al., 1995).
Unless otherwise stated, we set w = 0.75 in our model.

The model equations for apoptotic and necrotic β-cells
populations are

d

dt
Ba =δ̃BB+ η̃e(t)K2(E,R)B+ W̃(B, t)− dBa − fMMBa (8)

− fMaMaBa − ftD(Dss − D)Ba − fDDBa

d

dt
Bn =dBa − fMMBn − fMaMaBn − ftD(Dss − D)Bn − fDDBn.

(9)

Apoptotic β-cells in Equation (8) are generated from healthy
β-cells in three ways: regular cell turnover with rate δ̃B, in
response to effector T cells killing with rate η̃e(t), and from
the apoptotic wave. The δ̃B, η̃e(t), W̃ notation is used to mark
the multiplication of each corresponding parameter with a Bconv

Qpanc

factor that allows unit conversion for B from milligrams into
cells/ml to match the units of Ba,Bn; Qpanc stands for pancreas
volume, whereas Bconv gives an estimate of number of β-cells
per milligram using cell counts from Chintinne et al. (2012).
Apoptotic β-cells decay into necrotic β-cells at the rate d,
following estimates in Marée et al. (2006). A key new addition
in our model compared to Marée et al. (2006) is that both
apoptotic and necrotic β-cell populations are engulfed and
cleared by tDCs and DCs as well as by resting and activated
macrophages, with rates ftD, fD, fM , fMa, respectively. While the
rates of macrophage engulfment and β-cell clearance have been
estimated (Marée et al., 2006), in this paper we will estimate
DC clearance rates.

Glucose and insulin dynamics are modeled using the
equations developed in Topp et al. (2000) with

d

dt
G = R0 − (G0 + SII)G, (10)

d

dt
I = σIK1(G,GI)B− δII. (11)

The equations are built on the assumptions that glucose enters
the blood stream at a constant rate R0, leaves the bloodstream at
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FIGURE 1 | Diagram illustrating the biological quantities and interactions that are tracked in our single compartment model. β-cell populations are split into three

categories: healthy population (B), apoptotic cells (Ba), and necrotic cells (Bn). Healthy β-cells are involved in glucose (G) and insulin (I) regulation, whereas the dying

β-cells (apoptotic and necrotic) interact with immune cells. Dendritic cells are split into two categories: immunogenic DC (D) and tolerogenic DC (tD) based on their

ability to engage an immunogenic or tolerogenic T cell response. DCs in our model are assigned into a particular category once they engulf either apoptotic or necrotic

β-cells. Macrophages can either be in an activated (Ma) or non activated form (M) based on their capacity to engulf β-cells. T cells are split into: regulatory T (R),

effector T (E), or memory T (Em). All populations are measured in cells ml−1 except for B (mg), G (mg dl−1), and I (µ U).

a base rateG0G, and is taken up at an additional rate proportional
to the presence of insulin, given by SIIG. Insulin is in turn
produced at a rate proportional to the number of healthy β-
cells, as well as the presence of glucose up to a saturation point
parameterized by GI . Insulin decays at a natural rate δII.

Next, we incorporate DC cell dynamics with the following
equations

d

dt
D = ftDBn(Dss − D− tD)+ ftDBntD− bDEED− µDD

(12)

d

dt
tD = ftDBa(Dss − D− tD)− ftDBntD− bIRRtD− µDtD.

(13)

For the DC and tDC equations we are assuming that there
are three pools of DCs in the model compartment and we
distinguish each category by its engulfed apoptotic cell status
and specificity as follows: (1) Dss corresponding to all types of
DCs in the pancreas (2) tD corresponding to migratory and
immature (tolerogenic) DCs that have engulfed an apoptotic
beta cell and elicit a particular regulatory T cell response, (3)
D corresponding to migratory and mature (immunogenic) DCs
that have engulfed a necrotic beta cell and elicit a particular
effector T response, (4) iD = Dss − tD − D corresponding to
immature resident DCs (non-migratory) that have not engulfed
some sort of dying β-cell. Immature resident DCs engulf necrotic
or apoptotic β-cells at rate ftD. Note that the engulfment rate for
these immature DCs is assumed to be the same as the engulfment
rate of tolerogenic DCs, ftD, since tDCs are thought to be in
an immature state compared to immunogenic DCs (Mackern-
Oberti et al., 2015). In addition, tolerogenic DCs can convert into
an immunogenic state upon engulfing a necrotic cell with rate
ftD. DCs and tDCs are neutralized upon encountering effector

and regulatory T cells with rates bDE and bIR, respectively; this
term includes both direct elimination of DCs by T cells (Yang
et al., 2006) and indirect pathways (reviewed in Ronchese and
Hermans, 2001). We highlight that this term is written using a
simplifying assumption that DC and T cells engage exclusively
in the pancreas due to the single compartment nature of our
model. However, physiologically DCs are generated and lead to
proliferation of T cells in different locations such as the spleen
and or lymph nodes. In the interest of simplicity, we approximate
these interactions into a single modeling term in the pancreas
with a main goal of avoiding a scenario in which DCs and tDCs
overcrowd the pancreas, leading to unrealistically high numbers
of T cells. Finally, we assume that both types of DCs have a
constant death rate, µD.

We next discuss the T cell populations and interactions in our
model. We incorporate three T cell populations, namely: effector
(E), regulatory (R), and memory T cells (Em). The interactions
between these three populations are described by

dE

dt
= aE (Tnaive − E) + bP

DE

θD + D
− ramE+ bEDEm− µEER,

(14)

dR

dt
= aR (Tnaive − R) + bP

tDR

θD + tD
− ramR+ bRtDEm

− µRER, (15)

dEm

dt
= ram(E+ R)− (aEm + bED+ bRtD)Em. (16)

Our model equations follow closely the models of Ludewig et al.
(2004) and DePillis et al. (2013) in order to quantify how T cells
are produced. Specifically, the model developed in Ludewig et al.
(2004) and DePillis et al. (2013) is for T cell production in the
spleen, so we adapt to fit the context of the current model, where
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clearance and immune cell generation happen simultaneously.
The first term in Equations (14, 15) represents a homeostatic
naive T cell term that generates basal levels of effector and
regulatory cells. The second term in Equations (14, 15) gives
the DC-induced proliferation of effector or regulatory T cells,
which we assume happens with equal rates bP for both effector
and regulatory T cells. We note that here we assume activation
is only achieved through a specific DC or tDC interaction
that requires constant contact between a DC or tDC and an
effector or regulatory T cell, respectively. In Ludewig et al.
(2004) and DePillis et al. (2013) these proliferating saturation
terms are modeled with time delays to capture so called “pre-
programming” of T cells for division and differentiation. In
our case, since simulations extend for months, we assume that
the delay is short in comparison and omit it. The specifics
of T cell proliferation mechanisms in various modeling setups
have been reviewed in Wodarz (2007)—we retain a simplified
DC saturating term in our model indicating that proliferation
is limited by the availability of DCs. Effector and regulatory
cell interactions are incorporated with simplified mutual down-
regulation terms with rates µE,µR to incorporate the mutual
inhibition of effector and regulatory T cells. We note that such
a term aims to most directly incorporate the effects on immune
response due to differences in effector vs. regulatory T cell
numbers, however, physiologically each T cell population can
be suppressed through a variety of direct and indirect pathways
(Sakaguchi et al., 2008). Finally, our memory T cell population
is shared by the effector and regulatory T cells; we have tested
versions of the model where two separate memory cell classes
are assigned for the effector and regulatory T cells and noted
no significant model response changes. Thus, in the interest of
simplicity we opted for a single memory T cell population.

2.2. Model Parameterization
We performed parameter fitting on published DC data in order
to incorporate the DC effect on the development of T1D. The
types of cells that DCs engulf play a role in what type of specific
immune response they generate (reviewed in Green et al., 2009).
To investigate how encounters between DCs, apoptotic β-cells,
and necrotic β-cells contribute to an autoimmune response to
pancreatic β-cells, we first determine the rates at which DCs
engulf these cells. We describe these values as the “clearance
rate” of each type of DC. Such values are currently missing
from themodeling literature surrounding T1D. Thus, this section
draws on experimental data collected in Albert et al. (1998)
and stochastic parameter fitting techniques to model these
interactions and find appropriate values for the clearance rates.

2.3. Experimental Setup and Data
The experiment of interest is described in Albert et al. (1998)
in which human-derived macrophages, immature DCs, and
mature DCs were observed as they phagocytosed apoptotic cells,
and rates of engulfment and clearance were measured. In this
experiment, macrophages and immature DCs were isolated from
human subjects, and a portion of the immature DCs were
stimulated to mature. Each cell type was then placed with isolated
apoptotic cells that had not yet undergone necrosis, and were

allowed to interact over the course of 4 h. Cells were added
in a 1:1 apoptotic to phagocytic cell ratio. The key conclusion
reached in Albert et al. (1998) was that macrophages and the
two types of DCs appeared to phagocytose at different rates.
This experiment provides us with information on the relationship
between rates of phagocytosis for macrophages vs. phagocytosis
rates for DCs and tDCs. Because the experiment in Albert et al.
(1998) involved human rather than mouse immune cells, we do
not directly use those clearance rate values for DCs, tDCs, or
macrophages in our mouse model.Nonetheless, we need to make
a reasonable approximation to the needed clearance rates, fD
and ftD in mice. In order to find mouse rate approximations, we
chose to make the assumption that although rates in mice and
humans may differ, the ratios of the relative macrophage to DC
and macrophage to tDC engulfment rates will be the same in
mice as in humans. Thus, using measured mouse macrophage
engulfment and clearance rates from Marée et al. (2006), and
ratios of macrophage to DC and tDC engulfment and clearance
rates in humans (asmeasured in Albert et al., 1998), we computed
DC and tDC engulfment rates in mice to determine our clearance
rate parameters fD and ftD. For the purpose of carrying out the
rate computations, we developed a reduced mathematical model
that focused only on how each macrophage and DC population
engulfed dying cells in the assay of Albert et al. (1998). Using this
reduced model, we could employ mathematical parameter fitting
techniques to extract the needed engulfment rates.

2.4. Simplified Interaction Model
We developed a simplified set of mass action equations to model
the experimental setup. In Albert et al. (1998), there is no
distinction made between active and inactive phagocytic cells so
we assume that the rates reported for macrophages correspond
to the rate of active macrophages in our model, and similarly the
rates for immature and mature DCs correspond to the rates for
tolerogenic and immunogenic DCs in our model. Based on these
assumptions, we model each type of phagocytic cell in Albert
et al. (1998) as engulfing with a single clearance rate that does
not depend on howmany cells it has already phagocytosed. Using
these assumptions we develop the following governing equations,
which can be used for all three types of phagocytic cells,

d

dt
C = −gPPC, (17)

d

dt
Pe = gP(P − Pe)C, (18)

where C represents the apoptotic cell population, Pe(t) represents
the population of phagocytic cells that have engulfed something
since the beginning of the experiment, and P the total population
of phagocytic cells. Note that Pe, P are generic population terms
that represent M,D or tD for each data set (see Table 1). The
model is initialized with C(0) = P and Pe(0) = 0. We note that
we track Pe because we are interested in computing the percent
phagocytosis as computed in the experimental data.
We can solve the system to obtain the following solutions

C(t) = Pe−gPPt (19)
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TABLE 1 | State variables describing the cell populations relevant to the ODE

model fit to data from Albert et al. (1998), as well as their meanings.

Variable name Units Meaning

C cells ml−1 Apoptotic cell population

Pe cells ml−1 Phagocytic cell population

M cells ml−1 Macrophage population

D cells ml−1 Mature DC population

tD cells ml−1 Immature DC population

Pe(t) = P
(

1− ee
(−gPPt)−1

)

. (20)

Percent phagocytosis, ρ is then given by ρ = Pe(t)/P×100%.We
note that as t → ∞, Pe(t) → P

(

1− e−1
)

. This tells us that our
steady-steady percent phagocytosis does not depend on the rate
at which phagocytic cells engulf apoptotic cells. This presents a
challenge in fitting this model to measurements in Albert et al.
(1998) at larger values of time, because the experimental data
indicates different steady state values for different cell types.
However, we can fit this model to the behavior of each cell
type at small time values. Furthermore, we are more interested
in the transient behavior of the model, because this represents
interactions that occur without the effects of a limited source
of apoptotic cells. Because our full pancreas model assumes
apoptotic cells are being produced in the system, we would
expect behavior there to also not be limited by the apoptotic cell
population. We chose to use data up to 1 h in our fitting, as this
is the time frame in which there did not appear to be significant
saturation of percent phagocytosis in the data.

2.5. Pancreatic Compartment DC
Parameter Values
We fitted the parameters for the simplified model using the
Maximum Likelihood Estimate (MLE), implemented using the
Metropolis Monte Carlo Markov-Chain (MCMC) algorithm for
this process, detailed in the Supplementary Information. Next,
we used the parameter fits from the simplified model in order
to determine rates for DCs and tDCs in the full pancreas
model as follows. We assumed that ratios between rates for
macrophages, immature DCs, and mature DCs were the same in
humans and mice, so we could use the ratios of the parameter
values found above to determine parameters for a mouse model.
Then using the mouse macrophage clearance rate estimated
in Marée et al. (2006), corresponding to fMa , we computed
the rates at which immature and mature DCs phagocytose by
scaling fMa by the appropriate fitted ratios. Let fD and ftD
represent the clearance rates of immunogenic and tolerogenic
DCs, respectively, then

fD = fMa

gD

gMa

= 5.49× 10−2fMa (21)

ftD = fMa

gtD

gMa

= 3.82× 10−1fMa . (22)

In order to study the effects of reduced macrophage clearance
in isolation, we assumed that DCs and tDCs in NOD mice

were not impaired, meaning that DC and tDC clearance rates in
our model were assumed to be the same for NOD and Balb/c
mice. This corresponds to scaling fD, ftD from the rate that
active macrophages clear in healthy Balb/c mice, as shown in
Equations (21)–(22). In addition, we assumed that necrotic cells
were phagocytosed at the same rate as apoptotic β-cells.

All parameter values used in our model and corresponding
sources are outlined in the Appendix 1.

3. RESULTS

Simulating T1D Initiation
One aim of previous model-based studies of T1D was to evaluate
possible triggers of T1D (Marée et al., 2006). Similarly, we first
simulated the model in the presence and absence of one proposed
trigger, an early period of β-cell death in the pancreas (i.e.,
apoptotic wave). Additionally, the model was simulated for two
parameter sets, one based on data from healthy Balb/c mice, and
the other based on data from NOD mice that develop T1D. The
results of these simulations are present in Figures 2–4.

The dynamics of healthy β-cells, glucose, and insulin are
illustrated in Figure 2. These populations most clearly indicate
whether or not the system enters a diseased state. In our
simulations, we have set the threshold for pathologically elevated
levels of glucose generated in our model to be 250 mg/dl, a
choice motivated by Li and Escher (2013). Recall that in neonatal
rodents (both NOD and healthy Balb/c mice), the pancreas
undergoes structural changes due to a high rate of apoptosis
of β-cells (the apoptotic wave) during weaning (Trudeau et al.,
2000). We approximated the action of an apoptotic wave in
our model through function W (where W(B, t) ≥ 0.01B). We
indicate the effective range of our simulated apoptotic wave
by a box in Figures 2C,D. In these model simulations, in the
absence of an apoptotic wave, neither the NOD mouse nor
the Balb/c mouse develops pathologically high glucose levels.
However, even without the apoptotic wave, the NOD mouse
does experience a period of β-cell death in the first 30 weeks of
the simulation.

In the simulation, when the apoptotic wave is introduced,
the NOD mouse develops clinically elevated glucose, along with
depleted levels of β-cells and insulin, but the simulated Balb/c
mouse does not. Simulated NOD glucose levels cross the 250
mg/dl threshold at approximately 24 weeks. On the other hand,
after the wave, the Balb/c mouse is able to “recover” while the β-
cell mass in the NODmouse continues to decline. The simulation
was run for approximately 40 weeks which aligns with time
scales of experimental observations. The simulations show that
the numerical steady state glucose value for the healthy systems
is approximately 89 mg/dl (which is comparable to a healthy
value of 100 mg/dl computed in Topp et al., 2000), while the
simulated steady state glucose level for the diseased system in
silico is approximately 539 mg/dl, well above the diagnostic level.

Next we examined the dynamics of specific immune cells
in this simulation, shown in Figure 3. Figure 3A shows that
in the case when there is no apoptotic wave, the NOD
mouse nonetheless has a period of elevated effector T cells,
corresponding to the period of decreased β-cell mass observed
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FIGURE 2 | The populations of healthy β-cells (B), glucose (G), and insulin (I) simulated for 40 weeks, according to the mathematical model. We compare the system

in the presence and absence of an early wave of apoptosis, and between NOD and Balb/c mice. Multiple glucose readings above 250 mg/dl (shown by the horizontal

line) indicate the progression of T1D. The only system that crosses this threshold is the NOD mouse in the presence of the apoptotic wave (C). (A) NOD mouse, no

apoptotic wave, (B) Balb/c mouse, no apoptotic wave, (C) NOD mouse, apoptotic wave, and (D) Balb/c mouse, apoptotic wave.

above. However, as time progresses, the concentration of
regulatory T cells increases, and β-cell mass recovers, thus
avoiding the development of T1D. The in silico NOD mouse
shows higher levels of effector T cells when compared with
the Balb/c mouse. In the case of the Balb/c mouse without a
wave, we can see that effector T cells decrease early on, and
regulatory T cells increase, with little impact on the population
of healthy β-cells.

When we add the simulated apoptotic wave, both systems
display an initial spike in effector T cells. After the period of the
apoptotic wave, regulatory T cells increase in the Balb/c mouse.
For the NODmouse, there is a decrease in effector T cells after the
apoptotic wave, but they remain elevated, corresponding to the
long-term depletion of β-cells. In the simulation results shown
in Figure 3, regulatory T cells do increase after the wave in NOD
mice, but do not reach sufficient levels to inhibit the effects of
effector T cells. All systems display similar levels of memory T
cells, although they are slightly higher in the Balb/c mouse.

Finally, Figure 4 shows the populations of apoptotic
and necrotic β-cells and immunogenic and tolerogenic
DCs. (Note that active and inactive macrophages were
tracked for this simulation, but the results are not
plotted. Both the macrophage populations quickly
reach a steady state value and remain there, and
their levels do not vary greatly between NOD and
Balb/c mice.)

The first 30 weeks of model simulation show some
complicated nonlinear interactions among the immune cell
populations. When there is no apoptotic wave (Figures 4A,B),

the NOD system displays slightly higher levels of necrotic β-
cells than the Balb/c mouse due to differences in macrophage
clearance rates between NOD and healthy mice. Immunogenic
DCs in NOD mice start at a high level due to the presence
of higher levels of necrotic cells. These necrotic cells in turn
produce an upregulation of effector T cell levels. The effector T
cell increase is followed by rapid depletion of DCs via negative
feedback arising from the direct removal of DCs by effector T
cells in our model. On the other hand, in the absence of the
apoptotic wave, the apoptotic cell levels are not sufficient to elicit
high levels of tDC in NOD mice. These lower levels of tDC in
NOD mice lead to lower levels of regulatory T cells, which then
regenerate higher levels of tDC up to week 30. After this initial
time frame, there is a tDC induced boost in regulatory T cells
followed by a decline in tDC levels through negative feedback in
NODmice.

Although we observe that, without the apoptotic wave, the
NOD system shows initial nontrivial dynamics in DC vs. tDC
levels, the system eventually returns to a healthy state. In contrast,
the Balb/c mouse without the apoptotic wave moves directly into
a healthy state, since macrophage clearance rates are sufficiently
high to remove necrotic cells.

In the presence of the apoptotic wave in Figures 4C,D, both
simulated systems show a larger initial spike in apoptotic β-
cells. As apoptotic and necrotic β-cells increase, and healthy β-
cell mass decreases, it leads to a dip in immunogenic DCs in
both types of mouse due to a fast increase in effector T cells.
However, in the Balb/c mouse these effects are temporary, while
in the case of the NODmouse the immunogenic DCs remain at a
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FIGURE 3 | The populations of effector (E), regulatory (R), and memory (Em) T cells simulated for 40 weeks, according to the single compartment mathematical

model. We compared the system in the presence and absence of an early wave of apoptosis, and between NOD and Balb/c mice. The NOD mouse shows elevated

effector T cells for large values of time in the presence of the apoptotic wave, an indicator of an autoimmune response, while the Balb/c mouse and the NOD without a

wave have elevated regulatory T cells, a sign of immune homeostasis. (A) NOD mouse, no apoptotic wave, (B) Balb/c mouse, no apoptotic wave, (C) NOD mouse,

apoptotic wave, and (D) Balb/c mouse, apoptotic wave.

lower level. Tolerogenic DCs are elevated in the sick NODmouse
relative to the Balb/c mouse, since there are more regulatory T
cells at steady state in Balb/c than in NOD mice in Figure 3.
The NODmouse has higher steady state levels of necrotic β-cells
than Balb/c after the apoptotic wave, which indicates a higher
state of inflammation. Yet, as more immunogenic DCs are being
produced in response to abundant NOD necrotic β-cells, they
also become quickly eliminated by high levels effector T cells.

The levels of DC and tDC populations in the NOD vs.
Balb/c mice may at first appear to be counter-intuitive: the
NOD mice that have achieved a diabetic state (Figure 3C)
have higher levels of tDCs than DCs, as compared to the
healthy Balb/c mice that have higher DC levels than tDC
levels. This dendritic cell response is in contrast to the steady
state response of the T cells we see in Figure 3. Simulations
produce high effector T cell levels in diabetic NOD mice
and high regulatory T cell levels in healthy mice, which is
consistent with our intuition that high inflammatory signals
correspond to a diseased state. The nonlinear feedback dynamics
of our model yield this inverse relationship between steady state
levels of tDCs and regulatory T cells, and between DCs and
effector T. This is because in our model, the dendritic cell
populations increase or decrease in response to the presence
or absence of inflammatory signals, whereas the regulatory and
effector T cell populations increase or decrease in response to
the tDC and DC signals. Thus, once the anti-inflammatory
regulatory T cell levels are sufficiently high, for example, the tDC

population is no longer needed, and will be reduced. Similar
dynamics take place between DCs and effector T cells with the
inflammatory signals.

A comparison of our model results against data from Li et al.
(2010) is shown in Figure 5. Our model can capture average
glucose dynamics well; however, there is substantial variability
in glucose dynamics between individual mice, particularly as
related to time of diabetes onset. In the simulated glucose
dynamics, we note an initial glucose increase that is followed
by a leveling out for a period of time, followed by a subsequent
increase. From week 3 to week 20, β-cell destruction is
taking place due to immune engagement in the pancreas.
Nevertheless, symptoms are not apparent until after week 20.
The rapid increase in glucose levels after week 20 in our model
seems to follow an increase in effector T cell effectiveness
against β-cells.

Sensitivity Analysis
We numerically explored the sensitivity of each of the model
parameters one-at-a-time. Each parameter was both increased
and decreased individually while the remaining parameters were
fixed. Since the macrophage clearance rates fM and fMa are the
main factors in distinguishing the fate of the NOD from the
Balb/c mice, we present an analysis of the impact of changing
those clearance rates in Figure 6.

The graphs in Figure 6 show the percent change
in simulated model glucose levels at tf weeks. The
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FIGURE 4 | The populations of apoptotic β-cells (Ba), necrotic β-cells (Bn), tolerogenic DCs (tD), and immunogenic DCs (D), simulated for 40 weeks, according to the

single compartment mathematical model. We compare the system in the presence and absence of an early wave of apoptosis, and between NOD and Balb/c mice.

(A,C) Show that the NOD mouse exhibits higher levels of necrotic β-cells, which are thought to contribute to the development of T1D. In (C), the NOD mouse in the

presence of an apoptotic wave shows decreased apoptotic β-cells. (A) NOD mouse, no apoptotic wave, (B) Balb/c mouse, no apoptotic wave, (C) NOD mouse,

apoptotic wave, and (D) Balb/c mouse, apoptotic wave.

FIGURE 5 | Comparison of NOD model results with data from Li et al. (2010). Model results capture the average biological system response. Note the initial increase

in blood glucose levels; glucose levels stabilize between weeks 3 and 20, and then rise relatively rapidly to above the 250 mg/dl threshold.

color of each bar represents whether the parameter was
increased or decreased. Simulations for both the NOD
and Balb/c mice in this case include the apoptotic wave.

This ensures that, in the absence of any parameter
modifications, the NOD mice will become diabetic in
our model.

Frontiers in Physiology | www.frontiersin.org 10 September 2019 | Volume 10 | Article 1107

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Shtylla et al. T1D DC Treatment Model

FIGURE 6 | Sensitivity analysis of clearance rates fM and fMa for NOD and Balb/c mouse models. (A) Effect of 5% clearance rate changes for the NOD mouse on

glucose levels at different weeks, tf . (B) Effect of 5% clearance rate changes for the Balb/c mouse on glucose levels at different weeks, tf .

For the NOD mouse (Figure 6A), we see that during the
transient period (up to week 35), the sensitivity of the model
outcome to a 5% change in the clearance rate parameter values
increases over time. A 5% increase in the clearance rates leads to
approximately 60% reduction in glucose levels by week 40. The
response to a decrease in the clearance rates is not symmetric: a
5% decrease leads to less than a 20% increase in glucose levels.

Compared to NOD mice, Balb/c mice (Figure 6B) show
very little sensitivity to clearance rate changes over the same
time period (note the x-axis value differences in Figure 6A vs.
Figure 6B). For the non-diabetes-prone Balb/c mice, the glucose
levels change by <1% at any time point, and respond fairly
symmetrically to an increase or decrease in clearance rates. In
fact, the Balb/c model was fairly insensitive, not only to the
clearance rates, but to any parameter changes. We observed (data
not shown) that for the Balb/c mouse, when parameters were
changed by 5% from their original value, there was virtually no
impact on steady state glucose levels.

Motivated by the above sensitivity results for model
parameters, we explored the model response for a few key
parameter combinations that are critical to the mechanism
for disease development in our model. For this purpose, we
used a Latin Hypercube sampling (LHS) scheme to generate
pairwise combinations of macrophage clearance rates, fM , fMa.
Briefly, LHS is a stratified Monte Carlo sampling scheme that
assigns a distribution for each parameter, partitioning them
into N subintervals of equal probability then independently
sampling without replacement from each subinterval. We
sampled uniformly from the following clearance rate intervals
fMa ∈ [0.062, 1.2] × 10−4 and fM ∈ [0.062, 3.1] × 10−4

with interval upper bounds corresponding to the Balb/c set
of clearance rates. For each interval we chose 50 subintervals
for sampling corresponding to a total of 2,500 parameter
combinations. In addition, in order to test the model response
as a function of the wave, and the basal effector T cell activity,
η, the LHS clearance rate combinations were used in order to
simulate the model for three wave scales (w = 0,w = 0.5,w = 1)
and two η = 0.01, 0.025. Representative model results from these
simulations are shown in Figure 7.

In Figures 7A,B we show heat-maps of long term model
glucose levels at 142.85 weeks (1,000 days) against the
macrophage clearance rates either without an apoptotic wave
Figure 7A or with apoptotic wave Figure 7B. Three regions
emerge in our simulations: (I) high macrophage clearance rate
combinations that produce non-diabetic mice at the end of the
simulations, (II) intermediate clearance rate combinations that
produce non-diabetic mice that had a hyperglycemic episode at
some point, (III) low clearance rate region in which the mice end
up with high glucose levels. Three representative simulations of
glucose levels with clearance rate parameters selected from each
region are shown in Figure 8.

The boundaries between the three regions are marked in
Figures 7A,B and their location can change as η and w vary.
Of note here is that the boundary between region (II) and (III)
(we refer to this as the healthy boundary) which shifts to the
right as the magnitude of the wave is increased, as illustrated in
Figure 7C. This indicates that the diabetic region (III) expands
as the wave is added, engulfing clearance rate combinations that
produced non-diabetic outcomes without the wave. This shows
that there is a range of clearance rate combinations that are
susceptible to the wave (ranges shown in Figure 7D). These
susceptible ranges are of interest to us as they generate the NOD
phenotype in our model, meaning that for these parameters
the apoptotic wave shifts the system from the healthy to the
unhealthy state. Indeed, for these parameters our model satisfies
the Copenhagen hypothesis. In addition to the wave, we also
observe that as the effector T cell activity (η) is increased
the wave-susceptible clearance rates ranges shift (Figure 7D)
indicating that the NOD phenotype can be observed with higher
macrophage clearance rates if effector T cells are more efficient at
targeting β-cells.

In addition to the healthy boundary transitions, there are
three additional important ideas that emerge from studying
macrophage clearance rate combinations. First, we note that
the diabetic region (III) includes regions where fMa > fM
indicating that out of the two clearance rates, the inactivated
macrophage clearance rate seems to transition the system into
a diabetic state when lowered significantly despite fMa being

Frontiers in Physiology | www.frontiersin.org 11 September 2019 | Volume 10 | Article 1107

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Shtylla et al. T1D DC Treatment Model

FIGURE 7 | Susceptibility to acquiring diabetes as a function of apoptotic wave strengths w, macrophage clearance rates fM and fMa, and of baseline T-effector

activity, η. (A) No apoptotic wave: Heat map of model glucose values at 142.85 weeks for varying macrophage clearance rate combinations without apoptotic wave.

(B) With apoptotic wave: Heat map of model glucose values at 142.85 weeks for varying macrophage clearance rate combinations. (C) Changes in healthy boundary

between region (III) and (II) as wave scaling, w, is increased with fixed η = 0.01. (D) Clearance rate regions that transition from a healthy to a diseased state with the

addition of the wave (wave susceptibility range in shaded regions). Two susceptibility regions are computed, one for η = 0.01 and one for η = 0.025.

FIGURE 8 | Representative glucose levels for the three clearance regions from

Figure 7B: (I) non-diabetic, (II) non-diabetic after hyperglycemia, and (III)

diabetic.

larger. Second, in Figure 7B we note that region (II) might
be of biological significance; note that this region is one in
which mice have lower clearance rates than the Balb/c range
(recall that fM ∈ 1.2 × 10−4, fMa ∈ 3.1 × 10−4), yet they are
able to recover from hyperglycemic episodes in the presence
of the apoptotic wave. This subset of clearance rates, could be

of relevance in the context of NOR mice as in O’Brien et al.
(2002) it was observed that macrophages from female NOR mice
were deficient in phagocytosis of apoptotic thymocytes compared
with Balb/c macrophages, however their phagocytic ability was
greater than NOD macrophages. Finally, we note that the Balb/c
clearance rates used in the mathematical model are far away
from the healthy boundary whereas NOD clearance rates are
close to the healthy boundary; this could explain why the healthy
Balb/cmice show tremendous robustness in the face of parameter
perturbations whereas NOD mice were far more susceptible to
parameter variations, in agreement with results in Figure 6.

Simulating Potential DC Treatments for the
NOD Mouse
Treatments that use injections of specifically targeted tolerance
inducing dendritic cells have shown promise in recent T1D pre-
clinical and clinical trials, reviewed in Creusot et al. (2014).
Typically, vaccine dose is determined empirically in pre-clinical
studies (Creusot et al., 2008, 2010, 2014; Ruffner and Robbins,
2010; Giannoukakis et al., 2011). In NOD mice the dosing
of DC therapy ranges between 1 × 105 and 5 × 106 cells
administered either once or by several injections spread out in
weekly intervals. In this section, we investigate how our model
responds to simulated DC treatments using current studies
that have examined how the frequency and dose of injected
tolerogenic DCs affects T1D disease progression. Specifically, we
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first closely examined two treatment plans corresponding to two
total dose strengths, one representative low dose at 2 × 105 and
one representative high dose at 2× 106 using the ranges reported
in NODmice.

In Figure 9 we plot the model simulated with two single doses
injected at various time points on amodeled NODmouse system.
Experiments have shown that the timing of injections can impact
the effectiveness of treatment (Creusot et al., 2008, 2010; Ruffner
and Robbins, 2010; Giannoukakis et al., 2011). Accordingly, we
timed the injections in order to capture disease dynamics at
important disease development points. Studies involving NOD
mice have found that in mice that develop the disease, β-cell
autoantibodies are first detected between 8 and 10 weeks, but
that the development of an autoimmune response begins around
4 weeks (Creusot et al., 2014). We marked a cutoff of 250
mg/dl as the criterion for entering a full diabetic state, which
is reached at 24.3 weeks of age for our modeled NOD mouse.
Motivated by these points in disease development, we simulated
four interesting cases of treatment start times: 4 weeks which is
around the time the immune response is thought to be initiated,
10 weeks, or the time that autoantibodies are first detected, 25
weeks which is the time that this model is considered to develop
the disease, and 33 weeks at which point the glucose levels
experience a small plateau after the disease has progressed in
our model.

In Figure 9 glucose and T cell ratios are shown for up to 50
weeks. Note that glucose levels above 250 mg/dl are considered
evidence of the disease, and below 250 mg/dl, considered not
to be overtly diabetic (marked by a horizontal line in the plots).
In the cases in which glucose exceeds the diabetic threshold, we
also see that effector cell levels exceed regulatory T cell levels.
The cases in which the mouse shows non-diabetic glucose levels
are also marked by higher levels of regulatory to effector cells,

indicating an important role of T cells in disease development.
The time at which treatment is applied can significantly affect
outcomes. If the treatment is applied at the earliest time, 4 weeks,
it does not prevent the development of disease, regardless of the
dosage. At the 10 week mark at which point the model is in pre-
diabetic stage, only the high dose is effective, whereas at 25 weeks
both dosages are effective when administered in a single injection.
At 33 weeks, only the higher dosage of 2×106 cells has an impact,
indicating that the treatment is less effective if given too long after
the disease develops. Thus, a simple investigation of the model
yields non-trivial time and dose dependency for DC injections at
various stages of T1D development.

In Figure 10 the total dose levels remain the same as before,
but each dose is fractionated in weekly installments across 4
weeks. In this case, with a start time of 4 weeks, all doses remain
ineffective. This indicates that even when early intervention is
distributed over a longer time span it cannot reverse the course
of the disease. The rest of the treatment start times show similar
response to the single dose examined earlier with the high dose
showing effectiveness if initiated after the 10 week mark.

Next, we simulated treatments using a wide range of start
times (from 1 day to 45 weeks) for the high and low doses in order
to identify critical times when each dose first became effective
or lost effectiveness. In Figure 11 we show the time course of
the ratios of Treg to Teff, tolerogenic to immunogenic DC, and
apoptotic β to necrotic β-cells around one critical transition
point for the high dose, corresponding to 6.57 weeks, and two
critical transition points for the low dose at 24.86 weeks (when
low dose first becomes effective) and 32.43 weeks (when low dose
is first ineffective).

For all the critical start times examined in Figure 11, we
observed that the ratios of non-inflammatory to inflammatory
cells took a dramatic turn if enough tDCs were injected at a

FIGURE 9 | The NOD mouse model simulated with a single dose of tolerogenic DCs administered in a single injection, for varying dose amounts and treatment start

times. (A–D) Glucose levels for all treatment levels. (E–H) Ratio of regulatory to effector T cells for all treatment levels. (A) Treatment is ineffective when started too

early for any dose amount. In all cases, T cell ratios indicate larger values of effectors to regulatory cells when treatment is not effective. (B) Only high doses are

effective when started at the 10 week mark in the pre-diabetic range. (C) Both treatment amounts are effective right after glucose threshold is exceeded, as indicated

by low terminal glucose levels and high T regulatory cell levels. (D) Treatment can be effective when started after the development of the disease, but larger doses are

required.
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FIGURE 10 | The NOD mouse model simulated with doses of tolerogenic DCs administered in four weekly injections, for varying dose amounts and treatment start

times. (A–D) Glucose levels for all treatment levels. (E–H) Ratio of regulatory to effector T cells for all treatment levels. (A) Early treatment is not effective when it is

delivered in four weekly doses for both high and low dosing. (B) Only high doses are effective and in (C) we see that for later treatment start times both low and high

doses are effective, however, in (D) we see that the low dose loses effectiveness similar to the case with one dose application.

FIGURE 11 | Time-course of cell ratios with two doses (2e+ 05 and 2e+ 06) with treatment started at critical transition start times. At Start Time = 6.57 weeks, the

high dose first becomes effective displaying a rapid increase in regulatory T cells followed by a slow increase in β-cells; the low dose treatment, however, is not able to

alter the course of T1D development. At Start Time = 24.86 weeks the low dose first becomes effective at eliciting a Treg response which corresponds to a switch in

the ratio of Ba/Bn and an increase in β-cell mass. At Start Time = 32.43 weeks the low dose is not effective anymore.
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particular time in the NOD mouse. Specifically, at the critical
start times, tDC injections led to increases in regulatory T cell
levels compared to effector T cells. This was then followed by an
eventual decline in tDC levels compared to DC levels, a dynamic
we attribute to negative feedback between T cells and dendritic
cells in our model. (Note that this response is the same as the one
we saw in the model without treatment: tDCs initiate an immune
response but are eventually removed by regulatory T cells.) In
addition, these changes were accompanied by an increase in
β-cell levels in the pancreas and recovery of the mouse. Of
particular interest are the ratios of regulatory to effector T cells
which show non-monotonic response as a function of time in the
cases when the treatment is either not effective or not applied.

In order to investigate more closely the time vs. dose
dynamics, we next simulated the model with a single injection
and varied the treatment start time one day at a time over the
course of 45 weeks for a wide range of possible doses between
1 × 104 and 5 × 106 in dose increments of 104. For these
simulations, treatment outcomes were evaluated at 85 weeks in
order to allow the system to settle into a steady state.

In Figure 12A we plotted the time course of regulatory
to effector cell ratios for an untreated NOD mouse along
with effective dose time windows for all single tDC treatment
doses tested in Figure 12B. First, for the untreated mice, we
note that the ratio of regulatory to effector cells declines
significantly following the apoptotic wave (Time< 10 weeks), as
an inflammatory response is mounted in response to production
of uncleared necrotic β-cells. However, after the initial post-
apoptotic dip, regulatory cells recover and peak between week 10
and 20 followed by a secondary peak in regulatory T cells around
week 30 (both peaks are marked in gray in Figure 12A). Upon
comparison, we noted a striking similarity between the dose time
windows and the untreated NOD T cell ratios (compare the
peaks in Figures 12A,B). Specifically, windows of opportunity for

treatment seem to correspond to the two major regulatory T cell
peaks that occur in untreated mice. The increase in regulatory
cells in these two cases seems to come right after significant
β-cell death events, such as apoptotic wave, or when rate of
effector T-cell strength (ηe(t)) increases most rapidly [i.e., after
the half-max point for ηe(t)]. This indicates that windows of
opportunity emerge when regulatory T cells experience slight
increases following β-cell apoptosis. In Figure 12C, we illustrate
the critical role of T cell ratios for a chosen dose (note
red line in Figure 12B marks Dose = 0.8e6) where positive
treatment outcomes correspond to simulations for which the
steady-state R/E ratio is positive in logarithmic scale whereas
negative treatment outcomes correspond to negative values in the
logarithmic scale (compare Figures 12B,C).

In Figure 12B we observe roughly three dosing categories:
(1) Low dose treatments (toward the top of Figure 12B)
have a single late window of opportunity that decreases
as the dose decreases and then disappears at 3e4, (2)
Medium dose treatments that show two distinct windows
of opportunity (early and late windows), (3) High doses
(toward the bottom Figure 12B) show longer uninterrupted
windows of opportunity that start at earlier times for
increasing doses.

In conclusion, we see that there is a striking correspondence
for the treatment effectiveness times for single tDC injections
in our model with the periods of time for which the regulatory
to effector cell ratios stay above a certain threshold. Based on
this observation, we propose the following hypothesis: the time
windows in which regulatory T cells seem to recover might be the
most opportune times to administer tDC injections, as this may
lead to subsequent disease recovery. This indicates that the (R/E)
ratio might need to reach a particular threshold value before
treatment can be effective and the specific threshold varies as
doses vary.

FIGURE 12 | A comparison of NOD mouse T cell ratios with computed treatment windows. (A) An untreated NOD mouse time course of the ratio of regulatory (R) to

effector (E) T cells. After the apoptotic wave an increase in regulatory cells due to cell death generates a peak in the ratio (R/E), which qualitatively agrees with the

peaks in the low dose window of opportunity calculations. (B) The NOD mouse model simulated with a single dose of tolerogenic DCs administered at a series of

treatment start times. Lighter regions indicate the treatment levels that successfully return the mouse to a healthy state. Note that dose levels decrease along the

y-axis, so that higher doses are in the lower part of the graph, and lower doses are in the top part. Windows of opportunity change as a function of start time and tDC

injection dose. (C) Windows of opportunity (in time) for an example tDC dose level (0.8e+06), comparing outcomes for treatment started at different times. The log ratio

of R/E is plotted as a function of treatment start time: log (R/E) > 0 indicates treatment was successful, and log (R/E) < 0 indicates treatment was not successful.

Frontiers in Physiology | www.frontiersin.org 15 September 2019 | Volume 10 | Article 1107

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Shtylla et al. T1D DC Treatment Model

4. DISCUSSION

In this paper, we have presented a simplified single compartment
mathematical model that incorporates dendritic cells and T
cells interacting with pancreatic β-cells. This model captures
important qualitative features of T1D progression and dynamics.
First, the model has clear, distinct, steady states that match
the dynamics observed in both healthy Balb/c and disease-
prone NOD mice. Comparing simulation outcomes for the
NOD or Balb/c systems, a mouse enters a diseased steady state
only if it has both reduced efficacy of macrophages (typically
associated with NOD mice) and undergoes a wave of increased
β-cell death. Both of these characteristics have been observed
in NOD mice, and implicated in their susceptibility to T1D
in the context of the Copenhagen hypothesis (Maree et al.,
2005). Importantly, we also have incorporated an active role
of DCs in both clearance of dying β-cells and generation
of a T cell response due to a direct β-cell death interaction
in the pancreas, which, to our knowledge, has not been
studied in detail in prior models. Our DC clearance rates
were carefully fitted to published data and work in conjunction
with macrophages to create either a healthy or a diseased
state in our model. Our model included multiple immune
pathways and nonlinear feedback dynamics. For example, we
observed that tolerogenic DCs are needed in order to initiate a
regulatory T cell response, which is necessary for mice to reach
a healthy state. Counter-intuitively, however, simulations of a
healthy NOD mouse result in low levels of tolerogenic DCs
during the maintenance of a low inflammatory state, in which
effector T cell levels are high, and the disease does not prevail.
This is a model prediction that needs to be validated through
biological experiments.

While our model only includes the pancreatic compartment,
we necessarily have to include many parameters that capture
the dynamics of the interactions between immune cells and
β-cells. Many of these parameters have been measured or
inferred, and we carried out our own fitting where possible
as well. Yet, model response must be tested for sensitivity to
parameter values. From our sensitivity analysis, we see that
the NOD mouse is much more sensitive to single parameter
changes than is the Balb/c mouse. We interpret this to mean
that the healthy clearance rates of the simulated Balb/c mouse
create a more robust healthy system overall, so that no single
factor can easily lead to disease development. Interestingly,
a number of parameter modifications in the NOD case will
drive the system toward a healthy steady state. This supports
a scenario in which the model has two distinct steady states,
corresponding to healthy and diseased physiological conditions,
and that within the range of parameters examined, the “diseased”
state has a smaller basin of attraction. Since themodel is currently
highly non-linear, a steady state analysis is a challenge we aim
to explore in the future. Increases in either the active or
inactive macrophage clearance rates can protect the NODmouse
from developing the disease, further supporting the hypothesis
that macrophage clearance plays a role in the development of
T1D. In addition, by studying a large set of clearance rate
combinations, we discovered non-trivial relationships between

macrophage clearance rates, apoptotic wave magnitude, and
effector T cell kill rates for β-cells. These observations might
give us some clues as to why we see large variability in
individual mouse glucose level time courses for the NOD
mouse. We intend to explore population variability further in
the future.

The results of the model simulations are encouraging in the
context of developing simulations for a DC-based treatment
for T1D. We note that our model is significantly simplified by
virtue of allowing all interactions to take place in the pancreas.
Nonetheless, the responses of the model to external infusions of
tolerogenic DCs supports the concept that treatments targeting
the tDC population are worth investigating further, both
biologically and through expanded mathematical models. In our
model the balance of effector and regulatory T cells depends
on the balance between apoptotic and necrotic β-cells, and
thus on the ratio of DCs and tDCs. Changing that balance
of DC levels can have an impact on disease progression. We
thus accordingly tested clinically relevant tDC treatments and
observed that both timing and dosing of tDC administration
can have a significant impact on the ability of the NOD mouse
to resist disease onset and to recover. Most interestingly, in
agreement with data from Feili-Hariri et al. (2003), Creusot et al.
(2008, 2014), and Ruffner and Robbins (2010), we observed
that treatment was most effective if it was applied later rather
than earlier in the NOD mouse, but if applied too late it
could not affect disease outcome. High doses were the most
effective in our model, but even those could not lead to a
healthy state before some immune involvement was present in
the NOD mouse. This may indicate that preventative treatments
might not be as effective in this context. These observations
may support the concept that a certain level of inflammation
may be required for DC-based treatments to be effective. An
observable change in the direction of disease progression might
also be more apparent when β-cell loss or dysfunction is near
a certain threshold below which blood glucose levels continue
rising. Assuming that β-cells can divide if protected from
autoimmune destruction, timing of treatment may result in β-
cell counts rising back to the threshold that allows the subject to
resume insulin secretion at normal levels thus restoring normal
blood glucose levels. If β-cell counts are at the threshold level
or far from it, then a bigger change is required to observe
noticeable change.

In preclinical studies, it is very difficult to explore outcomes
for a large range of doses and timings, but with a mathematical
model such as this one, we are able to investigate a much
wider range of treatment protocols. Such an exploration revealed
interesting dynamics that were affected both by using various
levels of dosing, and by starting the dosing at different
times through the life of the in silico mouse. With simulated
intermediate dose levels, unexpected windows of opportunity
for treatment efficacy emerged as the system recovered post
apoptotic wave: treatment that was applied early or late in the
life of the simulated mouse was effective, yet there was also
an interval of time in between in which intermediate dose
levels were ineffective. Of particular interest is to understand
how to predict when these time-windows of opportunity will
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arise. We discovered a strong connection between emergence
of time-windows of opportunity for treatment initiation and
higher ratios of regulatory to effector T cells in untreated
NOD mice. This Treg to Teff ratio provides a nondimensional
measure by which treatment effectiveness might be predicted
prior to treatment. These results indicate that both dosing
and treatment timing should be carefully examined in the
context of T1D, particularly when immunotherapy treatments
are under consideration.

The goal of this work was to develop a differential equations
model of the biological systems involved in the development
and treatment of type 1 diabetes, with an emphasis placed on
the impact of DCs on the activity of T cells in the context of
treatment. Models of this form are useful in understanding what
triggers the development of T1D, how the disease progresses, and
the potential impact of various treatments. There are multiple
directions for future research using similar modeling techniques.
First, the model could be expanded into a multiple organ
compartment model that could more accurately capture organ-
specific dynamics, such as immune interactions in the spleen or
lymph nodes. This is an approach that we are currently pursuing.
In addition, many immune cell interactions are complex and will
require further data, such as data that can elucidate the impact of
cell death on the tDC to DC ratio. Another aspect of the model
to explore is the possible role of a delay in the production of T
cells vis a vis modulation of the immune system by DCs. There
is disagreement in the literature (Wodarz, 2007) over whether
or not there is a waiting period when a T cell is activated by
a DC. We chose to model the system without that delay, but it
could provide additional insight or new and interesting behavior
if we were to include it. Additional analysis is also possible for the
simulation of DC therapy for T1D.While we examined treatment
plans grounded in current experimental work, the model could
be used to determine optimal treatments within this modeling
framework. Variables to examine in the future include total dose,
number of doses, time between doses, and treatment start time.
We note that in this model, we focused on specific elements of
T1D initiation and dynamics, so we chose not to incorporate β-
cell viability as an additional factor. In future work, the inclusion
of β-cell viability may also be important when exploring optimal
treatments of the whole system. Finally, further comparison with
experimental results may suggest modifications of the dynamics
reflected in the model or treatment equations.

This report primarily provides three useful insights into
modeling T1D. First are the apoptosis dependent activation
for DCs and values of the β-cell engulfment rates by DCs
in the pancreas. The values of the engulfment parameters
themselves may prove useful in further attempts to refine the
model dynamics of DCs in the pancreas. Additionally, the
parameter fitting algorithm presented in this report can be
expanded and improved. For example, the simplified differential
equation model that we used to implement the parameter
fitting algorithm does not agree with published data for long
time periods (>2 h). While we mainly focused on transient
behavior of DCs, this could indicate that there are additional
dynamics to take into account in this simple set up. If
this is the case, then further parameter fitting with a more

detailed model of DC behavior could yield more accurate
parameter values for use in modeling. Second, we provided
a platform in which immune therapies can be examined,
such as in the context of clinically relevant DC injections.
This provides the ground work for more detailed multi-
compartment models that examine immune cell activation in
lymph nodes/spleen and their trafficking in the blood prior to
engagement with the pancreas. We are currently pursuing these
model extensions. And third, we discovered a strong connection
between regulatory to effector T-cell levels and time-windows
of opportunity that should be targeted for administering
tDC treatments.

Finally, this model serves to continue building a framework
for useful mathematical models of the development of T1D. The
single compartment is unique because of the diversity of cell types
that it incorporates into a model of T1D. However, other models,
such as the one in Moore and Adler (2016) examine aspects of
the system in more detail. Our model could serve as a baseline
that could be extended to examine more detailed dynamics in
a broader context. Additionally, it could be used to explore the
impact of other outside factors on the development of T1D, such
as different treatments, environmental factors, or physiological
factors such as the presence of infection.
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