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Prediction of cancer survival for cohorts
of patients most recently diagnosed
using multi-model inference

Camille Maringe , Aur�elien Belot and Bernard Rachet

Abstract

Despite a large choice of models, functional forms and types of effects, the selection of excess hazard models for prediction

of population cancer survival is not widespread in the literature. We propose multi-model inference based on excess hazard

model(s) selected using Akaike information criteria or Bayesian information criteria for prediction and projection of cancer

survival. We evaluate the properties of this approach using empirical data of patients diagnosed with breast, colon or lung

cancer in 1990–2011. We artificially censor the data on 31 December 2010 and predict five-year survival for the 2010 and

2011 cohorts. We compare these predictions to the observed five-year cohort estimates of cancer survival and contrast

them to predictions from an a priori selected simple model, and from the period approach. We illustrate the approach by

replicating it for cohorts of patients for which stage at diagnosis and other important prognosis factors are available. We find

that model-averaged predictions and projections of survival have close to minimal differences with the Pohar-Perme esti-

mation of survival in many instances, particularly in subgroups of the population. Advantages of information-criterion based

model selection include (i) transparent model-building strategy, (ii) accounting for model selection uncertainty, (iii) no a

priori assumption for effects, and (iv) projections for patients outside of the sample.
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1 Introduction

Cancer survival is a public health measure that complements the reporting of incidence, prevalence and mortal-
ity.1 Projections of incidence and mortality figures are common practice.2–5 These trends are often extrapolated to
get estimates of the future burden of cancer for planning purposes, or based on scenarios reflecting the likely effect
of new screening strategies, or changes in the distributions of risk factors.6–8

Survival models do not show good predictive performances.9,10 This may be one of the reasons why prediction
and projection of survival are, by far, less routinely made.

While prognosis research is focused on individual risk prediction scores,11,12 we are interested here in predicting
cancer survival for cohorts of patients as a whole or by reasonably large sub-groups, and we refer to these as
population predictions. In that context, accurate individual-level predictions are less crucial since we intend to
produce marginal estimates of survival. Many different survival models may be fitted to the data, and we focus
here on regression models assuming multiplicative effects of explanatory variables on the hazard of death.
A specificity of survival analysis is that the effects of variables may vary through follow-up time (time-dependent
effect) and selecting the right effects can then be challenging. Background knowledge and model selection algo-
rithms help narrow down the choice of models to the most appropriate one(s).13
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When considered, model selection tends to be based on likelihood ratio tests,14–16 using usually backward or
forward selection strategy (or a combination of both). A single model is therefore selected as the best fit for the
data or for subsequent prediction. We see two drawbacks to such approach. First, it means discarding effects that
may have been equally likely to those selected. Second, once a model is chosen, no uncertainty relative to the
selection is pertained to the model-based estimates and post-model selection inference.17,18 In the context of
prediction, we believe it is critical to consider that there may be several models equally likely to have generated
the data. This is the philosophy of Bayesian model selection19 and multi-model inference also described by
Burnham and Anderson.20 Lastly, hypothesis testing may perform poorly when using observational data,20 as
they are designed to detect discrepancies between the model and the data, rather than express how close a model is
to the data: the larger the sample, the easier it is to detect (small) discrepancies.21

The Akaike Information Criteria (AIC)22 is a likelihood-based measure that estimates the expected relative
distance between the fitted model and the unknown true mechanism. AIC values can be compared between
different, non-necessarily nested, models. Contrasting AIC values asymptotically coincides with generalised
leave-one-out cross-validation.23 The Bayesian (or Schwarz) Information Criteria (BIC) is an estimator of the
Bayes Factor, aiming to quantify the evidence for one model against another.24

This article is organised as follows: the next section introduces the cancer registry data linked to electronic
health records. The following section discusses the setting of relative survival for the estimation of cancer net
survival,25 the multi-model inference and the prediction tools used to assess the accuracy of the predicted esti-
mates of net survival. Then, we present results on a historical, low-resolution, data setting for the prediction and
projection of five-year survival for patients most recently diagnosed, to highlight the properties of the method. An
application follows, based on more recent, high-resolution data including information on stage at diagnosis: a
setting that motivates multivariable modelling and multi-model inference. The discussion highlights the advan-
tages of multi-model inference and potential extensions conclude the manuscript.

2 Material

We use data of the population-based cancer registry of England. Virtually all cancer cases diagnosed in England are
registered. Quality controls are performed at the time of registration, and prior to data analysis26 to ensure there are no
duplicate registrations and the sequence of dates (birth, diagnosis, latest vital status) is logical, among other checks.

We analyse records of adult patients (15–99 years) diagnosed with malignant lung cancer (men only, ICD-9:
162, ICD-10: C33-C34), breast cancer (women, ICD-9: 174, ICD-10: C50) or colon cancer (men only, ICD-9: 153,
ICD-10: C18) in 1990 through to 2011. We define patients’ information on socio-economic status based on their
postcode of residence using the Townsend27 and the income domain of the Index for Multiple Deprivation28,29

scores for the years 1990–2000 and 2001–2011, respectively. Both scores are ecological and based upon responses
to census questions relative to income and wealth, by small areas (Enumeration Districts until 2000 and Lower
Super Output Areas from 2001). The areas are grouped by quintiles of area-level deprivation distribution,
according to their score, from least (quintile 1) to most (quintile 5) deprived.

The latest vital status of patients is obtained from linking the cancer registrations to the mortality databases
maintained by the Office for National Statistics. A vital status indicator is assigned to all patients together with a
date of last known vital status, or death where appropriate. Patients are followed up until 31 December 2015.

Stage at diagnosis is one of the most important predictors of survival. It is based on the T (tumour size), N
(lymph node involvement) and M (metastatic or not) components of the TNM stage at diagnosis classification.30

Until recently, its recording, through combining information from pathology laboratories, hospital records, and
Multidisciplinary Team records, was not complete or accurate for many cancers in population-based cancer
registry data in England. High proportions of missing information on stage at diagnosis make it difficult to
study its effect on survival through time.31

3 Methods

3.1 Scenarios studied

3.1.1 Low-resolution data setting: empirical evaluation of the properties of multi-model inference

We focus here on the cancers of colon (men), lung (men), and breast (women). First, we artificially restrict the
follow-up to 31 December 2010. To compare the impact that varying numbers of cohorts have on the accuracy of
the predictions, we run several model selections on cohorts of patients diagnosed in 1990–2010, 1995–2010, 2000–
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2010, or 2005–2010. We predict excess hazard and five-year cancer survival for patients diagnosed in 2010,

patients for whom only the first year of follow-up contributed to the model selection. We also project excess

hazard and five-year cancer survival for patients diagnosed in 2011.
Since follow-up beyond 31 December 2010 is neither used in the estimation of the regression parameters nor in

model selection, we are able to contrast the predicted five-year survival of these patients to their actual survival as

observed until 31 December 2015 by group of patients and overall. Similarly, patients diagnosed in 2011 do not

contribute to the modelling at all. Nonetheless we compare the results of their projections to their five-year

survival as observed until 31 December 2015. Figure 1 summarizes how the data are used in this low-

resolution data setting, highlighting what is supposed known and unknown, and the cohorts of patients used

in model selection.

3.1.2 High-resolution data setting: illustration

We identify groups of patients for whom the proportion of missing stage at diagnosis is the lowest. For lung

cancer, we select patients who were diagnosed at ages 50–74 between 2008 and 2012, and living in the East and

North East of England (missing stage up to 14%).32 For breast cancer, we analyse patients diagnosed at ages 50–

84 in 2005–2011, living in the West Midlands (stage missing up to 12%).33,34 For those two groups of patients, we

can develop prediction models that include stage at diagnosis, as well as an indicator of mode of presentation

(emergency for lung cancer, screening for breast cancer) and performance status (lung cancer). We predict lung

and breast cancer survival up to four years after diagnosis for patients diagnosed in 2010 or 2011, for whom only

the first year after diagnosis contributes to model selection and estimation of effects, and project cancer survival

for patients diagnosed in 2011 and 2012.

3.2 Net survival

We aim to answer the following question: “What is the predicted cancer survival of cancer patients?” We focus on

net survival, which measures survival among a defined cohort of cancer patients under the assumption that they

only die of the studied cancer. This marginal survival measure is therefore independent of the deaths from other

causes. Thus, this is the quantity of interest when aiming to compare cancer survival between countries and over

time. Despite international classification, the determination of the cause of death is not standardised enough

through time, or between registrars, for the cause of death to be used in our analyses. Hence, we aim to estimate

cancer (net) survival in the relative survival setting using excess hazard models.35,36 Several forms of models exist

Figure 1. Structure of the data as used in the low-resolution data setting.
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exhibiting different ways of modelling the baseline excess hazard of death, and interactions with follow-up

time.37–45

The main assumption of excess hazard models is that the observed mortality of the cohort of patients (k) is the
sum of two forces of mortality: the excess mortality hazard (kE), assumed to be the mortality hazard directly or

indirectly due to cancer, and the expected or other causes mortality hazard, which is considered to be well

approximated by the general population mortality hazard (kP).
46,47

kðt; xÞ ¼ kE ðt; xÞ þ kP ðaþ t; yþ t; zÞ

The cancer mortality hazard, kE, at time t for given patient’s covariates x, such as age at diagnosis (a) and

calendar year of diagnosis (y), is what we need to estimate. We derive mortality due to causes other than cancer at

time t by population tables of mortality, defined for the population from which cancer patients come from, i.e.

with similar features (age at time t: aþ t, calendar year at time t: yþ t, sex, levels of deprivation, geographical area

of residence, ethnicity when possible, etc., summarised in z, a subset of patient’s covariates x).
First, we use the non-parametric Pohar-Perme (PP) estimator,48 a consistent estimator of net survival, to obtain

cancer survival for patients diagnosed in 2010 with follow-up until 2015. That estimator relies on the observed and

expected proportions of patients still alive at each time of event. Patients may die of other causes, thus preventing

their cancer survival time to be observed. The cohort of patients therefore changes structurally throughout follow-

up time and is not representative of the original cohort of patients. An inverse-probability-of-censoring weighting

is applied to adjust for this informative censoring, so that the contribution of each patient to the estimator is

weighted by the inverse of the probability that the patient is expected to survive until each time of event (using

population tables of mortality). The period approach PP estimator is also used to predict survival for patients

diagnosed in 2010, using information from patients diagnosed in previous cohorts, alive in 2010, with potential

follow-up until 31 December 2010 (‘period approach’).49 The period approach derives survival in a similar fashion

to life expectation.
Second, we use flexible, multivariable models, to estimate excess mortality hazard kEðt; xÞ, individual (SE;i t; xð Þ)

and cohort (SEðtÞ) net survival.50 The logarithm of the baseline excess hazard is modelled using restricted cubic

spline functions, with three degrees of freedom, that is two internal knots (located at the tertiles of the event time

distribution) and two boundary knots

logðk0 tð ÞÞ ¼ c0 þ c1B1ðtÞ þ c2B2ðtÞ þ c3B3ðtÞ

where the spline basis functions Bi tð Þ; i ¼ 1;2; 3; are derived from the knots.51

Time-dependent effect of each variable is included using an interaction between each variable and the loga-

rithm of time since diagnosis. As an example, the equation of the model is as follows, given two prognostic

variables x1, continuous, and x2, categorical (with J categories, j ¼ 1; . . . J)

kE t; xð Þ ¼ k0 tð Þ�exp b1ðtÞ�fðx1Þ þ
XJ
j¼2

b2;jðtÞ�Ix2¼j

0@ 1A
where f x1ð Þ ¼ x1 if the effect of x1 on the logarithm of excess mortality is linear, and f x1ð Þ is a spline function

when the effect of x1 is not linear, while b1 tð Þ ¼ b1 if the effect of x1 is proportional, and b1 tð Þ ¼ b1�logðtÞ if not;
the same applies to b2;jðtÞ.

We use the Stata commands stns52 to implement the PP cohort and period approaches, and strcs53 for fitting

the flexible parametric models.

3.3 Model selection

We present two specific model-selection algorithms here, but wish to highlight that any other sound algorithm

could be used. We adapt mfpigen, the model-selection algorithm designed by Royston and Sauerbrei, including

tests for interactions,54 and our adaptation of mvrs14 for interactions13 using the AIC22 and the BIC.55 AIC is one

of the criteria designed to express the ‘distance’ between two models,20 that is an estimate of the distance between
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our model and the model that did generate the data. AIC is defined from the log-likelihood of the model, L and its
number of parameters, p.

The log-likelihood of the excess hazard models fitted here is

L bjx; di; tið Þ ¼
XN
i¼1

dilog kP ti; zð Þ þ kE ti; b; xð Þ� �þ log SEðtiÞ
� �

such that

AIC ¼ �2�L bjx; di; tið Þ þ 2�p

AIC can be shown to be equivalent to a likelihood ratio test multiplied by a constant, meaning that there is an
associated positive probability (p-value) that it rejects the null hypothesis, when it is true. That p-value is 0.157
when models are nested and differing by 1df.56,57

BIC comes from a consistent class of criteria. It does not estimate the distance between the true model and the
model under consideration, but aims to consistently point to the true model even when sample size increases, if the
true model is part of the models considered. Its value varies with the number of parameters p and the number
of events d.

BIC ¼ �2�L bjx; di; tið Þ þ p�logðdÞ

The Royston and Sauerbrei algorithm is a succession of likelihood ratio tests comparing two models at a time
in a logical sequential order. The algorithm starts by fitting the simplest model to the data, using linear and
proportional effects of all variables. Starting with the most significant effect (i.e. lowest p-value), more complex
versions of the effects of each variable are tested, one at a time, such as non-linearity and time-dependency.

Our adaptation follows the same logical steps, but the models’ AICs or BICs are compared, two at a time. If the
lowest criterion is over two digits away from the larger criterion, the model pertaining to the larger criterion is
discarded. If both models have criteria within two of each other, both models are kept, and more complex models
derived from each of these are further compared. A rational for the choice of a difference of 2 is provided in
section 3.4 using evidence ratios.

The original Royston and Sauerbrei algorithm yields one single model, from which all inference about measure
of effects, associations, and outcome prediction is derived. Our proposed algorithm based on Information Criteria
leads to the selection of several models, which are equally likely to have generated the data, given their AIC or
BIC are within 2 digits of the minimum AIC or BIC.

3.4 Multi-model inference (model averaging)

In the following, XIC is used to stand for AIC or BIC, interchangeably. From the multiple models selected (i.e.
models having similar support from the data), say M, we need to combine the M estimates to obtain one estimate
of the excess hazard from which we derive the cohort cancer survival. Since the models are selected using XIC,
each has a known XIC from which we derive XIC-weights as follows:

Let us define the model with lowest XIC (XICmin) as mmin. We define the distance between mmin and any other
model m, Dm ¼ XICm � XICmin, and the likelihood of model m given the data is M mjxð Þ ¼ exp � 1

2 �Dm

� �
.20

The weights wm of each of the M models m reflect how much evidence there is for model m being the actual
model that generated the data. Weights are defined such that they sum to 1,

PM
m¼1 wm ¼ 1

wm ¼ M mjxð ÞPM
m¼1 M mjxð Þ

‘Evidence ratios’ for a model m versus model n are defined as the ratio of their weights wm and wn, as

e m; nð Þ ¼ wm

wn
¼ exp � 1

2 �Dm

� �
exp � 1

2 �Dn

� �
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If we suppose model m is the model with minimum XIC, we have

e m; nð Þ ¼ 1

exp � 1
2 �Dn

� � ¼ exp
1

2
�Dn

� �

Therefore, we see exponential increase in evidence for the model with minimal XIC with increased distance to

that XIC. The evidence ratio between models m and n is 2.7 if Dn ¼ 2 (and 7.4 and 54.6 when Dn ¼ 4 or 8,

respectively). This is a rational for selecting models with XIC within two digits of the minimum XIC, where the

evidence for m versus n is not so strong.
Given the potential complexity of the effects on the excess mortality hazard, we average the quantity modelled

rather than the parameter estimates.20 This is specifically advised in Burnham and Anderson: “Structural param-

eters in non-linear models should not be averaged” and model averaging should rather be done on “the predicted

expected response variable ÊðyÞ”.20 Therefore, the XIC-weights are used to combine the model-based individual

excess hazards estimated at each time t after diagnosis. Borrowing from the reasoning of both the algorithmic

model-selection16,58 and the multi-model inference literature, we follow the steps below to combine the model-

based estimates into a model-averaged estimate:

a. Run XIC-based algorithm (e.g. mfpigen or the adapted mvrs)
b. Isolate the M XIC-best models
c. Calculate the XIC-weights, wm, for each model m; ðm ¼ 1; . . . ;MÞ
d. From the estimated parameters, derive the excess mortality hazards, at pre-defined times t after diagnosis (e.g.

monthly) for each model m: k̂i;mðtÞ for each individual i with covariates xi in the data.
e. Calculate the model-average excess mortality hazard (for patient i) at each pre-defined time t, such that

k̂i;MA tð Þ ¼
XM

m¼1
wm�k̂i;m tð Þ

The model-average cumulative excess hazard, K̂i;MA may easily be obtained as well

K̂i;MA tð Þ ¼
XM

m¼1
wm�K̂i;m tð Þ

f. If the quantity of interest is cohort net survival, we first calculate individual model-averaged net survival,

Ŝi;MA tð Þ ¼ expð�K̂i;MAðtÞÞ at each time t. Then, we estimate cohort net survival by averaging the individual

net survival values, ŜMA tð Þ ¼ 1
N

PN
i¼1 Ŝi;MAðtÞ at time t.

The unconditional variance estimator of the model-averaged estimate is derived in Burnham and Anderson

(pp.158–164)20 and follows earlier work presented in Buckland et al.17 We adapted this derivation to our setting

where we averaged the predicted expected response variable (i.e. the excess mortality hazards). The variance

estimator for the model-averaged outcome combines the XIC-weights, wm, and the estimated variances of each

individual model estimates, cvarðk̂i;mðtÞÞ, such that

cvar k̂i;MA tð Þ
� 	

¼
XM
m¼1

wm�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvarðk̂i;mðtÞÞ þ k̂i;mðtÞ � k̂i;MA tð Þ

� 	2
r( )2

This estimator has components of within-variation (cvarðk̂i;mðtÞÞ) and between variation k̂i;mðtÞ � k̂i;MA tð Þ
� 	2

,

thus quantifying the uncertainty with regards to model selection. This unconditional variance

estimator assumes perfect pairwise correlation between k̂i;mðtÞ � k̂i;MA tð Þ and k̂i;n tð Þ � k̂i;MA tð Þ, as derived

from models m and n. This leads to a conservative variance estimate, i.e. the estimated variance tends to

be too large.17
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3.5 Checking predictions

After selecting a (or a set of) best model(s), predicting our outcome of interest, and averaging the outcomes, we are

interested in quantifying the distance between these estimates and the observed cancer survival of the patients.

Since we have follow-up information until 31 December 2015, we estimate net survival of patients diagnosed in

2010 and 2011 using the PP non-parametric estimator of cancer survival (see section 3.2. above).
We aim to compare our predictions to what will be estimated in the future, given the data available then. We

recognise that the PP estimator of survival, often used for policy making and planning, is a consistent estimator of
net survival, but cannot be regarded as the ‘truth’.

To quantify the difference between the population-based prediction using our model-average estimate and the

PP net survival estimates, we define the Root Mean Integrated Square Difference (RMISD) of prediction. This

measure contrasts the predicted survival to the estimated PP survival and we approximate this quantity using G

groups defined by age group and deprivation quintile (low-resolution data) or by age group, stage and deprivation

quintile (high-resolution data)

RMISD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

G

XG

g¼1

Z
ðŜg uð Þ � SgðuÞÞ2du

s

Sg is the non-parametric PP estimate of cancer survival for group g, while Ŝg is the prediction of survival for

the same group of patients using (i) model-averaging, or (ii) a pre-selected simple model or (iii) the period

approach. The integral is approximated using the Gauss-Legendre quadrature with 20 nodes. We choose to
calculate RMISD for survival measured at one and five years after diagnosis.

4 Results

4.1 Low-resolution data setting: empirical evaluation of the properties of multi-model

inference

4.1.1 Description of the data

Between 1990 and 2010, there were an average of 18,233 and 8,636 men diagnosed with lung and colon cancer,

respectively, and 32,493 women diagnosed with breast cancer, every year. The number of cancer patients was
multiplied by at least 1.5 for breast (women) and colon (men), but slightly decreased for lung cancer (men). Five-

year net survival increased for all cancers between 1990 and 2010, with the largest increase for lung cancer, from

5.3% in 1990 to 9.0% in 2010 (online Appendix Table 1).

4.1.2 Model selection

The functional forms of the selected variables are displayed in Table 1 (columns 1-4), along with the XIC of the

selected model(s) (column 5), the XIC-distance to the model with the closest XIC (column 7), and where appro-

priate, XIC-weights (column 6). Adding earlier cohorts to patients diagnosed in 2005–2010 hardly changes the

functional form selected for the effects of age, year of diagnosis or deprivation, as well as their interactions,

especially when using the mfpigen algorithm with AIC, or when using BIC (with either algorithm). More complex

models (including time-dependent effects of the interaction between age and deprivation) are selected by our

adapted algorithm using AIC: these include time-dependent age-deprivation interactions (breast cancer) and age-

deprivation and year-deprivation interactions (lung cancer). With BIC selection, there is almost no difference in
the complexity of the models selected by mfpigen and our adapted algorithm: the models selected are identical for

colon and lung cancers, and the only selected interactions differ for breast cancer. To contrast with the models

selected, we also apply a simple model with all variables modelled with a linear (when continuous), proportional

hazard effect on excess mortality, in each of the four cohorts of patients. The XIC values of these simple models

(Table 1) are constantly higher than that of the selected models except for the AIC values of the lung cancer

models selected by our adapted algorithm.

4.1.3 Root mean integrated square difference for the prediction of net survival

Root mean integrated square difference (RMISD) is measured throughout the first five years after diagnosis. By

group defined by age and deprivation level, we calculated Integrated Square Differences (ISD) (see formula of the

Maringe et al. 3611



T
a
b
le

1
.
M
o
d
e
ls
se
le
ct
e
d
fo
llo
w
in
g
m
o
d
e
l
se
le
ct
io
n
al
go
ri
th
m
s,
b
y
ca
n
ce
r
an
d
co
h
o
rt

o
f
p
at
ie
n
ts

u
se
d
in

m
o
d
e
l
se
le
ct
io
n
.

R
M
IS
D

at
5
ye
ar
s

A
ge

(A
)

Y
e
ar

o
f

d
ia
gn
o
si
s
(Y
)

D
e
p
ri
va
ti
o
n
(D

)
In
te
ra
ct
io
n
s

X
IC

a
X
IC

a

w
e
ig
h
ts

(%
)

X
IC

a
d
is
ta
n
ce

w
it
h
n
e
x
t

se
le
ct
e
d
m
o
d
e
l

2
0
1
0
b

2
0
1
1
c

B
re
as
t
ca
n
ce
r

A
lg
or
ith
m

ad
ap
te
d
fo
r
in
te
ra
ct
io
ns

A
IC

2
0
0
5
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

A
*D

(T
D
),
Y
*D

2
0
5
,5
5
4
.5

1
8

0
.0
3
0

0
.0
2
8

2
0
0
0
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

A
*D

(T
D
),
Y
*D

5
8
9
,4
7
8
.3

6
1

0
.0
3
2

0
.0
3
2

1
9
9
5
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

A
*D

(T
D
),
Y
*D

(T
D
)

1
,0
7
2
,6
2
6
.0

6
9

0
.0
3
2

0
.0
3
3

1
9
9
5
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

A
*D

(T
D
),
Y
*D

1
,0
7
2
,6
2
8
.0

3
1

1
0
4

1
9
9
0
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

A
*D

(T
D
),
Y
*D

(T
D
)

1
,6
0
5
,3
7
4
.0

1
2

0
.0
3
9

0
.0
4
2

B
IC

2
0
0
5
–
2
0
1
0

N
L
T
D

N
L
T
D

P
H

2
0
5
,7
4
2
.0

1
8
.3

0
.0
2
6

0
.0
2
6

2
0
0
0
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

Y
*D

5
8
9
,8
4
0
.6

1
0
.4

0
.0
3
3

0
.0
3
2

1
9
9
5
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

Y
*D

1
,0
7
3
,0
7
6
.0

4
0
6
.0

0
.0
3
3

0
.0
3
3

1
9
9
0
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

Y
*D

(T
D
)

1
,6
0
5
,8
4
9
.0

5
3
.4

0
.0
3
9

0
.0
4
2

m
fp
ig
en

al
go
ri
th
m

A
IC

2
0
0
5
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

A
*D

2
0
5
,5
7
6
.9

0
.0
2
4

0
.0
2
7

2
0
0
0
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

A
*D

5
8
9
,5
4
0
.4

0
.0
3
1

0
.0
3
4

1
9
9
5
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

A
*D

1
,0
7
2
,7
6
6
.0

0
.0
3
0

0
.0
3
5

1
9
9
0
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

A
*D

1
,6
0
5
,6
0
7
.0

0
.0
3
9

0
.0
4
5

B
IC

2
0
0
5
–
2
0
1
0

N
L
T
D

N
L
T
D

P
H

2
0
5
,7
4
2
.0

1
8
.3

0
.0
2
6

0
.0
2
6

2
0
0
0
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

5
8
9
,7
6
6
.8

8
.6

0
.0
3
1

0
.0
3
3

1
9
9
5
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

1
,0
7
3
,0
3
5
.0

1
3
.8

0
.0
3
0

0
.0
3
4

1
9
9
0
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

A
*D

1
,6
0
5
,9
0
1
.0

9
.5

0
.0
3
9

0
.0
4
5

Si
m
p
le
m
od
el
sd

2
0
0
5
–
2
0
1
0

L
P
H

L
P
H

P
H

2
0
8
,7
6
3
.6

0
.0
6
9

0
.0
7
5

2
0
0
0
–
2
0
1
0

L
P
H

L
P
H

P
H

5
9
8
,4
6
9
.7

0
.0
7
9

0
.0
8
7

1
9
9
5
–
2
0
1
0

L
P
H

L
P
H

P
H

1
,0
8
7
,4
6
0
.8

0
.0
8
8

0
.0
9
8

1
9
9
0
–
2
0
1
0

L
P
H

L
P
H

P
H

1
,6
2
5
,4
3
0
.8

0
.0
8
9

0
.0
9
8

Pe
ri
od

ap
p
ro
ac
h

C
o
lo
n
ca
n
ce
r

A
lg
or
ith
m

ad
ap
te
d
fo
r
in
te
ra
ct
io
ns

A
IC

2
0
0
5
–
2
0
1
0

N
L
T
D

L
T
D

T
D

9
7
,2
2
5
.4

6
5

0
.0
9
4

0
.1
1
7

2
0
0
5
–
2
0
1
0

N
L
T
D

N
LT
D

T
D

9
7
,2
2
6
.7

3
5

4

2
0
0
0
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

A
*D

(T
D
),
Y
*D

2
1
5
,2
1
4
.2

3
9

0
.0
9
7

0
.1
1
0

1
9
9
5
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

Y
*D

3
3
8
,5
7
1
.2

1
9
2

0
.0
9
3

0
.1
0
8

1
9
9
0
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

A
*D

(T
D
),
Y
*D

4
5
5
,6
7
8
.2

8
5

0
.0
9
5

0
.1
1
0

B
IC

2
0
0
5
–
2
0
1
0

N
L
T
D

N
L
T
D

P
H

9
7
,3
7
9
.7

6
3
7
.0

0
.0
9
5

0
.1
1
6

2
0
0
0
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

2
1
5
,4
3
8
.8

1
,4
8
3
.9

0
.0
9
3

0
.1
0
8

1
9
9
5
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

3
3
8
,7
4
7
.7

1
7
1
.3

0
.0
9
1

0
.1
0
9

(c
o
n
ti
n
u
e
d
)

3612 Statistical Methods in Medical Research 29(12)



T
a
b
le

1
.
C
o
n
ti
n
u
e
d
.

R
M
IS
D

at
5
ye
ar
s

A
ge

(A
)

Y
e
ar

o
f

d
ia
gn
o
si
s
(Y
)

D
e
p
ri
va
ti
o
n
(D

)
In
te
ra
ct
io
n
s

X
IC

a
X
IC

a

w
e
ig
h
ts

(%
)

X
IC

a
d
is
ta
n
ce

w
it
h
n
e
x
t

se
le
ct
e
d
m
o
d
e
l

2
0
1
0
b

2
0
1
1
c

1
9
9
0
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

4
5
5
,9
6
8
.5

3
,3
1
5
.6

0
.0
9
3

0
.1
1
1

m
fp
ig
en

al
go
ri
th
m

A
IC

2
0
0
5
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

A
*D

9
7
,2
2
5
.2

6
7

0
.0
9
0

0
.1
1
5

2
0
0
5
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

9
7
,2
2
6
.7

3
3

2
0
0
0
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

A
*D

2
1
5
,2
5
3
.6

0
.0
9
4

0
.1
1
1

1
9
9
5
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

A
*D

3
3
8
,5
5
6
.8

0
.0
9
0

0
.1
0
9

1
9
9
0
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

A
*D

4
5
5
,7
6
3
.4

0
.0
9
2

0
.1
1
2

B
IC

2
0
0
5
–
2
0
1
0

N
L
T
D

N
L
T
D

P
H

9
7
,3
7
9
.7

6
7
.3

0
.0
9
5

0
.1
1
6

2
0
0
0
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

2
1
5
,4
3
8
.8

4
1
.2

0
.0
9
3

0
.1
0
8

1
9
9
5
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

3
3
8
,7
4
7
.7

7
2
.7

0
.0
9
1

0
.1
0
9

1
9
9
0
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

4
5
5
,9
6
8
.5

6
6
.9

0
.0
9
3

0
.1
1
1

Si
m
p
le
m
od
el
sd

2
0
0
5
–
2
0
1
0

L
P
H

L
P
H

P
H

9
8
,6
0
8
.6

0
.1
7
5

0
.1
7
0

2
0
0
0
–
2
0
1
0

L
P
H

L
P
H

P
H

2
1
7
,9
2
5
.7

0
.1
5
5

0
.1
5
0

1
9
9
5
–
2
0
1
0

L
P
H

L
P
H

P
H

3
4
2
,3
0
8
.5

0
.1
4
7

0
.1
3
8

1
9
9
0
–
2
0
1
0

L
P
H

L
P
H

P
H

4
6
0
,6
8
8
.7

0
.1
4
1

0
.1
3
8

Pe
ri
od

ap
p
ro
ac
h

L
u
n
g
ca
n
ce
r

A
lg
or
ith
m

ad
ap
te
d
fo
r
in
te
ra
ct
io
ns

A
IC

2
0
0
5
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

Y
*D

1
1
0
,5
4
3
.9

4
1
0

0
.1
2
2

0
.1
4
2

2
0
0
0
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

A
*D

,
Y
*D

2
2
0
,0
9
6
.1

3
1

0
.1
0
3

0
.1
2
8

1
9
9
5
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

A
*D

,
Y
*D

3
2
3
,0
8
9
.4

1
,0
4
1

0
.1
0
2

0
.1
2
7

1
9
9
0
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

A
*D

,
Y
*D

4
1
8
,4
8
4
.9

1
,3
8
6

0
.1
0
2

0
.1
2
6

B
IC

2
0
0
5
–
2
0
1
0

N
L
T
D

N
L
T
D

P
H

1
0
1
,8
0
5
.6

5
7
3
.1

0
.1
2
0

0
.1
4
8

2
0
0
0
–
2
0
1
0

N
L
T
D

N
L

P
H

2
0
2
,6
6
8
.9

9
3
2
.1

0
.1
0
7

0
.1
2
5

1
9
9
5
–
2
0
1
0

N
L
T
D

N
L
T
D

P
H

2
9
0
,4
5
7
.4

4
2
3
.2

0
.1
0
5

0
.1
2
9

1
9
9
0
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

3
7
8
,9
5
7
.9

1
9
3
.5

0
.1
0
5

0
.1
2
7

m
fp
ig
en

al
go
ri
th
m

A
IC

2
0
0
5
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

A
*D

1
0
1
,6
4
4
.7

0
.1
1
2

0
.1
4
7

2
0
0
0
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

A
*D

2
0
2
,4
2
7
.4

0
.1
0
2

0
.1
2
8

1
9
9
5
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

A
*D

2
9
0
,1
9
4
.5

0
.1
0
1

0
.1
2
5

1
9
9
0
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

A
*D

3
7
8
,7
1
0
.8

0
.1
0
0

0
.1
2
6

B
IC

2
0
0
5
–
2
0
1
0

N
L
T
D

N
L
T
D

P
H

1
0
1
,8
0
5
.6

6
9
.8

0
.1
2
0

0
.1
4
8

2
0
0
0
–
2
0
1
0

N
L
T
D

N
L

P
H

2
0
2
,6
6
8
.9

7
5
.6

0
.1
0
7

0
.1
2
5

1
9
9
5
–
2
0
1
0

N
L
T
D

N
L
T
D

P
H

2
9
0
,4
5
7
.4

6
3
.1

0
.1
0
5

0
.1
2
9

(c
o
n
ti
n
u
e
d
)

Maringe et al. 3613



T
a
b
le

1
.
C
o
n
ti
n
u
e
d
.

R
M
IS
D

at
5
ye
ar
s

A
ge

(A
)

Y
e
ar

o
f

d
ia
gn
o
si
s
(Y
)

D
e
p
ri
va
ti
o
n
(D

)
In
te
ra
ct
io
n
s

X
IC

a
X
IC

a

w
e
ig
h
ts

(%
)

X
IC

a
d
is
ta
n
ce

w
it
h
n
e
x
t

se
le
ct
e
d
m
o
d
e
l

2
0
1
0
b

2
0
1
1
c

1
9
9
0
–
2
0
1
0

N
L
T
D

N
L
T
D

T
D

3
7
8
,9
5
7
.9

5
5
.0

0
.1
0
5

0
.1
2
7

Si
m
p
le
m
od
el
sd

2
0
0
5
–
2
0
1
0

L
P
H

L
P
H

P
H

1
0
2
,4
9
2
.2

0
.1
1
9

0
.1
1
3

2
0
0
0
–
2
0
1
0

L
P
H

L
P
H

P
H

2
0
3
,8
5
2
.5

0
.1
1
9

0
.1
1
3

1
9
9
5
–
2
0
1
0

L
P
H

L
P
H

P
H

2
9
2
,6
7
8
.4

0
.1
2
5

0
.1
1
7

1
9
9
0
–
2
0
1
0

L
P
H

L
P
H

P
H

3
8
1
,7
2
2
.1

0
.1
2
4

0
.1
1
7

Pe
ri
od

ap
p
ro
ac
h

0
.0
7
6

L
:
L
in
ea
r;
N
L
:
n
o
n
-l
in
e
ar
;
T
D
:
ti
m
e-
d
e
p
e
n
d
en
t;
P
H
:
p
ro
p
o
rt
io
n
al
h
az
ar
d
;
*:
in
te
ra
ct
io
n
;
A
IC
:
A
k
ai
ke

in
fo
rm

at
io
n
cr
it
e
ri
a;
B
IC
:
B
ay
e
si
an

o
r
Sc
h
w
ar
z
in
fo
rm

at
io
n
cr
it
e
ri
a.

a
X
IC

st
an
d
s
fo
r
A
IC

o
r
B
IC

d
e
p
e
n
d
in
g
o
n
m
o
d
el
.

c
R
M
IS
D

ar
e
ca
lc
u
la
te
d
b
y
av
e
ra
gi
n
g
th
e
in
te
gr
at
ed

sq
u
ar
e
d
iff
e
re
n
ce
s
m
e
as
u
re
d
in

e
ac
h
o
f
th
e
ag
e
an
d
d
e
p
ri
va
ti
o
n
gr
o
u
p
s.

d
P
re
d
ic
ti
o
n
o
f
fiv
e
-y
e
ar

su
rv
iv
al
fo
r
p
at
ie
n
ts

d
ia
gn
o
se
d
in

2
0
1
0
an
d
2
0
1
1
.

d
A
m
o
d
el

w
it
h
al
l
va
ri
ab
le
s
m
o
d
e
lle
d
w
it
h
a
lin
e
ar

p
ro
p
o
rt
io
n
al
e
ff
e
ct
.

3614 Statistical Methods in Medical Research 29(12)



RMISD in section 3.5.) between model-averaged net survival estimates and the PP estimates using known follow-

up until 31 December 2015 for patients diagnosed in 2010 (Figure 2 for the cohorts 1990–2010 and 2005–2010, and

online Appendix Figure 1 for all four cohorts), and for patients diagnosed in 2011 (online Appendix Figure 2).
Breast cancer: All ISDs are very small, and largest differences are seen for the oldest age-group when survival is

predicted by the simple model. Similar observations can be made for the projection of survival for patients

diagnosed in 2011, not included in model selection (online Appendix Figure 2). The more recent the cohorts of

patients, the better the estimates of survival: ISDs are smaller when using 2005–2010 cohorts only versus 1990–

2010 cohorts.
Colon cancer: Simple models lead to high ISD for different age and deprivation groups, such as patients aged

15–54 years in the most deprived group and 45–54 years in deprivation quintile 4. Except for patients aged 15–44

in the least deprived group, 2010-period approach estimates show low ISD. ISD values remain stable and low,

whatever the number of cohorts used in multivariable model-averaged prediction of survival (online Appendix

Figure 1). ISDs for patients aged 15–44 and 45–54 years are slightly higher when the models are used for pro-

jection of survival for patients diagnosed in 2011.
Lung cancer: Except for patients aged 15–44, in deprivation quintile 4, for whom model-averaged ISD is large,

model-averaged ISD are generally lower than ISD derived from the simple model, and smaller or similar to most

of the 2010-period ISDs. Model-averaged predictions for patients aged 15–44, in deprivation quintile 3 and

diagnosed in 2011 show very high ISD. Such large ISDs are also observed, but to a lesser extent, for simple

model estimates (online Appendix Figure 2).
The highlighted patterns in ISD, for all three cancers, are observed for (i) AIC (triangular shapes) and BIC

(circular shapes) selected models, and following (ii) model selection using mfpigen (hollow red symbols) and our

adapted algorithm (full red symbols).
By averaging the ISD values displayed in Figure 1 and online Appendix Figures 1 and 2, the RMISD values

summarise the overall differences in the survival curves (Table 1). For all cancers, model-averaged estimates of

survival lead to the smallest RMISD, in comparison to using pre-defined simple models (Table 1). Nonetheless,

there are differences between cancers: for breast cancer, there is a small advantage in restricting the model

selection and estimation to the cohorts of patients diagnosed in the last five years, while for patients diagnosed

with colon or lung cancer, longer time-trends yield better estimates of survival for patients for whom follow-up is

Figure 2. Integrated Square Difference (ISD) between NS predicted by each AIC or BIC model-averaged, simple models, and the
period approach, compared to the PP cohort survival for patients diagnosed in 2010, by age group, deprivation from 1990 to 2010 and
from 2005 to 2010 cohorts of patients used in model selection.
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not yet available. The simple models yield the highest RMISD values, for each cancer and each cohort, except for

lung cancer when using the AIC-based multi-model inference from the adapted mvrs. (Table 1)
Figure 3 shows what the actual differences are on the overall cohort net survival curves, contrasting cancer

survival estimated from the simple model, and from model-averaged selection, to the 2010-cohort approach. The

differences between the model-averaged estimates of survival up to five years are tiny when contrasting AIC and

BIC selection, adapted mvrs or mfpigen algorithm. Nonetheless, they do reflect the conclusions from RMISD:

additional cohorts of patients are necessary for a better prediction of lung cancer survival. Net survival estimated

from model selection and when necessary, model averaging, are closer to the PP estimates than estimates from

simple models.

4.2 High-resolution data setting: illustration

This illustration rests on richer datasets to allow inclusion of the effects of potentially key prognostic factors such

as stage at diagnosis, mode of presentation (emergency presentation for lung cancer, screening for breast cancer)

and performance status (lung cancer) on the excess hazard.

Figure 3. Net survival curves: comparison between the PP estimates and estimates from 1990 to 2010 and from 2005 to 2010
cohorts of patients used in model-averaging from AIC and BIC model selection.
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For both cancers, between 1 and 10 models have similar support from the data, given their AIC, but only one

model given its BIC, when restricting to models with BICs within two of each other: we report the effects

estimated, the AIC or BIC and corresponding weights in Table 2. The models selected to model breast cancer

survival have AIC weights between 16.1% and 42.3% (adapted mvrs) and between 6.6% and 17.8% (mfpigen); the

models selected to model lung cancer survival have AIC weights between 11.6% and 29.4% (adapted mvrs). The

selected models with the highest AICs are only just over two units away from the next model: 2.2 for breast (both

algorithms) and lung (mfpigen), but 316.3 units away for lung (adapted mvrs). The effects of deprivation (PH) and

stage (TD) for breast cancer, and the effects of stage (TD), performance status (TD), emergency presentation

(TD), and an interaction between age and deprivation for lung cancer, are selected in all models.
Model-averaged estimates of the excess hazard are presented in online Appendix Figure 3, highlighting differ-

ences between these and those estimated by simple models, especially for stage IV with larger excess hazard

estimated with the simple models.
There is very little difference between the AIC (mfpigen and adapted mvrs) and BIC model-averaged survival

curves for patients diagnosed with breast or lung cancer (Figure 4). Survival estimated from the simple model,

although modelling the effects of all variables, does differ for both cancers, especially at stages IV (breast) and II

and III (lung).
The confidence intervals around the net survival curves highlight uncertainty related to data sparsity but also

model selection.

5 Discussion

We contrast the predictions and projections of cancer survival derived from a model-averaged approach and (i)

a-priory simple model and (ii) non-parametric period approach. We use an algorithm for model selection that has

been used in cancer epidemiology,13 for scanning methodically through the possible effects of independent factors

on the excess hazard of death, merely to illustrate the multi-model inference in cancer survival. Indeed, any other

algorithm based on screening through possible effects could have been adapted to the information criteria par-

adigm. We implement the model averaging methodology for the selection of the best model(s)20 using AIC and

BIC as selection criteria. We show the lethality and the rate of improvement of cancer survival determine how

many past cohorts of patients are needed to predict and project survival with best accuracy. We also show that

allowing for multi-model estimation of cancer survival generally results in restricted mean integrated square

differences as good as or better than the non-parametric period approach. In some cases, despite larger AICs

Figure 3. Continued
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or BICs, simple models produced accurate predictions, similar to model-averaged predictions, but projections

from these models do not estimate cancer survival as well.
There are many advantages to estimating survival using IC-based model selection and multi-model inference.

(1) Transparent model building strategy: the algorithm walks through the effects of variables in a hierarchical and

systematic fashion. (2) Uncertainty relative to model selection is taken into account in the variance of the esti-

mated outcomes. (3) There is no assumption that an effect is simple, without checking it can or needs to be

simple. (4) Projections for patients outside of the training sample are possible, which is not possible using the

period approach.
The results show that for breast cancer patients, only patients diagnosed in the five years prior to the year for

which we need to make five-year survival predictions are needed to produce accurate predictions and projections.

This can be explained by survival increasing at constant pace of about 3–8% per five years in the last 20 years. By

contrast, for lung and colon cancers, cancer survival increased irregularly in the last 20 years: close to 30%

increase in five-year lung cancer survival between 2005 and 2010, but no increase between 1990 and 1995 and

similarly, 12% increase in colon cancer survival between 2005 and 2010 but only 3% between 2000 and 2005.

More cohorts of patients are needed to predict and project five-year survival accurately, due to these irregular

trends in survival. These considerations need to be borne in mind when using the most recent cohorts for the

prediction of cancer survival.
Bayesian, cross-validation and bootstrap-based approaches are also likely to perform well in excess hazard

model selection. Nonetheless these carry high computational demands. BIC readily links with Bayesian model

averaging and is asymptotically consistent in estimating the true generating model.59 Despite AIC asymptotically

equivalent to cross-validation,23 and therefore a tool of choice for model selection in the context of prediction, it

tends to overestimate the dimension of the true model.59 Furthermore, multi-model inference has theoretical and

practical advantages, particularly for predictions.20 These advantages include: (1) taking into account uncertainty

in model selection, leading to more robust results whowho do not necessarily depend upon a particular model; (2)

choosing to average models that have AIC within two of the minimum AIC helps keep the number of considered

models reasonable; (3) model averaging avoids one to have to defend the choice of model: it makes convincing

stakeholders from different backgrounds and highlighting the robustness of the results easier.60 We recognise the

limitation that model uncertainty remains conditional on the model set, as all models come from a unique model

set.61 Other approaches which have proved useful for predictions would broaden the model sets considered (e.g.

LASSO, Random Survival Forest) and could provide interesting research developments but would need to be

adapted to the relative survival data setting.
We focus here on predicting and projecting five-year net survival, as most events happen in the short term

following a cancer diagnosis, certainly for colon and lung cancers. By contrast, breast cancer patients experience

long-term excess mortality. Therefore, we performed additional analyses for the prediction of 10-year breast

cancer survival. We found that a model-averaged 10-year survival prediction leads to a smaller difference than

from a simple model or from a non-parametric period approach (data not shown).
Using empirical data in the low-resolution setting, we can only compare our predictions and projections to the

consistent non-parametric PP estimates of cancer survival, for patients diagnosed in a given year. We acknowledge

that these remain estimates of survival, rather than the “truth”, but we argue that they will be what is produced

when the follow-up information becomes available, to contrast trends in cancer outcomes.62–64 Nonetheless, both

Figure 4. Up to four-year net survival for patients diagnosed with breast or lung cancer by age and stage for patients in the third
deprivation quintile.
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non-parametric and parametric outcomes are estimating the same quantity since the models are adjusting for the

variables that constitute the strata of the PP estimates.
However, in the application, due to data sparsity by strata defined by the values of the variables adjusted for in

the models, it was not possible to compare the model-averaged estimates of net survival to the PP. Indeed, when

the PP is not stratified by the same prognostic factors, it is not estimating the same quantity as the model-based

estimates. The results of the high-resolution setting are presented to motivate the use of multi-model inference for

the prediction and projection of cancer survival. The differences between predictions derived from a simple model

versus IC-based approach, however, highlight that it would be relevant to conduct such comparison in a larger

population in which variables such as stage at diagnosis, mode of presentation and performance status are

available.
Multi-model inference, as presented here, allows model parameters to remain the raw information for the

estimation of each model’s outcome of interest. Such outcomes are then averaged, and interpretation of the

predictions can only be made on the outcome. Multi-model inference increases the ability to perform better

predictions while retaining interpretability of the averaged outcomes.61,65 It seems to be a good compromise

between best-model selection strategy (high interpretability but poor predictions) and ensemble learning strategy

(high predictions but poor interpretability). For patients and their carers, prediction of the remaining survival

time represents their main interest. However, this point estimate of time carries poor predictive capability.9 Hence,

much of the literature focuses on prediction of survival probabilities, at individual or population level. In the field

of prognosis research at individual level, there is a growing emphasis on improving the quality of published risk

scores so they are useful to individual patient prognosis.12

Here, we aim to predict and project population-based levels of survival, rather than individual cancer survival

predictions. It is the reason why we do not rely on standard loss functions, or usual measures of discrimination

and calibration. It is still important to gather accurate information on the main prognostic factors, and make sure

models are correctly specified since correct model specification and availability of individual patient characteristics

improve prediction. All of this is exemplified in both scenarios here, low- and high-resolution data settings, in

which complex prognosis models are compared.

6 Conclusion

We recommend that, given a set of variables that may influence levels of cancer mortality, possible excess hazard

models should be assessed systematically. We encourage analysts to consider that a model may not be singled out

as the best model. Model averaging using Kullback-Leibler distance such as AIC, or Bayesian principles such as

BIC, allows users to consider several equivalent models and effects, and to take account of the uncertainty relative

to model selection in the estimation of the variance of the outcomes. Prediction and projection of cancer survival

can best be done using such carefully selected parametric models.
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