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The field of medicine is undergoing a fundamental change, transforming towards a modern
data-driven patient-oriented approach. This paradigm shift also affects perinatal medicine
as predictive algorithms and artificial intelligence are applied to enhance and individualize
maternal, neonatal and perinatal care. Here, we introduce a pharmacometrics-based
mathematical-statistical computer program (PMX-based algorithm) focusing on
hyperbilirubinemia, a medical condition affecting half of all newborns. Independent
datasets from two different centers consisting of total serum bilirubin measurements
were utilized for model development (342 neonates, 1,478 bilirubin measurements) and
validation (1,101 neonates, 3,081 bilirubin measurements), respectively. The
mathematical-statistical structure of the PMX-based algorithm is a differential equation
in the context of non-linear mixed effects modeling, together with Empirical Bayesian
Estimation to predict bilirubin kinetics for a new patient. Several clinically relevant prediction
scenarios were validated, i.e., prediction up to 24 h based on one bilirubin measurement,
and prediction up to 48 h based on two bilirubinmeasurements. The PMX-based algorithm
can be applied in two different clinical scenarios. First, bilirubin kinetics can be predicted up
to 24 h based on one single bilirubin measurement with a median relative (absolute)
prediction difference of 8.5% (median absolute prediction difference 17.4 μmol/l), and
sensitivity and specificity of 95.7 and 96.3%, respectively. Second, bilirubin kinetics can be
predicted up to 48 h based on two bilirubinmeasurements with amedian relative (absolute)
prediction difference of 9.2% (median absolute prediction difference 21.5 μmol/l), and
sensitivity and specificity of 93.0 and 92.1%, respectively. In contrast to currently available
nomogram-based static bilirubin stratification, the PMX-based algorithm presented here is
a dynamic approach predicting individual bilirubin kinetics up to 48 h, an intelligent,
predictive algorithm that can be incorporated in a clinical decision support tool. Such
clinical decision support tools have the potential to benefit perinatal medicine facilitating
personalized care of mothers and their born and unborn infants.
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INTRODUCTION

The field of medicine is undergoing a fundamental change in
which artificial intelligence is connecting with diagnostic
instruments, patient information systems and therapy
management enabling unforeseen opportunities in
transforming the health system towards a modern data-driven
patient-oriented approach (Rajkomar et al., 2019). This paradigm
shift also affects perinatal medicine as predictive algorithms and
artificial intelligence are applied to enhance and individualize
maternal, neonatal and perinatal care, with the goal not only to
predict mortality (Mangold et al., 2021) but also to facilitate
therapeutic decisions for our most vulnerable patients, fetuses
and newborns, and their mothers.

In this work, we discuss a predictive algorithm in neonatology,
with initial focus on hyperbilirubinemia, a medical condition
affecting half of all newborns. Hyperbilirubinemia is a condition
defined as elevated serum or plasma bilirubin levels above the
reference range of the laboratory, and it is due to disorders or
immaturity of bilirubin metabolism. In neonates, transient
jaundice is a normal part of postnatal transition (Dennery
et al., 2001). Bilirubin has strong antioxidant properties but
when reaching too high levels, bilirubin can cross the blood-
brain barrier and might cause bilirubin-induced neurotoxicity, of
which kernicterus is the most dangerous form (Watchko and
Tiribelli, 2013). Thus, medical screening of all neonates for
hyperbilirubinemia is recommended to commence prompt
therapy, namely phototherapy, once certain thresholds are
crossed to prevent neurological complications (Watchko and
Tiribelli, 2013). Up to 10% of neonates experience rebound
hyperbilirubinemia, requiring re-initiation of treatment (So
and Khurshid, 2021), and making hyperbilirubinemia the
major reason for re-hospitalization in the first year of life
(Schiltz et al., 2014).

Currently, static population-based nomograms for the
assessment of neonatal hyperbilirubinemia are applied in daily
clinical practice (Dennery et al., 2001). These nomograms are
based on percentiles of bilirubin values at a given age in hours and
classify neonates into risk groups. More recent risk stratification
approaches include additional clinical factors for the prediction of
neonatal hyperbilirubinemia shortly after birth (Castillo et al.,
2018) or before discharge (Han et al., 2015). Even though
approaches for risk stratification provide clinicians with a
guideline for their assessment, adherence is only 50% due to
cumbersome documentation (Tartaglia et al., 2013; Sampurna
et al., 2018). Moreover, it has been found that health care
professional noncompliance with best practices is the main
reason for kernicterus in countries with highest health care
standards (Alkén et al., 2019). Nomogram-based methods are
overly general and do not provide an individual prediction of
what will happen. Therefore, we aim for personalized prediction
by identifying neonates at risk for clinically relevant
hyperbilirubinemia more accurately, thus preventing the
development of severe neonatal jaundice as well as
overtreatment and unnecessary hospital stays.

Machine learning (ML) methods are computationally
powerful tools for the analysis of large and heterogeneous

datasets almost in real time (Koch et al., 2020a). Such
methods can be applied for discriminating between classes or
patient populations (e.g. high vs. low risk patient; treatment
required yes or no) by identifying relevant variables (features)
of interest. As such we recently developed a ML-based tool to
predict the probability of whether a neonate will need a
phototherapy treatment or not within the next 48 h
(Daunhawer et al., 2019). Although this ML tool provides an
innovative risk assessment regarding phototherapy requirement,
this algorithm does not predict the dynamics of bilirubin kinetics,
i.e., this ML algorithm is not able to predict bilirubin levels up to
24 h or 48 h.

Complementary to our previously published ML-based
algorithm, we present a predictive PMX-based algorithm
(Koch et al., 2020b) that computes individual bilirubin kinetics
up to 48 h. The PMX-based algorithm is intended for non-
intensive care units to facilitate and optimize management of
neonates with jaundice supporting clinical decisions such as 1) is
an additional bilirubin measurement necessary? 2) can the
neonate be discharged home? 3) can a neonate at risk for
clinically relevant hyperbilirubinemia be identified early?

This manuscript has five objectives. First, we describe the
development of the PMX-based algorithm. Second, we define
clinically relevant scenarios, i.e., prediction up to 24 h based on
one bilirubin measurement, and prediction up to 48 h based on
two or more bilirubin measurements, and validate the prediction
of developed PMX-based algorithm, which is the main goal of this
manuscript. An appropriate external validation is a crucial step to
perform predictions at the individual patient level. Third, we
carry out stress test of this algorithm with increased prediction
horizons up to 60 h. Fourth, we assess the sensitivity and
specificity of the developed algorithm to evaluate performance
relevant to clinical practice in neonatology. Further, we discuss
opportunities and challenges of applying “intelligent” ML-,
artificial neural networks (ANN)- and PMX-based algorithms
in the field of perinatal medicine.

METHODS

This section is structured as follows. First, we explain the
magnitude of total serum bilirubin (TSB) measurement errors
in clinical practice. Second, we present the study patient
populations applied for development and validation of the
PMX-based algorithm. Third, we describe the development of
the PMX-based algorithm to characterize postnatal bilirubin
kinetics. Fourth, we present the development of the PMX-
based algorithm to predict individual bilirubin kinetics. Fifth,
we outline the validation procedure of the developed PMX-based
algorithm. Sixth, we provide information on applied software for
descriptive statistics, algorithm development and validation.

Magnitude of Total Serum Bilirubin
Measurement Errors in Clinical Practice
TSB measurements are subject to considerable intra- and inter-
individual variability due to biological factors and measurement
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errors related to clinical practice and laboratory measurements.
Van Imhoff et al. (van Imhoff et al., 2011) showed that the inter-
laboratory variability was up to a CV of 14.1%. Hence, anticipated
magnitude of variability associated with TSB measurements in
clinical practice is expected to be of the order of 5–15%.

Study Patients
Dataset for PMX-Based Algorithm Development
The dataset for model development (University Children’s Hospital
Basel, Basel, Switzerland) comprises TSB measurements from
neonates admitted directly after birth to the neonatal unit due to
varying reasons such as respiratory morbidity, birth complications,
infection, mild prematurity and feeding problems. None of the
neonates suffered from inherited diseases such as glucose-6-
phosphate dehydrogenase (G6PDH) deficiency. All neonates
included in this study had an inconspicuous neurological status,
including those with values in the further course exceeding 15mg/dl.
The bilirubin measurements prior to phototherapy available in this
dataset and used for model development consisted of 1,478
measurements from 342 patients, see Table 1 for more details. All
bilirubin measurements were performed as total bilirubin using an
ABL800 FLEX blood gas analyzer (Radiometer Medical ApS,
Denmark). The study was approved by the Institutional Review
Board (EKNZ:BASEC 2018-00053).

Dataset for External PMX-Based Algorithm Validation
The dataset for external algorithm validation (University Children’s
Hospital Regensburg, Hospital St. Hedwig of the Order of St. John,
Regensburg, Germany) comprises TSB measurements in two clinical
settings: 1) 80% healthy neonates staying with their mothers after
birth until discharge home (the majority) or until admission to the
neonatal unit because of significant neonatal hyperbilirubinemia or
other reasons, 2) 20% neonates admitted after birth to the neonatal
unit due to varying reasons such as respiratory diseases, birth
complications, infection, mild prematurity and feeding problems.
The goal was to apply and validate the PMX-based algorithm in these
two clinical settings to cover various neonatal medical conditions and
a wide range of postnatal bilirubin time courses. Some neonates
suffered from blood group incompatibility; details of which were not
reported. All neonates included in this study had an inconspicuous
neurological status, including those with values in the further course
exceeding 15mg/dl. Of note, healthy neonates staying with their
mothers after birth obtained the bilirubin check together with the
mandatory metabolic screening at day 2 or 3 of life. Timing of
bilirubin measurement was individualized based on medical or
practical factors representing clinical workflow in a perinatal

center. Bilirubin measurements prior to phototherapy in this
dataset were utilized for model validation, see Table 1 for more
details. All bilirubin measurements were performed as total bilirubin
utilizing a Bilimeter 3D (Pfaff medical GmbH, Germany). The study
was approved by the ethics commission of the University of
Regensburg (21-2,518-104).

Development of PMXModel to Characterize
Postnatal Bilirubin Kinetics
In this section, the development process of the PMX-based
algorithm to characterize individual bilirubin kinetics is
presented, compare Figure 1. First, develop structure of the
mathematical-statistical PMX model to characterize postnatal
bilirubin kinetics based on physiological mechanisms. Second,
apply a non-linear mixed effects modeling approach (Lavielle,
2014) to fit the dataset for development to estimate the fixed and
random effects resulting in the mathematical-statistical model.

Structure of Mathematical Model to Characterize
Bilirubin Kinetics
In healthy individuals beyond the neonatal period, most
physiological processes are in an equilibrium, i.e., in balance
between production and elimination. Consequently, this results

TABLE 1 | Key characteristics of the dataset for algorithm development (Basel, Switzerland) and validation (Regensburg, Germany). Values are presented as follows: Median
[Q1, Q3] (Min, Max).

Gestational Age (week + day) Weight at Birth
(gram)

Delivery Mode (C-section
vs. Vaginal Delivery)

Postnatal hour of
Last Bilirubin Measurement

Basel, Switzerland (342 neonates with 1,478 bilirubin values, average 4.3 values per neonate)
37 + 6 [34 + 1, 39 + 5] (32 + 0, 42 + 5) 2,500 [1,950, 3,400] (1,050, 5,520) 179 C.S. 163 Vaginal 77 [56,124] (1, 411)

Regensburg, Germany (1,101 neonates, 3,081 bilirubin values, average 2.8 values per neonate)
38 + 2 [36 + 2, 39 + 6] (24 + 0, 42 + 2) 3,085 [2,532, 3,580] (520, 5,015) 620 C.S. 481 Vaginal 87.2 [63.0, 115.3] (1, 359)

FIGURE 1 | Workflow of the three components for model development
and validation.
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in constant bilirubin levels. For neonates shortly after birth, the
equilibria of many processes are not yet reached due to maturation.
Hence, bilirubin production might be increased, and elimination
might be reduced during the first days of life, leading to elevated
bilirubin levels. This physiological principle of bilirubin levels B(t) is
modeled with a differential equation consisting of a zero-order
production term kprod and a first-order elimination term kelim
(Dayneka et al., 1993; Koch et al., 2013; Koch and Schropp, 2018)

d

dt
B(t) � kprod(t, θ, c, β) − kelim(t, θ, c, β) · B(t), B(0) � B0

(1)
where t is postnatal age (PNA), B0 is the initial condition (i.e., a
parameter for bilirubin level at birth), θ the structural model
parameters, c the covariates (i.e., patient characteristics such as
birth weight, gestational age and delivery mode) and β the
parameters characterizing the covariate effect on the model
parameters. The detailed mathematical model structure is part
of a broader active patent (Koch et al., 2020b) where more
information on Eq. (1) can be found. The structural model
parameters are summarized in

Θ � (θ, B0).

Data Fitting and Development of
Mathematical-Statistical Model
The non-linear mixed effects modeling approach was applied for
data fitting and parameter estimation. Briefly, structural model
parameters have a population value Θpop (also called fixed effect
or typical value) describing the average patient in the population.
To characterize an individual neonate in the population,
individual model parameters are drawn from a normal
distribution with covariance matrix Ω (called random effects).
The normal distribution is further transformed to a log-normal
distribution to allow log-normally distributed individual model
parameters, see (Lavielle, 2014) for more technical details. In
addition, the parameter β characterizing covariate effects is
estimated. Typically, only covariate effects that show 1) a
statistically significant effect, 2) a reduced objective function
value, 3) a reduced variability of the random effects, and 4)
are clinically relevant and routinely available in clinical practice,
are included. Finally, the developed mathematical-statistical
model is given by Eq. (1) together with fixed and random effects

ρ � (Θpop,Ω, β) (2)

Development of PMX-Based Algorithm to
Predict Individual Bilirubin Kinetics
In this section, the development process of the PMX-based
algorithm to predict individual bilirubin kinetics is presented,
compare Figure 1. The final PMX-based algorithm with an
Empirical Bayesian Estimation (EBE) component is applied to
predict the individual bilirubin kinetics for a new patient.

Final PMX-Based Algorithm to Predict Individual
Bilirubin Kinetics
The mathematical-statistical model defined by (Eqs 1, 2) is the
final (trained) model based on the dataset applied for
development. To predict the bilirubin kinetics for a new
patient, EBE, also known as Maximum A Posteriori
Estimation (Bassett and Deride, 2019), is applied. The EBE
utilizes Eq. (1) and the prior information stored in ρ Eq. (2)
about the population applied for model development and
training, and estimates the individual model parameters Θ̂i

for a new patient by minimizing

Θ̂i � argmin { − 2 log p(Θi|wi; ρ)} (3)
based on the new individual bilirubin measurements wi and
patient characteristics. These estimated individual model
parameters Θ̂i are then utilized to perform the individual
prediction of bilirubin kinetics.

Implementation of PMX-Based Algorithm
Model development was performed in the NLME software
The Monolix Suite 2020 (Lixoft, Orsay, France). Since The
Monolix Suite 2020 is a commercial software that does not
allow application in app- or web-based tools, the developed
mathematical-statistical model (Eqs 1, 2) and the EBE Eq. (3)
was re-implemented in Matlab 2021 (MathWorks, Natick,
MA, USA).

Validation of PMX-Based Algorithm
In this section, the application and validation of the PMX-
based algorithm is presented. First, definitions of the
different validation scenarios and some input rules are
shown. Second, validation metrics are given, including the
absolute und relative prediction difference as well as
clinically relevant sensitivity and specificity, compare
Figure 1. Third, the construction of validation datasets is
briefly discussed.

Definition of Validation Scenarios and Input Rules
In the following, clinically relevant validation scenarios are
defined for prediction horizons up to 24 and 48 h. To provide
a stress test for the PMX-based algorithm, additional
validation scenarios with longer prediction horizons were
also included.

Definition of Validation Scenario 1: Prediction up to 24 h
Based on One TSB Measurement
PMX-based algorithm predicts for one TSB measurement the
bilirubin kinetics for up to 24 h with respect to the time point of
the measurement.

Definition of Validation Scenario 2a: Prediction up to 48 h
Based on Two TSB Measurements
PMX-based algorithm predicts for two TSB measurements the
bilirubin kinetics for up to 48 h with respect to the time point of
the second measurement.
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Definition of Validation Scenario 2b: Prediction up to 48 h
Based on Two or More TSB Measurements
PMX-based algorithm predicts for two or more TSB
measurements the bilirubin kinetics for up to 48 h with
respect to the time point of the last measurement.

Definition of Stress Test Scenarios With Longer Prediction
Horizon
The prediction horizon for one TSB measurement (validation
scenario 1) was extended by an additional 6 h, i.e., for a total
prediction of up to 30 h. The prediction horizon for two,
(validation scenario 2a), or two or more (validation scenario
2b) TSB measurements were extended by an additional 12 h,
i.e., for a total prediction of up to 60 h.

Definition of Input Rules Regarding Postnatal Age
The time point of the first TSB measurement must be between ≥
8 and ≤ 72 h of PNA. All further time points of TSB
measurements must be between ≥ 24 and ≤ 96 h of PNA.
The PNA distance between successive measurements must be
≥ 8 h.

Definition of Validation Metrics
Definition of Absolute Prediction Difference and Relative
Prediction Difference
The absolute prediction difference (p.d.) between predicted
bilirubin level Bpred and measured (observed) bilirubin level
Bobs was defined as

p.d. � ∣∣∣∣ Bpred − Bobs

∣∣∣∣ (4)
The relative (absolute) prediction difference (r.p.d.) in percent

was defined as

r.p.d. �
∣∣∣∣ Bpred − Bobs

∣∣∣∣
Bobs

· 100 (5)

Definition of Clinically Relevant Sensitivity and Specificity
For validation, e.g., of diagnostic tests and algorithms with a
binary outcome, statistical measures such as sensitivity and
specificity are essential. As such we define these performance
measures for our developed PMX-based algorithm in the context
of a clinically relevant bilirubin threshold in neonatology. The
phototherapy limit for the most vulnerable late preterm and term
born neonates is 15 mg/dl (equals to 250 μmol/l) when older than
72 h (Bhutani, 2011). As such this bilirubin level has been set as
the threshold to evaluate the performance of the PMX-based
predictive algorithm. It should be noted that a bilirubin level >
250 μmol/l is considered clinically relevant, requiring appropriate
monitoring and management. Moreover, for a neonate with
hyperbilirubinemia, an under-prediction with a value below
the threshold would possibly lead to inadequate therapeutic
management depending on the magnitude of under-
prediction. Taking into account variability in the prediction,
e.g., caused by measurement errors, an acceptance range for
the prediction difference Bpred − Bobs is defined by applying
the Bland-Altman method (Altman and Bland, 1983) with 5th

and 95th percentile of the standard normal distribution
(corresponding to 90% limits of agreement):

acceptance range � [MWdiff − 1.6449 · SDdiff , MWdiff

+ 1.6449 · SDdiff]

where MWdiff is the mean of the prediction differences, and
SDdiff is the standard deviation of the prediction differences.

This defines a criterion for clinically interchangeably
measurements and allows for characterizing accepted true
positives or accepted true negatives, respectively.

The following terms are defined:

1) True positive: Neonate with hyperbilirubinemia (i.e., observed
bilirubin level > 250 μmol/l) either with a predicted bilirubin
level > 250 μmol/l or with both a predicted bilirubin level ≤
250 μmol/l and a prediction difference within the acceptance
range (accepted true positive)

2) True negative: Neonate without hyperbilirubinemia (i.e.,
observed bilirubin level ≤ 250 μmol/l) either with a
predicted bilirubin level ≤ 250 μmol/l or with both a
predicted bilirubin level > 250 μmol/l and a prediction
difference within the acceptance range (accepted true
negative)

3) False positive: Neonate without hyperbilirubinemia with a
predicted bilirubin level > 250 μmol/l but with a prediction
difference above the upper limit of the acceptance range

4) False negative: Neonate with hyperbilirubinemia with a
predicted bilirubin level ≤ 250 μmol/l but with a
prediction difference below the lower limit of the
acceptance range

Based on these terms, sensitivity and specificity measures were
calculated. The four situations (test results) (i)-(iv) are
conceptually visualized in Figure 2 and explained in the
following. The black dashed horizontal and vertical lines

FIGURE 2 | Concept plot for sensitivity/specificity calculation. The four
different colors correspond to the four possible test results. The yellow shaded
area corresponds to the acceptance range, the turquoise dot and plus
represent the true positives, the blue square and cross display the true
negatives, the orange diamond corresponds to the false positives and the
purple triangle represents the false negatives. Detailed explanation is provided
in the main text.
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correspond to a bilirubin level of 250 μmol/l. The yellow shaded
area displays the acceptance range. Situation (i), the area of true
positives, is shown with turquoise shapes. The dot represents a
neonate with hyperbilirubinemia with Bpred > 250 μmol/l and the
plus represents a neonate with hyperbilirubinemia with
Bpred ≤ 250 μmol/l but with a prediction difference in the
acceptance range, indicated by the black dotted line. For the
true negatives, situation (ii), the analogous situation is given in
blue. The square corresponds to a neonate without
hyperbilirubinemia with Bpred ≤ 250 μmol/l and the cross
corresponds to a neonate without hyperbilirubinemia with
Bpred > 250 μmol/l but with a prediction difference within the
acceptance range, again indicated by the black dotted line. The
two remaining situations are the false positives, situation (iii),
displayed with orange diamonds, and the false negatives, situation
(iv), displayed with purple triangles.

Construction of Validation Datasets
The initial number of neonates in the validation dataset was n =
1,101. After deletion of patients with exactly one bilirubin
measurement and patients with partially missing values, n =
892 neonates were available for the validation data set.

Construction of Validation Datasets for One Measurement
(Scenario 1) With Prediction Horizon up to 24 h
From the n = 892 neonates, eligible neonates for this scenario
were selected as follows. The first bilirubin measurement served
as user input based on the input rules regarding PNA. Time point
of the second measurement was tested to determine whether it
fulfills the ≤24 h PNA distance with respect to the first
measurement. If yes, all additional measurements were deleted,
and this neonate is identified as eligible for the validation dataset,
if, in addition all other input rules are met as well. This resulted in
a validation dataset which consists of n = 236 neonates. Please
note that the second measurement is the bilirubin level that will
be predicted. In addition, a stress test validation dataset with a
prediction horizon up to 30 h instead of 24 h was similarly
constructed resulting in n = 387 neonates.

Construction of Validation Datasets for Two (Scenario 2a)
and Two or More (Scenario 2b) Measurements With
Prediction Horizon up to 48 h
In these scenarios, only neonates with three or more
measurements were eligible. Construction of validation
datasets was a step-by-step procedure. First, the PNA
distance between the second and the last measurement was
computed. Second, if this PNA distance fulfills ≤48 h, then this
measurement was selected to be predicted. If the PNA distance
is larger, the last measurement was rejected and the PNA
distance between the second and the second last measurement
was computed, and the procedure was repeated. For the
validation datasets with two bilirubin measurements, all
measurements between the second and the measurement
selected to be predicted were deleted. For the validation
datasets with two or more bilirubin measurements, these
values were kept. Finally, all input rules were tested and
neonates that do not fulfill the input rules were deleted. The

final validation sets for scenario 2a (two bilirubin
measurements) consist of n = 119 neonates and for scenario
2b (two or more bilirubin measurements) consist of n = 111
neonates. The stress test validation datasets for two or two or
more bilirubin measurements with a prediction horizon up to
60 h was constructed with a similar procedure resulting in n =
132 and n = 122 neonates, respectively.

Software Applied for Descriptive Statistics,
Algorithm Development and Validation
Descriptive statistical analysis was carried out in R 3.6.0 (R core
team, Vienna, Austria). Non-linear mixed effects modeling for
model development was performed in The Monolix Suite 2020
(Lixoft, Orsay, France). Construction of validation datasets was
performed in R. Model validation was conducted in Matlab 2021
(MathWorks, Natick, MA, USA). A-posteriori data visualization
was implemented in R and Matlab.

RESULTS

This section is structured as follows. First, results of the PMX-
based algorithm development is presented. Second, results of the
external validation are shown.

Development of PMX-Based Algorithm to
Predict Individual Bilirubin Kinetics
Development of the PMX-based algorithm to predict individual
bilirubin kinetics is presented. First, results regarding data fitting
and model parameter estimation are briefly given. Second, the
verification of the EBE implementation in Matlab is shown.

Data Fitting and Model Parameter Estimation (Fixed
and Random Effects)
The mathematical model Eq. (1) was fitted to the dataset for
model development resulting in estimates for the fixed and
random effects, as well as covariate effects Eq. (2). Several
covariates such as gestational age, sex, delivery mode, Apgar
scores, arterial pH, weight (at birth and progression),
hemoglobin, sodium, hematocrit, feeding (formula, mother
milk), Rh blood group system and blood type of mother and
neonate, and maternal factors were tested, compare (Daunhawer
et al., 2019) and see Supplementary Table S1 in the supplemental
material for more details. Weight at birth (continuous),
gestational age (continuous) and delivery mode (categorical)
were statistically significant covariates and included in the
final model with typical PMX covariate approaches. The
observation vs. prediction plot of the mathematical-statistical
model (Eqs 1, 2) with dataset for model development is shown in
Figure 3.

Verification of EBE Implementation in Matlab
To verify the EBE implementation in Matlab, each individual
neonate from the dataset for model development was re-fitted
in Matlab and individual model parameter estimates were
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compared with the results from Monolix. Since the model
parameters have different magnitudes, the percent difference
over all model parameters was calculated. Comparison of
model parameters obtained from Monolix and Matlab
showed a median maximal discrepancy of 0.48% caused by
non-identical, but structurally similar numerical algorithms
applied in both software programs, as well as internal
tolerances and termination criteria settings.

External Validation of the PMX-Based
Algorithm
Results of the external validation for scenarios 1, 2a, and 2b as
well as the stress test validation are presented as follows. In
Table 2, median of the relative (absolute) prediction difference,
median of the absolute prediction difference, and the sensitivity
and specificity are shown. Observation versus prediction plots for
scenario 1 (one measurement with prediction horizon up to 24 h)
and scenario 2a (two measurements with prediction horizon up
to 48 h) are shown in Figure 4.

DISCUSSION

As perinatal medicine is undergoing a fundamental change
transforming towards a modern data-driven patient-oriented
approach new tools that will predict the dynamics of
biomarkers for an individual fetus or newborn will become
increasingly important in maternal, neonatal and perinatal
care. We developed PMX-based algorithms to optimize and
individualize dosing of therapeutics in the field of perinatal
medicine (Wilbaux et al., 2016a; Wilbaux et al., 2016b; Koch
et al., 2017; Nekka et al., 2017; van Donge et al., 2018; Dallmann
et al., 2019; van Donge et al., 2019; Wilbaux et al., 2019; van
Donge et al., 2020a; van Donge et al., 2020b; Koch et al., 2020c;
Dao et al., 2020; Samiee-Zafarghandy et al., 2022). It is time to go
beyond classical pharmacological applications and develop
algorithms condensing the wealth of clinical data and
physiology knowledge into predictive tools coping with the
dynamics of biomarkers for an individual fetus or neonate.

These tools can be developed based on various methods, such
as PMX-based mathematical-statistical computer models,
machine learning (ML) or other artificial intelligence (AI)
methods such as artificial neural networks (ANNs). In the
following, PMX, ML and ANN approaches are discussed with
focus on our perinatal case study.

The undisputed major advantage of ML methods is its
computational efficiency in handling big data (Koch et al.,
2020a). Large amounts of input features can be processed
regarding its relationship with a dependent variable, e.g., a
labeled (supervised) binary outcome. On one hand this allows
large amounts of input features to be screened, e.g., patient
characteristics, for their relevance, but on the other hand the
ML-based tool is solely data-driven. Recently, we developed a
ML-based tool to predict the probability whether a neonate will
need a phototherapy treatment or not within the next 48 h
(Daunhawer et al., 2019). Almost 50 features were screened
resulting in a relevant subset of only four, which suffices for a
strong predictive performance (Daunhawer et al., 2019).
Although such ML-based tool provides an innovative risk
assessment regarding phototherapy requirement, it does not
predict the dynamics of bilirubin kinetics. In addition, ML
methods are not pre-destined to represent physiological
mechanisms. Hence, we consider ML as a powerful tool e.g.,
in pre-screening large amounts of input features and in
developing diagnostic tools where dynamic aspects of the
dependent variable are not of primary importance.

FIGURE 3 | Individual observation vs. prediction plot is shown from the
mathematical-statistical model based on the dataset for model development
where the orange line indicates the spline and dashed lines the 90% prediction
interval.

TABLE 2 | For each scenario (including the stress tests), the median of relative (absolute) prediction difference (r.p.d.) Eq. (5), the median of absolute prediction difference
(p.d) Eq. (4), and the sensitivity and specificity are presented.

Scenario Median of r.p.d.
in Percent (%)

Median of p.d.
mg/dl (µmol/l)

Sensitivity/Specificity Prediction Horizon

Scenario 1 (one TSB meas.) 8.5% 1.0 mg/dl (17.4 μmol/l) 95.7%/96.3% Up to 24 h
Scenario 1 (one TSB meas. stress test) 7.9% 0.9 mg/dl (15.7 μmol/l) 92.5%/97.5% Up to 30 h
Scenario 2a (two TSB meas.) 9.2% 1.3 mg/dl (21.5 μmol/l) 93.0%/92.1% Up to 48 h
Scenario 2a (two TSB meas. stress test) 9.9% 1.3 mg/dl (22.3 μmol/l) 91.7%/94.0% Up to 60 h
Scenario 2b (two or more TSB meas.) 8.8% 1.2 mg/dl (20.5 μmol/l) 94.6%/93.2% Up to 48 h
Scenario 2b (two or more TSB meas. stress test) 9.3% 1.3 mg/dl (21.8 μmol/l) 92.7%/93.8% Up to 60 h
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AI methods, such as ANNs, have become popular to analyze
data from various fields as ANNs can approximate any function
up to a certain accuracy (Hornik et al., 1989). At first glance, this
sounds like the perfect tool to learn any kind of behavior.
Although this is true in theory, an ANN is solely data-driven,
i.e., anything the ANN will learn arises from the analysis dataset
which can have essential fundamental consequences. An
enormous amount of data may be required covering all
possible situations. What ANNs do not see, will not be
learned, and may not be accurately predicted. Another issue
with ANNs is its black-box property, which makes it almost
impossible to understand why a trained ANN looks the way it
does. This in turn can limit acceptance of ANN-based algorithms
by care givers in clinical practice.

The developed PMX-based algorithm presented in this paper
includes known physiology-based, biological, and clinical facts
(Bonate, 2006; Koch et al., 2013; Gabrielsson, 2017). As an
example, neonates undergo strong maturation processes
during the first days and even weeks of life. We think it is
“intelligent” to incorporate such scientific, medical
understanding into our computer models. Our PMX-based
algorithm predicts bilirubin kinetics over time up to 48 h.
Hence, not only an answer for a specific question is available
for the clinician (Koch et al., 2020a), but the entire bilirubin
kinetics is revealed and provided. In addition, due to the
availability of the predicted bilirubin kinetics, different clinical
end points of interest can be defined in an a-posteriori step, e.g.,
prediction up to 24 h, 48 h or even longer prediction horizons, as
presented in this paper. Moreover, clinically relevant binary end
points such as prediction above or below a certain threshold, can
be defined, as presented in the sensitivity and specificity
computations.

Discussed PMX-, ML- and ANN-based methods have in
common that an external validation, i.e., a dataset from
another medical center, is necessary before application in
clinical practice. The major goal of this paper was to present
an external validation of the PMX-based algorithm based on a
dataset that was not available during algorithm development. In

addition to typical validation procedures in pharmacometrics
(Lavielle, 2014), we applied the statistical concept of sensitivity
and specificity for the external validation of the PMX-based
algorithm. This is to demonstrate that one can translate PMX-
based algorithms that forecast dynamics of biomarker responses
or disease progression into simplified algorithms that predict a
binary outcome.

The developed, predictive PMX-based algorithm was applied
in two different clinically relevant scenarios in neonatology. In
the first scenario, bilirubin kinetics is predicted up to 24 h into the
future based on a single bilirubin measurement with a median
relative (absolute) prediction difference of 8.5% (median absolute
prediction difference 17.4 μmol/l), and sensitivity and specificity
of 95.7 and 96.3%, respectively. In the second scenario, bilirubin
kinetics is predicted up to 48 h into the future based on two
bilirubin measurements with a median relative (absolute)
prediction difference of 9.2% (median absolute prediction
difference 21.5 μmol/l), and sensitivity and specificity of 93.0
and 92.1%, respectively. Moreover, a scenario with two or more
bilirubin measurements and various stress tests based on
increasing the prediction horizon were also performed. In all
these cases, similar values regarding the applied validation
metrics were obtained.

Recently, the PMX-based algorithm has even been validated
with three additional external, independent datasets: 1) clinical
dataset from Greece consisting of neonates with transcutaneous
bilirubin (TcB) measurements only, 2) clinical dataset from
Germany consisting of neonates with TSB only, TcB only, or
combinations of TSB and TcB measurements, and 3) clinical
dataset from Kenya, Africa, consisting of neonates with TSB and
TcB measurements. Results from these additional external
validation studies will be published in the near future.

Until now, best practice has been to plot measured bilirubin
values to given nomograms in a paper or electronic-based fashion
to identify the current level of patients’ jaundice status. Then, for
estimating individual risk of a given neonate and to provide a
recommendation for next measures, including further bilirubin
controls or specific therapy management steps, various clinical

FIGURE 4 | Individual observation vs. prediction plot for Scenario 1 (one TSBmeasurement) in (A) and for Scenario 2a (two TSBmeasurements) in (B). The dashed
black lines correspond to the phototherapy limit of 250 μmol/l; turquoise dots display true positives, blue squares display true negatives, orange diamonds display false
positives and purple triangles display false negatives.
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parameters need to been considered by the responsible health
care provider. As long as the neonatal patient is hospitalized
anyway there is only the medical challenge. In contrast, once
there is no other reason for keeping the patient in hospital or the
patient is already in the outpatient service, clinical decision
making becomes even more demanding as additional
organizational, economic and legal challenges may arise
(Brown et al., 2021). However, there are no randomized and
quasi-randomized studies available specifically addressing
bilirubin therapy, namely home-versus hospital-based
phototherapy (Malwade and Jardine, 2014).

Our intelligent PMX-based algorithm for prediction of
bilirubin kinetics is based on differential equations that
characterize maturation processes and other balance properties
and are then trained and validated on large datasets. PMX-based
algorithms can complement “artificial intelligence” such as ML-
and ANN-based approaches in perinatal medicine. PMX-based
algorithms leverage and integrate scientific, medical knowledge
with intelligent learning from clinical data. Our developed
intelligent algorithm for bilirubin level prediction will be
incorporated in a clinical decision support tool with the goal
to further optimize and individualize treatment of preterm and
term neonates, our most vulnerable patients. The presented case
of hyperbilirubinemia illustrates the potential of intelligent,
predictive ML-, ANN- or PMX-based algorithms in neonatology.

There are numerous opportunities for such clinical decision
support tools to further enhance and personalize care of mothers
and their unborn and born children. Neonatal jaundice is just one of
many medical conditions affecting newborn babies. There are many
other diseases in fetuses, neonates and their mothers rooted in the
specific dynamics of pregnancy and transition from intra-uterine to
extra-uterine life (Evers and Wellmann, 2016). In contrast to adult
medicine where health is defined as a continuum and the absence of
physical and mental degradation, in perinatal medicine, health is a

matter of cycles, growth, development and maturation processes. As
such intelligent algorithms and tools designed for predicting medical
conditions in perinatal medicine must address these specific
properties.
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