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Abstract

Gene regulatory networks are ultimately encoded by the sequence-specific binding of (TFs)

to short DNA segments. Although it is customary to represent the binding specificity of a TF

by a position-specific weight matrix (PSWM), which assumes each position within a site con-

tributes independently to the overall binding affinity, evidence has been accumulating that

there can be significant dependencies between positions. Unfortunately, methodological

challenges have so far hindered the development of a practical and generally-accepted

extension of the PSWM model. On the one hand, simple models that only consider depen-

dencies between nearest-neighbor positions are easy to use in practice, but fail to account

for the distal dependencies that are observed in the data. On the other hand, models that

allow for arbitrary dependencies are prone to overfitting, requiring regularization schemes

that are difficult to use in practice for non-experts. Here we present a new regulatory motif

model, called dinucleotide weight tensor (DWT), that incorporates arbitrary pairwise depen-

dencies between positions in binding sites, rigorously from first principles, and free from tun-

able parameters. We demonstrate the power of the method on a large set of ChIP-seq data-

sets, showing that DWTs outperform both PSWMs and motif models that only incorporate

nearest-neighbor dependencies. We also demonstrate that DWTs outperform two previ-

ously proposed methods. Finally, we show that DWTs inferred from ChIP-seq data also out-

perform PSWMs on HT-SELEX data for the same TF, suggesting that DWTs capture

inherent biophysical properties of the interactions between the DNA binding domains of TFs

and their binding sites. We make a suite of DWT tools available at dwt.unibas.ch, that allow

users to automatically perform ‘motif finding’, i.e. the inference of DWT motifs from a set of

sequences, binding site prediction with DWTs, and visualization of DWT ‘dilogo’ motifs.
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Author summary

Gene regulatory networks are ultimately encoded in constellations of short binding sites

in the DNA and RNA that are recognized by regulatory factors such as transcription fac-

tors (TFs). For several decades, computational analysis of regulatory networks has relied

on a model of TF sequence-specificity, the position-specific weight-matrix (PSWM), that

assumes different positions in a binding site contribute independently to the total binding

energy of the TF. However, in recent years evidence has been accumulating that, at least

for some TFs, this assumption does not hold. Here we present a new model for the

sequence-specificity of TFs, the dinucleotide weight tensor (DWT), that takes arbitrary

dependencies between positions in binding sites into account and show that it consistently

outperforms PSWMs on high-throughput datasets on TF binding. Moreover, in contrast

to previous approaches, DWTs are directly derived from first principles within a Bayesian

framework, and contain no tunable parameters. This allows them to be easily applied in

practice and we make a suite of tools available for computational analysis with DWTs.

Introduction

Gene regulatory networks are a crucial component of essentially all forms of life, allowing

organisms to respond and adapt to their environment, and allowing multi-cellular organisms

to express a single genotype into many different cellular phenotypes. Transcription factors

(TFs) are central players in gene regulatory networks that bind to DNA in a sequence-specific

manner. Although the molecular mechanisms through which TFs regulate expression of their

target genes involve a complex interplay of interactions between TFs, co-factors, chromatin

modifiers, and signaling molecules, gene regulatory networks are ultimately genetically

encoded by constellations of transcription factor binding sites (TFBSs) to which the TFs bind

in a sequence-specific manner.

Consequently, a key question in the analysis of gene regulatory networks is to find a proper

mathematical representation of the sequence-specificities of TFs. That is, for each TF, we want

to determine an energy function E(s) that calculates, for any given DNA segment s, the binding

free energy of the TF binding to s. The segment s is generally of fixed length for a given TF,

which typically ranges from 6 to 30 base pairs. Although there have been some attempts to use

direct structural and biophysical modeling of the sequence-specificity of TFs, e.g. [1–3], such

efforts have generally achieved only limited accuracy. Instead, by far the most common

approach to representing the sequence-specificity of TFs is through a statistical mechanical

analysis, which essentially assumes that the probability that a binding site for a particular TF

has sequence s is given by a maximum entropy distribution with respect to its binding energy

E(s), i.e. P(s)/ eλE(s) [4, 5]. Using this assumption, the binding energies E(s) of sequence seg-

ments s can in principle be inferred from data on the relative frequencies P(s) with which dif-

ferent sequences s are bound by a given TF. However, the number of possible sequence

segments s is 4l, which is already over a million for relatively short TFBSs of length l = 10 base

pairs, i.e. much larger than the total number of genome-wide binding sites for a single TF.

Thus, a crucial additional assumption, that has been made for several decades [6], is to assume

that each base pair in the binding site contributes independently to the overall binding energy,

i.e. EðsÞ ¼
Pl
i¼1
Eisi , where si is the base occurring at position i in sequence segment s and Ei

a
is

the energy contribution of base α at position i. Under this independence assumption, the
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sequence-specificity of a TF can be parametrized by 3 × l parameters

wi
a
¼
elEia
P

g
elEig

; ð1Þ

where wi
a

is the fraction of binding sites that have letter α at position i. This is the well-known

position specific weight matrix (PSWM) representation which has been used in the vast major-

ity of works on modeling TF binding and TFBS prediction. The main advantage of this

approach is the relatively small number of parameters, allowing reasonable estimation of the

weight matrix entries wi
a

from as few as a dozen of example binding sites.

With the drastic reduction in costs of DNA sequencing over the last decade and the devel-

opment of a number of experimental techniques for identifying TFBSs in high-throughput,

such as ChIP-seq [7], protein binding arrays [8], and HT-SELEX [9], hundreds if not thou-

sands of example TFBSs for a single TF can now be routinely obtained. Such large collections

of TFBSs have enabled researchers to investigate to what extent the assumption of indepen-

dence, i.e. that each position in the binding site contributes to the binding energy independent

of the other positions, holds in practice. The results of these investigations indicate that,

although the assumption of independence is often reasonably accurate, there are also many

cases which clearly deviate from independence.

Studies going back over a decade, such as [10] and [11], had already provided evidence that

PSWMs can be unsatisfactory in describing DNA binding specificities of particular TFs, and

that the assumption of independence often breaks down. More recently, a large-scale study by

Bulyk and colleagues assayed 104 distinct mouse TFs using protein binding microarray (PBM)

technology and found that, for a large fraction of the TFs investigated, the binding energy

landscapes were significantly more complex than assumed by PSWM models [12]. Notably, a

number of assayed TFs exhibited strong support for pairwise dependencies (PDs) within their

binding sites. As another example, Nutiu et al. [13] studied the binding specificity of the yeast

TF Gcn4p in detail and showed that it exhibits several strong PDs. Moreover, a model that

incorporates these PDs was shown to outperform PSWM models in explaining the observed

TFBSs. In summary, all these results suggest that accurate representation of TF sequence-spec-

ificities requires that dependencies between positions are taken into account, although it

remains unclear how important such dependencies are for the accuracy of TFBS prediction.

Incorporating pairwise dependencies

Several works have modeled TF binding specificity by including dependence between binding

positions. A major challenge is that, when an arbitrary number of dependencies between arbi-

trary pairs of positions is allowed, the number of possible models and parameters grows rap-

idly, so that it becomes difficult to reliably identify the best models, and to avoid overfitting.

Previous works have taken different approaches for addressing this challenge.

In some approaches, model complexity is directly controlled by only allowing dependencies

between adjacent positions, e.g. [14, 15]. However, previous analyses indicated that substantial

dependencies can occur between more distal pairs of positions, and our analyses below also

indicate that significant dependencies between non-neighboring positions are common.

Below we explicitly compare our general DWT model with a restricted model that only incor-

porates dependencies between adjacent positions.

In other approaches, PDs between arbitrary pairs of positions are in principle allowed, but

instead of incorporating all possible pairwise dependencies, different ad hoc approaches are

employed to restrict the number of PDs that are taken into account. For example, a Bayesian

network model by Barash et al. [16] starts by calculating likelihoods for all possible PDs, finds
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the spanning tree of PDs that has maximum likelihood (ML), and then models the TF binding

specificity using only the PDs in this ML spanning tree. That is, of the l(l − 1)/2 possible PDs,

only (l − 1) end up being used for modeling the TF binding specificity. As another example,

the variable-order Bayesian network model of Grosse and Grau [17] starts from a full higher

order Markov model (represented as a tree of possible sequence contexts) and then reduces

the number of parameters by systematically collapsing different sequence contexts that do not

show significantly different statistics in the data, i.e. pruning the tree.

Alternatively, some approaches start from a model without dependencies, and use a greedy

algorithm that iteratively adds PDs which maximally improve the model. For example, Sharon

et al. [18] express the TF’s binding specificity as a weighted sum of features, where features are

propositions that can either be true or false, e.g. a specific pair of nucleotides appears at a par-

ticular pair of positions. Features are iteratively added to the model until no additional feature

can be found that further improves the model. However, this iterative procedure often leads to

overfitting and Sharon et al. used a combination of regularization procedures to control model

complexity.

A similar iterative approach is used in the work of Santolini et al. [19] where the TF binding

specificity is modeled by an inhomogeneous Potts model, which incorporates information

from both single and pairs of positions. Individual pairs of positions are iteratively added to

the model so as to maximize its likelihood. Here too the authors find that this procedure can

easily lead to overfitting and they use the Bayesian information criterion as a regularization

scheme to penalize model complexity. Below we will compare the performance of our

approach with both the approaches of Sharon et al. [18] and Santolini et al. [19].

In spite of these efforts, no model that incorporates PDs has found widespread application

in the community so far. Models that only use adjacent positions are attractive for their sim-

plicity, but fail to capture the distal PDs that are clearly evident in the data. In contrast, models

that consider arbitrary PDs make use of ad hoc approaches to restrict the number of PDs con-

sidered, and employ complex regularization schemes that require expert supervision, which

make them harder to use in practice. The current challenge is thus to develop a model that, on

the one hand, rigorously incorporates all possible PDs, and that is easy to use in practice, i.e.

not requiring expert tuning of parameters or control of model complexity, on the other hand.

Here we present a new Bayesian network model, called dinucleotide weight tensor (DWT),

which takes into account all possible PDs within a rigorous probabilistic framework that has

no tunable parameters and automatically avoids over-fitting. In particular, in the DWT model

all unknown parameters including the topology of the network of direct interactions and the

joint probabilities for all dependent pairs of nucleotides within the network are analytically

marginalized over, so that binding energies E(s) that take all PDs into account can be calcu-

lated from first principles, and without the need for the user to set any tunable parameters.

This makes the DWT model highly robust and easily applicable in practice, i.e. even when

there are no significant PDs. Indeed, in addition to presenting the algorithm below, we have

also developed a suite of software tools that can be used to perform motif finding with DWTs,

visualization of DWT motifs, and TFBS prediction with DWTs, which we make publically

available with this publication.

We demonstrate the power of the DWT approach using a large collection of 121 ChIP-seq

data-sets representing 92 different human TFs. We show that DWTs outperform PSWMs for a

substantial fraction of the TFs, and never perform substantially worse, demonstrating that

DWTs automatically avoid over-fitting, even though there are no explicit regularization

schemes. Second, we show that DWTs outperform a restricted model that only incorporates

dependencies between adjacent positions for the large majority of datasets, demonstrating that

distal positions contribute to the accuracy of TFBS prediction. We also show that DWTs
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substantially outperform two previous approaches [18, 19]. Finally, using HT-SELEX data for

a set of TFs for which ChIP-seq data are also available, we show that the DWTs inferred from

ChIP-seq data also generally outcompete PSWMs on HT-SELEX data. Since the HT-SELEX

experiments are performed in vitro using only the DNA binding domains of the TFs, these

results suggest that the DWT likely captures aspects of the biophysical interaction between the

DNA binding domains of the TFs and their cognate binding sites.

Materials and methods

The dinucleotide weight tensor model

We here present the dinucleotide weight tensor (DWT) model for describing TF sequence-

specificities using arbitrary pairwise dependencies. The DWT model is based on a Bayesian

network model that we have applied previously to model interactions between proteins [20]

and to predict contacting residues within three-dimensional protein structures [21]. The

model describes the probability distribution P(s) of binding site sequence segments s as a mix-

ture of all possible factorizations of the joint distribution over s into pairwise conditional prob-

abilities between pairs of positions in s.
Let S denote an ungapped alignment of sequences of a given length l, that are hypothesized

to correspond to a collection of binding sites for a common TF. A central quantity in probabi-

listic motif finding is the probability P(S) that this collection of sequences derives from a com-

mon PSWM w. Under the assumption of independence that the PSWM model makes, the

probability P(S) is given by a product of the probabilities P(Si) for the individual alignment col-

umns Si, i.e. PðSÞ ¼
Ql
i¼1
PðSiÞ. Formally, the probability P(Si) is given by an integral over all

possible PSWM columns wi ¼ ðwia;w
i
c;w

i
g ;w

i
tÞ, i.e. P(Si) =

R
dwi P(Si|wi)P(wi), where P(wi) is a

prior probability density on the PSWM column and the integral is over the simplex wi
a
� 0,

P
a
wi

a
¼ 1. Using a Dirichlet prior of the form PðwiÞ /

Q
a
ðwi

a
Þ

l� 1
, the integral can be per-

formed analytically and yields

PðSiÞ ¼
Gð4lÞ

Gðnþ 4lÞ

Y

a

Gðni
a
þ lÞ

GðlÞ
; ð2Þ

where ni
a

is the number of sequences in S that have letter α at position i, n is the total number

of sequences in S, and Γ(x) is the gamma-function, see e.g. [5].

Here we generalize the PSWM model by assuming that arbitrary pairwise dependencies can

occur between pairs of positions. In complete analogy with the calculations for the PSWM

above, we can introduce a dinucleotide weight tensor w for the pairs of positions (i, j), with

components wijab denoting the probability that the combination of letters (α, β) occurs at the

positions (i, j). Using a Dirichlet prior PðwijÞ /
Q

a;b
ðwijabÞ

l0 � 1
and integrating over all possible

wij we then obtain the probability P(Si, Sj) for a pair of columns (i, j) in complete analogy with

the PSWM case

PðSi; SjÞ ¼
Gð16l

0
Þ

Gðnþ 16l
0
Þ

Y

ab

Gðnijab þ l
0
Þ

Gðl
0
Þ

; ð3Þ

where nijab is the number of times the combination of letters (α, β) appears at the pair of posi-

tions (i, j). As we explained previously [20] consistency of the mono- and di-nucleotide priors

requires that λ = 4λ0. As for the PSWM case [22], the results are generally insensitive to the pre-

cise setting of 0< λ� 1 and we use the Jeffrey’s prior λ = 1/2 throughout.

Transcription factor binding site prediction using dinucleotide weight tensors
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The evidence for dependency in the frequencies of letters at positions (i, j) can be quantified

by the likelihood ratio Rij:

Rij ¼
PðSi; SjÞ
PðSiÞPðSjÞ

; ð4Þ

and as we will see below, the matrix R of these dependencies Rij will play a crucial role in the

calculations. As a side remark on the interpretation of the dependencies Rij, in the limit of a

large number of sequences n, the Gamma-functions are well approximated by the Stirling

approximation Γ(x + 1)� xx exp(−x) and using this it is easy to show that Rij � enIij , where Iij
is the mutual information of the letter frequencies in columns i and j.

In contrast to the PSWM model, we do not assume that the probability P(S) simply factor-

izes into independent probabilities P(Si) for each column i. Instead, we will approximate the

joint probability P(S) as a mixture of all possible factorizations into pairwise conditional prob-

abilities of the form P(Si|Sj)P(Sj|Sk)P(Sk|Sm)� � �. For any such factorization, there is a single

‘root’ position that is not dependent on any other position, and each other position i is depen-

dent on one ‘parent’ position π(i). If we consider each position i a node of a graph, and draw

an edge between each node and its parent node π(i), then each possible factorization π corre-

sponds to a spanning tree of the set of l nodes. Noting that the conditional probability P(Si|Sj)
of column i given column j can be written as P(Si|Sj) = Rij P(Si), we obtain for the probability

P(S|π) of the alignment given a particular factorization π:

PðSjpÞ ¼ PðSrÞ
Y

i6¼r

PðSijSpðiÞÞ ¼
Y

i

PðSiÞ
Y

ði;jÞ2p

Rij; ð5Þ

where r is the root node and the product on the right-hand side is over all edges in the span-

ning tree π. Note that the first product on the right-hand side corresponds precisely to the

probability P(S) under the PSWM model of eq (2). The product over the dependencies Rij
along the edges (i, j) of the spanning tree π thus precisely quantifies the effects of the pairwise

dependencies.

Instead of assuming one particular factorization π, we consider all possible factorizations

and explicitly marginalize over the unknown factorization. That is, we aim to calculate

PðSÞ ¼
1

jpj

X

p

PðSjpÞ ¼
Y

i

PðSiÞ
1

jpj

X

p

Y

ði;jÞ2p

Rij

" #

; ð6Þ

where |π| = ll−2 is the number of spanning trees of a complete graph with l nodes. To calculate

P(S) we thus need to sum the product of the Rij over all edges in the spanning tree π over all

possible spanning trees, which may seem intractable given the large number of possible span-

ning trees. However, using a generalization of Kirchhoff’s matrix-tree theorem, this sum can

be calculated efficiently as the determinant of an l − 1 by l − 1 matrix [20, 21, 23].

Specifically, the Laplacian L(R) of matrix R is obtained by replacing, for each row i, the diag-

onal element Rii = 0 with minus the sum of the entries on the row, i.e. L(R)ii = −∑j6¼i Rij, and L
(R)ij = Rij when i 6¼ j. If we define D(R) to be any minor of the Laplacian L(R) of matrix R, we

finally obtain

PðSÞ ¼
Y

i

PðSiÞ
DðRÞ
jpj

: ð7Þ

The determinant D(R) can be calculated efficiently, i.e. in O(l3) steps. One complication in

practice is that, when there are many sequences in S and strong dependencies between some
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positions, the elements of Rmay vary over many orders of magnitude, causing the numerical

calculation of the determinant to become unstable. In the supporting information we describe

how we control numerical stability using a rescaling procedure.

Binding site prediction with DWTs

We first briefly review binding site prediction using PSWMs. Assume a set of known TFBSs S
for a particular TF is given. To predict new TFBSs for this TF one calculates the probabilities

P(s|S) that, sampling another sequence from the same PSWM that the set S derives from, one

would obtain sequence segment s. This probability is given by the ratio of the probability P(s, S)
that all sequences derive from a common PSWM and the probability P(S) that the sequences

in S derive from a common PSWM. Using eq (2) we have

PðsjSÞ ¼
Pðs; SÞ
PðSÞ

¼
Yl

i¼1

nisi þ l

nþ 4l
; ð8Þ

where ni
a

is the number of times letter α occurs at position i in the set S, and si is the letter at

position i in sequence s. As the probabilities P(s|S) only depend on the base counts ni
a
, a

PSWM is specified by specifying these counts (and the parameter λ of the prior), and the prob-

ability to sample any other sequence segment s from this PSWM is then given by Eq (8).

These calculations generalize in a straight-forward manner to our DWT model. The proba-

bility to sample sequence segment s from the same DWT model as the set S is given by

PðsjSÞ ¼
Pðs; SÞ
PðSÞ

¼
DðRðs; SÞÞ
DðRðSÞÞ

Yl

i¼1

nisi þ l

nþ 4l
; ð9Þ

where R(s, S) is the dependency matrix R obtained from the full set of sequences (s, S) and R(S)
is the dependency matrix obtained from the set of sequences S. Eq (9) nicely illustrates that the

probability P(s|S) is given by a product of two factors: The first is identical to the PSWM mod-

el’s probability, and the second, which incorporates the effects of the dependencies, is given by

a ratio of two determinants. As we will see below, for TFs where there are no significant depen-

dencies, the latter ratio automatically becomes 1 and the DWT model automatically reduces to

the PSWM model.

Whereas the probabilities P(s|S) for the PSWM model depend only on the counts ni
a
, for the

DWT model the probabilities P(s|S) depend on the pair counts nijab. Thus, instead of specifying

a set of binding sites S, we specify a DWT modelM by the set of 16l(l − 1)/2 counts fnijabg and

calculate the probabilities P(s|M) using eq (9).

Finally, as explained in the supporting information, we adapted the rescaling procedure

explained above to ensure numerical stability of the ratio of determinants in Eq (9) while at the

same time guaranteeing that P(s|S) remains exactly normalized, i.e. ∑s P(s|S) = 1 when sum-

ming over all possible length-l sequences s.

Motif finding with DWTs

To infer a motifM from a given set of input sequences, we need to define the likelihood func-

tion, i.e. the probability of observing our set of input sequences given the motif modelM.

Whether our input sequences derive from ChIP-seq, HT-SELEX, or a similar experimental

procedure, what distinguishes the input sequences from other sequences is that they were

bound by the TF in question. Thus, the likelihood should reflect the probability that the

observed input sequences were bound to the TF, whereas typical ‘random’ sequences were not.

We formalize this idea by imagining that we have a very large set of sequences, with nucleotide
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005176 July 28, 2017 7 / 22

https://doi.org/10.1371/journal.pcbi.1005176


composition according to some background model, and that we are sampling sequences from

this set in proportion to the probability that they are bound by the TF. The likelihood of our

data set of input sequences S is then the probability to sample these input sequences from the

large pool.

Specifically, we will assume TF binding is well approximated by a thermodynamic equilib-

rium model and define, for any length-l sequence segment s its effective ‘binding energy’ (in

units of kT) as

EðsÞ ¼ log
PðsjMÞ
PðsjBÞ

� �

; ð10Þ

where P(s|M) is calculated as described in the previous section and P(s|B) is the probability of

the sequence segment s under a background model. In this study we use a simple single nucle-

otide background model, i.e. PðsjBÞ ¼
Ql
i¼1
bsi , with bα the overall frequency of letter α in the

input data. Under a simple thermodynamic model, the probability Pb(s|M, c, E0) that an iso-

lated sequence segment s is bound by the TF is given by

PbðsjM; c;E0Þ ¼
cðeEðsÞ þ eE0Þ

1þ cðeEðsÞ þ eE0Þ
; ð11Þ

where c is the concentration of the TF and E0 is the energy with which the TF can be bound to

s in a non-specific (i.e. sequence independent) manner. Note that the constant 1 in the denom-

inator corresponds to the statistical weight of the unbound state. In this work we will assume

that the concentration c of the TF is sufficiently small that binding is not saturated at any of

the sequence segments. In this limit, the denominator can be ignored and the probability of

binding is well approximated by PbðsjM; c;E0Þ � cðeEðsÞ þ eE0Þ. Moreover, for a longer

sequence S, the binding probability Pb(S|M, c, E0) is just the sum of the binding probabilities at

each of the segments of S:

PbðSjM; c;E0Þ ¼
X

s2S

c
�

eEðsÞ þ eE0

�

¼ c
�

eEðSÞ þ eE0LS

�

; ð12Þ

where we have defined the total binding energy E(S) of a longer sequence S as

EðSÞ ¼ log
X

s2S

eEðsÞ
" #

; ð13Þ

and LS is the number of sequence segments in S, which includes segments on both the positive

and negative strand of the sequence S.
For a large set of sequence segments sampled from the background distribution P(s|B), the

average binding probability is given by

hPbðsjM; c;E0Þi ¼
X

s

PðsjBÞPbðsjM; c;E0Þ ¼
X

s

cðPðsjMÞ þ eE0PðsjBÞÞ ¼ cð1þ eE0Þ: ð14Þ

Thus, the total amount of binding to a large set of B background segments is Bcð1þ eE0Þ and,

consequently, the probability to sample the sequence S from this large pool of sequences is

given by

PsampðSjM;E0Þ ¼
cðeEðSÞ þ LSeE0Þ

Bcð1þ eE0Þ
: ð15Þ

Note that the concentration c cancels from this expression, i.e. in the limit that binding is not
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saturated the relative amounts of binding to different sequences becomes independent of the

precise concentration of the TF.

Finally, our desired log-likelihood L(M, E0) is the log-probability to sample all the sequences

S from our input dataset D from the large pool of background sequences:

LðM;E0Þ ¼
X

S2D

log PsampðSjM; E0Þ
h i

¼ constantþ
X

S2D
log

eEðSÞ þ LSeE0

1þ eE0

� �

: ð16Þ

The aim of the motif finding is to maximize this log-likelihood. To do this our algorithm starts

from an initial PSWM model w and uses an expectation maximization (EM) algorithm analo-

gous to those used for inferring PSWMs [24] to iteratively improve L(M, E0).

We initialize the DWT from a PSWM that can either be specified by the user, e.g. when a

known PSWM motif is already available for the TF in question, or it can be obtained by run-

ning a standard PSWM motif finder on the input sequences S. The sequences in the set S are

generally longer than the length l of the motif but typically not longer than a few hundred base

pairs, e.g. they could consist of the binding peaks obtained in a ChIP-seq experiment.

We then iterate the following steps. First we calculate the binding energies E(s) for each of

the length-l segments in the input sequences S, and the total binding energies E(S) of each

input sequence. Second, we optimize the non-specific binding energy E0 by finding the root of

@LðM;E0Þ

@E0

¼ eE0

X

S2D

LS
eEðSÞ þ LSeE0

�
1

1þ eE0

� �

: ð17Þ

Third, we predict binding sites in the sequences S to calculate the pair counts nijab, i.e. the

expected number of binding sites that have the pair of letters (α, β) at positions (i, j). In partic-

ular, the probability that the TF is bound in a sequence-specific manner to sequence S is

PbðSjM;E0Þ ¼
eEðSÞ

eEðSÞ þ LSeE0
; ð18Þ

and the probability that it is bound at the specific segment s is

PbðsjM;E0Þ ¼
eEðsÞ

eEðSÞ þ LSeE0
; ð19Þ

The updated pair counts nijab are then simply given by summing the binding probabilities

Pb(s|M, E0) over all sites in which letters (α, β) occur at the positions (i, j). These updated pair

counts then define the DWT motifM for the next iteration, and this procedure is iterated until

convergence.

Dilogos graphically represent DWT models

To visualize DWT models, we propose a graphical representation which generalizes the well-

known sequence logo and which we call a ‘dilogo’. As an example, Fig 1 shows the dilogo for

the TF NRF1, which we constructed from ENCODE ChIP-seq data (see below).

The dilogo first of all shows the classical sequence logo representation of the marginal prob-

abilities wi
a

at the top. For example, in this example positions 3 − 5 are most likely to show the

pattern CGC. Secondly, at the bottom the dilogo shows information about pairwise dependen-

cies evident in the DWT. As explained in the supplementary materials and in previous

work on protein contacts [25], we can calculate for each pair of positions (i, j) the posterior

probability P(i, j) that the factorization of P(S) contains a direct dependence between positions

i and j. The probabilities P(i, j) are shown in a square lattice, with the intensity of the color
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Fig 1. Dilogo for the motif of the TF NRF1. The top row of the dilogo shows the familiar sequence logo

representation of the marginal probabilitieswi
a

for each of the letters α at each position i. The posterior

probabilities for dependency between each pair of positions are shown in the square lattice at the bottom of

the dilogo, with darker red color indicating higher probability of dependence. Above this square lattice a graph

with significant pairwise dependencies is shown: an arrow from node j to i indicates that the probability of a
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005176 July 28, 2017 10 / 22

https://doi.org/10.1371/journal.pcbi.1005176


corresponding to the posterior probability. For example, for NRF1 there are high posterior

probabilities of interaction between positions (2, 3), (2, 4), (2, 5), (6, 7), (6, 10), and (7, 8).

Because it is unwieldy to show the conditional probabilities P(si|sj) for all pairs of positions

(i, j), we select a set of pairwise dependencies that are jointly consistent with a single factoriza-

tion of the probability P(S) as follows. We list all pairwise dependencies P(i, j), sorted from

highest to lowest probability, and go down the list, adding pairwise dependencies as long as

the resulting graph does not contain any loops. The resulting graph of dependencies is shown

above the square with posterior probabilities. In this example, position 12 depends on position

5, position 11 also depends on position 5, position 10 depends on position 3, and so on.

Finally, for those positions i that are dependent on another position j, the conditional prob-

abilities P(si|sj) are shown in sequence logo format with one sequence logo (rows in the figure)

for each possible state of the parent letter sj (shown on the left of the figure). For example, in

the NRF1 example, the letters at position 3 through 5 depend on the letter at position 2. If posi-

tion 2 shows a G, positions 3 − 5 are very likely to show the pattern CGC. However, when posi-

tion 2 shows a T, positions 3 − 5 are most likely to show the pattern CTC.

To enable easy application of DWT models in motif finding we have made a tool-box with

software available for motif inference with DWTs, prediction of TFBSs using DWTs, and visu-

alization of DWT models using dilogos. Source code and executables can be downloaded from

dwt.unibas.ch.

Calculating likelihoods of HT-SELEX datasets

Given a motif model that assigns energies E(s) to sequence segments s, we calculate the likeli-

hood L(E) of a HT-SELEX dataset as follows. First, for each sequence S that occurs in the

HT-SELEX data, we calculate a total energy E(S) = log[∑s2S eE(s)]. One complication is that the

HT-SELEX sequences are all very short, i.e. about 20 nucleotides, such that some motifs can be

longer than the input HT-SELEX sequences. To deal with this we padded each HT-SELEX

sequence with l/2 N nucleotides on both the left and right, where l is the motif length, and

adapted our sequence scoring to calculate energies for sequence segments containing N nucle-

otides (see supporting information).

We assume that, in each round of the HT-SELEX experiment, the probability of sampling a

sequence S is proportional to eE(S). Let ft(S) denote the frequency of sequence S in the pool of

sequences at generation t of the HT-SELEX experiment, and let E(S) denote the total binding

energy assigned by the model (either DWT or PSWM) to sequence S. Under this model, the

probability that a single selected sequence is sequence S is given by

PðSjE; ftÞ ¼
eEðSÞftðSÞP
S0 ftðS0ÞeEðS

0Þ
: ð20Þ

If we denote by nt(s) the number of occurrences of sequence S at generation t in the experi-

ment, then the log-likelihood L(E) of the entire HT-SELEX data-set, given an energy function

E, is given by

LðEÞ ¼
XT� 1

t¼1

X

S

ntþ1ðSÞ log ½PðSjE; ftÞ�

 !

; ð21Þ

particular letter at i depends on the letter appearing at j. Finally, for each position i that depends on another

position j, the probabilities P(si|sj) are shown in sequence logo format, with each row corresponding to the

identity of the parent letter sj and each column showing the probabilities P(si|sj) for the child letter si.

https://doi.org/10.1371/journal.pcbi.1005176.g001
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where T is the total number of generations in the experiment. This log-likelihood can be com-

pared with the log-likelihood for obtaining the same data by random sampling:

L0 ¼
XT� 1

t¼1

�
X

S

ntþ1ðSÞ log ½ftðSÞ�
�

: ð22Þ

However, when we applied this calculation we find, for almost all corresponding HT-SE-

LEX/ChIP-seq combinations, that the likelihood L0 is larger than the likelihood L(E), i.e. even

for many cases of TFs with well-known motifs. To investigate the origin of this we investigated

to what extent the enrichment of sequences from one generation to the next correlates with

their predicted energies. In particular, we stratified all sequences into energy bins and calcu-

lated the total frequencies ft(E) of sequences with predicted energy E at each generation t. Note

that if the probability of a sequence S to be selected is proportional to eE(S) then the observed

log-enrichment log[ft+1(E)/ft(E)] should be directly proportional to the energy E. However, we

observed that, while the log-enrichment generally correlates well with E, the slope of the linear

relationship is much less than 1, i.e. log[ft+1(E)/ft(E)] = βE + constant, with βmuch smaller

than 1. That is, it appears that in HT-SELEX the binding energies vary over a smaller range

than predicted by the motif models.

To incorporate this observation, we introduce a ‘temperature’ parameter β, assume that the

probability of selecting a sequence S is proportional to eβE(S), and calculate a log-likelihood L
(E, β) that depends on both the motif model energies E and the temperature parameter β. It is

straightforward to show that the difference dL(E, β) between the log-likelihood L(E, β) and the

random sampling log-likelihood L0 can be written as

dLðE; bÞ ¼ LðE; bÞ � L0 ¼
XT� 1

t¼1

Nðt þ 1ÞðbhEitþ1
� log ½hebEit�Þ; ð23Þ

whereN(t) = ∑S nS(t) is the total number of sequences in generation t, hEit is the average energy

of the sequences in generation t

hEit ¼
1

NðtÞ

X

S
nSðtÞEðSÞ; ð24Þ

and heβEit is the average selection probability of sequences in generation t

hebEit ¼
1

NðtÞ

X

S

nSðtÞe
bEðSÞ: ð25Þ

For each PSWM and DWT model, we optimize β so as to maximize dL(E, β) and calculate,

as a final performance measure, the log-likelihood difference dL per sequence, i.e. dL/Nwith

N ¼
PT
t¼2
NðtÞ.

Results

DWT models outperform PSWMs and models that only incorporate

adjacent dependencies

To compare the performance DWT models with the performance of PSWMs and other motif

models, we analyzed a collection of 121 ChIP-seq datasets for 92 different human TFs from the

ENCODE consortium [26]. The general setup of our performance comparison is shown in

Fig 2.
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Fig 2. Comparison of DWT and PSWM performance on ChIP-seq data. a) For a given ChIP-seq data-set we use the CRUNCH ChIP-

seq analysis pipe-line to identify the top 1000 binding peaks and randomly subdivide these into an training set and a test set of 500 peak

sequences each. b) Standard PSWM motif finding is used to determine an initial PSWM motif [22, 27]. c) Using expectation maximization, a

PSWM and a DWT model are fitted on the training data. d) Distributions of the predicted binding energies E(S), under both the DWT and

PSWM models, of the 500 peak sequences and a set of 2000 random ‘decoy sequences’ that have the same lengths and dinucleotide

composition as the peak sequences. e) Precision recall curves demonstrating the ability of the DWT, PSWM, and initial PSWM models to

distinguish peak sequences from decoys based on their predicted binding energies.

https://doi.org/10.1371/journal.pcbi.1005176.g002
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We processed each of the ChIP-seq datasets using CRUNCH, an integrated ChIP-seq analy-

sis pipeline that we developed in-house and that includes automated PSWM motif analysis

[28]. Full analysis reports on these ChIP-seq datasets as well as links to all the raw ChIP-seq

data used are available at crunch.unibas.ch/ENCODE_REPORTS/. CRUNCH returns a list of

binding peaks, which are typically 100 − 300 base pairs in length, ordered by their significance.

For each data-set, we selected the top 1000 binding peaks. The peak sequences were randomly

divided into two subsets of 500 sequences, one of which was used as a training set to fit both a

PSWM and DWT motif, and one for testing the performance of the fitted motifs. As part of its

motif analysis, CRUNCH extracts orthologous sequences from 6 other mammalian species for

each peak sequence and multiply aligns these using T-Coffee [29]. The motif finder Phylo-

Gibbs [22] is then run on these alignments to infer PSWM motifs. CRUNCH further refines

these motifs on the multiple alignments of the training sequences using MotEvo [30]. For each

dataset, we use the top motif returned by CRUNCH as an initial PSWM motif in our analysis

and obtained its TFBS predictions on the peak sequences. As an example, Fig 2b shows the ini-

tial PSWM motif inferred for the TF CEBPB.

Using this PSWM as a starting motif we then iteratively fitted a PSWM and a DWT motif

on the training sequences (Fig 2c). The DWT model was fitted using the EM procedure

described in the section on motif finding with DWTs above. In order to compare DWTs and

PSWMs on equal footing, a PSWM was also fitted on the same training set using the exact

same EM procedure.

We then assess the ability of the fitted DWT and PSWM models to explain the ChIP-seq

data. In particular, besides the 500 peak sequences of the test set, we created 2000 random

decoy sequences that have the same overall dinucleotide frequencies and distribution of

lengths as the binding peaks. For each of these 2500 sequences we calculate an overall binding

energy E(S) according to eq (13) using both the PSWM and DWT motifs inferred from the

training set. Fig 2d shows the distributions of binding energies that are assigned to the true

binding peaks (black) and the decoy sequences (grey) for the fitted PSWM motif, as well as the

fitted DWT motif. Comparison of these distributions makes clear that the predicted binding

energies of true binding peaks and decoys show a substantially larger separation in the DWT

model. Interestingly, this increased separation results mainly from the binding energies of the

decoy sequences being more tightly focused at low values. This behavior is observed for a large

number of the TFs that we analyzed.

By systematically varying a cut-off on the binding energy E(S), we then determine a preci-

sion recall curve where, at each cut-off Ec, the precision is the fraction of all sequences with

E(S)> Ec that are true binding peaks, and the recall is the fraction of all true binding peaks

that have E(S)> Ec. Fig 2e shows the precision recall curves of the original input PSWM, the

fitted PSWM, and the DWT model for the TF CEBPB. As a final measure of performance we

use the area under the precision-recall curve, which equals the average precision, averaged

over all recalls between zero and one.

Fig 3a compares the performance, as measured by average precision, of the DWT and

PSWM models on all ENCODE [26] ChIP-seq data-sets that we studied. Remarkably, with the

exception of some minor score fluctuations, the DWT model performs at least as well as the

PSWM model on all data-sets. This shows that, even though the DWT has no explicit regulari-

zation scheme or, in fact, any parameters that need to be set by the user, the model never suf-

fers from over-fitting. Moreover, the DWT model clearly outperforms PSWMs for a

substantial fraction of the datasets.

We investigated whether TFs for which the DWT most significantly outperforms the

PSWM tend to fall within particular structural families and did not find any clear association.

Although it is true that DWTs without any clear pairwise dependencies do not outperform
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PSWMs, the reverse will not generally hold. That is, the fact that certain positions show clear

dependencies does not guarantee that these dependencies will help distinguish binding sites

from decoy sequences. Indeed, there are datasets for which DWTs show pairwise dependencies

with very high posterior, but where the DWT does not significantly outperform the PSWM.

For example, the TF MEF2A shows several pairs of positions with very strong dependency, but

the MEF2A DWT does not significantly outperform the corresponding PSWM (see the table

with results at http://crunch.unibas.ch/DWT/table.html).

Previous investigations of dependencies between positions in TFBSs have suggested that

dependencies between immediately adjacent positions are much more common and signifi-

cant than dependencies between distal positions [31]. One may thus wonder to what extent

the distal dependencies that the DWT infers contribute to the performance of the DWT, or

whether a model that uses only dependencies between adjacent positions would perform

equally well. As explained in the supporting information, it is straight-forward to adapt the

DWT model to only allow dependencies between adjacent positions. We call this version of

our motif model the adjacent model (ADJ). We trained and tested the ADJ model in the exact

same way as the DWT and PSWM models on all ChIP-seq datasets and Fig 3b shows the per-

formance comparison between the DWT and ADJ models. We find that the DWT outper-

forms the ADJ model for more than 80% of the datasets and substantially so for about 25% of

the datasets.

Whereas the PSWM never substantially outperformed the DWT (the largest difference in

average precision being 3%), there is one dataset for which the ADJ model outperformed the

DWT by more than 16% in average precision. This is for ChIP-seq experiment performed in

the HeLa cell-line with the chromodomain-like TF CHD2. Notably, the CHD2 TF was also

assayed in the GM12878 cell-line, and for this dataset the DWT motif did outperform the ADJ

motif. We investigated this case in more detail and found that the DWT had converged to a

motif without any significant dependencies, whereas the ADJ had converged to a motif with

identical consensus, but with several strong adjacent dependencies. As a test, we reran the

DWT motif search on this dataset using the trained ADJ model as a starting motif. We found

that the DWT search now converged to a motif that does outperform the ADJ model. That is,

there are DWT models that outperform the ADJ for this dataset and the reason the DWT

Fig 3. Comparison of the performance of DWT, PSWM, and ADJ models on the ENCODE ChIP-seq data-sets. a: Difference in average

precision of the DWT and PSWM models across the 121 ChIP-seq datasets. Datasets are sorted from left to right by the difference in average

precision. The inset shows the PSWM average precision (horizontal axis) against the DWT precision (vertical axis), with each dot corresponding to

one ChIP-seq dataset, as well as the line y = x. b: As in panel a, but now comparing the average precisions of the DWT model with the ADJ model in

which only dependencies between adjacent positions are allowed.

https://doi.org/10.1371/journal.pcbi.1005176.g003
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performed poorly was that the motif search happened to have gotten stuck in a poor local

optimum.

DWTs outperform previously proposed motif models that incorporate

distal dependencies

Comparing the performance of DWTs with previously proposed approaches is challenging

because readily usable software that can be applied to large-scale ChIP-seq results is often not

available, and even when software is available it can be challenging to apply it in a manner that

allows meaningful performance comparison. Our discussion of the results on the CHD2 data-

set underlined that, in order to compare the performance of different motif models, it is essen-

tial that all other sources of variability are kept as constant as possible, i.e. not only should we

use the exact same training and test data, also the way the motifs are inferred, the way scores of

segments are combined to calculate scores of longer sequences, and so on, should be kept as

similar as possible. While it was straightforward to accomplish this for comparing our own

PSWM, ADJ, and DWT models in the previous section, this is much more challenging when

using software from other groups. However, we performed a comparison analysis with two

previous methods that allow distal dependencies, for which software was available.

The authors of the FMM method (Sharon et al. [18]) and the PIM method (Santolini et al.
[19]) have not only made software for their motif models available, they also graciously assisted

us in adapting their code to allow it to be run in a manner that is as close as possible to the way

the DWT model is trained and tested, as detailed in the supporting information.

Fig 4 compares the average precision of the DWT models with those of the PIM and FMM

models on the 121 ChIP-seq datasets. We find that, in these tests, the DWT model outperforms

the PIM and FMM models on virtually all datasets, and substantially so for a large fraction of

the datasets. We want to stress that this does not imply that high-performance PIM and FMM

motif models cannot be constructed for these datasets. In our analysis the PIM and FMM

motif finders were just run once with default settings and, with appropriate tuning of the

parameters, their performance could presumably be substantially improved. However, one of

the impediments to the general adoption of more complex motif models has been that running

motif inference with these more complex models typically requires expert supervision. One of

Fig 4. Comparison of the performance of the DWT, PIM [19] and FMM [18] models on the ENCODE ChIP-seq data-sets. a: Difference in

average precision of the DWT and PIM models across the 121 ChIP-seq datasets. Datasets are sorted from left to right by the difference in average

precision. The inset shows the PIM average precision (horizontal axis) against the DWT precision (vertical axis), with each dot corresponding to one

ChIP-seq dataset, as well as the line y = x. b: As in panel a, but now comparing the average precisions of the DWT model with the FMM model.

https://doi.org/10.1371/journal.pcbi.1005176.g004
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the main benefits of the DWT model is that it allows robust inference without the need of tun-

ing any parameters.

Pairwise dependencies are enriched at neighboring positions and

virtually absent in randomized data

We investigated to what extent pairs of positions that show dependency are restricted to

nearest-neighbor interactions. Combining results from all 121 ChIP-seq datasets we calculated

the total number of adjacent and and non-adjacent pairs at each posterior probability of

dependency. Fig 5 shows the reverse cumulative distributions of the total number of adjacent

and distal pairs in our data as a function of their posterior probability. While the absolute

number of distal dependencies is consistently above the number of adjacent dependencies at

each cut-off, it should be noted that the number of possible distal dependencies is almost 7

times as large as the number of possible adjacent dependencies. Thus, the fraction of adjacent

positions that shows dependency is significantly higher than the fraction of distal positions

that shows dependency. In summary, adjacent positions are more likely to be dependent than

distal positions, although in absolute terms there are more distal dependencies.

To confirm the statistical significance of the observed dependencies, we constructed a ran-

domized dataset that should be devoid of dependencies as follows. For each dataset we took

the inferred DWT and marginalized it to obtain the corresponding PSWM. When then sam-

pled the same number of binding sites from this PSWM as went into the construction of the

DWT, and constructed a new DWT from this set of synthetic binding sites. Finally, we calcu-

lated the posterior probabilities of dependency in the set of 121 DWTs so constructed. As

Fig 5. Number of adjacent and distal dependencies as a function of the posterior probability of dependency. The

total number of of adjacent (solid red) and distal (solid blue) dependent pairs as a function of a cut-off on the posterior

probability of the dependency of the pairs. The dashed lines show the number of adjacent (red) and distal (blue) pairs in

randomized data in which DWTs were constructed from sequences sampled from PSWM models.

https://doi.org/10.1371/journal.pcbi.1005176.g005
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shown in Fig 5, virtually no dependencies appear in this marginalized data, and the dependen-

cies that do appear have low posterior probabilities.

DWT models trained on ChIP-seq data outperform PSWMs on

HT-SELEX data for the same TF

Systematic evolution of ligands by exponential enrichment (SELEX) is a well-established in
vitromethod for studying protein-DNA binding specificity [32]. Starting from a random pool

of short DNA (or RNA) segments, the sequences are selected for binding to a DNA protein of

interest. The sequences that bound the target are then amplified. This selection and amplifica-

tion is repeated for multiple rounds to systematically enrich for sequences that strongly bind

to the target protein. A high-throughput variant of this method (HT-SELEX), in which the

sequences from each round are sequenced using next-generation sequencing was introduced

by Jolma et al. [33], and has been more recently applied to a large number of human TFs [34].

This HT-SELEX data provides a completely independent dataset for comparing the perfor-

mance of DWT and PSWM models of TF binding affinities. Moreover, whereas ChIP-seq data

arguably probe the in vivo binding of a TF in a specific cell type, HT-SELEX probes the binding

properties of the DNA binding domain of the TF in an in vitro setting. It is thus interesting to

investigate whether the DWT outcompetes PSWMs in this in vitro setting as well, and to what

extent the binding specificities that were inferred from the ChIP-seq data also apply to the

HT-SELEX data.

We collected, for each of the TFs assayed in [34], all of our 121 ChIP-seq datasets that were

performed with the same (or very similar) TF. In total there were 45 combinations of HT-SE-

LEX/ChIP-seq experiments that were done with the same TF (see Table 1 in S1 Text). For each

combination we then calculated how well the DWT and PSWM models, as inferred from the

ChIP-seq dataset, explain the observed HT-SELEX data.

To model the HT-SELEX data we assume that, at each round of the experiment, sequences

are selected according to their binding energy to the TF as explained in the materials and

methods. As a performance measure of a given motif model, we calculate the average excess of

the log-likelihood per selected sequence in each HT-SELEX generation relative to a model

which assumes random sampling of sequences. Fig 6 shows the differences in log-likelihood

per sequence between the DWT and PSWM models on the 45 combinations of HT-SELEX/

ChIP-seq datasets.

For 35 of the 45 combinations, the DWT outperforms the PSWM model on the HT-SELEX

data (Fig 6). Moreover, there is only one example where the PSWM clearly outperforms the

DWT model (this example corresponds to the TF IRF4). Note that, although the log-likelihood

differences per sequence are typically modest, given the very large number of observations in

these HT-SELEX datasets, improvements as small as 0.001 are still highly statistically signifi-

cant. In summary, for all but one of the TFs, the DWT model that was inferred from ChIP-seq

data performs at least as well and often outperforms the PSWM model on HT-SELEX data for

the same TF.

Discussion

Since its introduction in the early 1980s [35], the PSWM model has become the workhorse for

binding site prediction in regulatory genomics. However, as data have accumulated, evidence

has been mounting over the last decade that there can be significant dependencies between the

nucleotides occurring at different positions of regulatory sites. Consequently, there is a need

for extending regulatory motif models to take such dependencies into account. However, in

order for such an extension to gain wide acceptance the motif model should be rigorous,
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flexible, be guaranteed to perform at least as well as PSWMs, and be easy to use. Approaches

that have been presented so far have either made unrealistic restrictions on the models, e.g. by

demanding that dependencies can only exist between neighboring positions, or they have

involved complex ad hoc regularization schemes to avoid over-fitting, which make them cum-

bersome to use in practice.

Here we have presented a new motif model, the dinucleotide weight tensor, that is general

in that it allows for dependencies between arbitrary positions in the motif, is rigorous in that it

is derived from first principles within a Bayesian framework, and avoids over-fitting by explic-

itly marginalizing over all unknown parameters. In particular, because the model has no

parameters that the user needs to tune, it can be easily and robustly applied in practice. Indeed,

by inferring DWTs on a large set of ChIP-seq datasets, we have shown that DWTs never per-

form significantly worse than PSWMs and clearly outcompete them in a substantial fraction of

the cases. By showing that, for most datasets, DWTs also outperform a model in which only

dependencies between adjacent positions are allowed, we further showed that distal dependen-

cies contribute significantly to the performance of the DWTs. We also showed that DWTs out-

perform two previously proposed methods that incorporate distal dependencies. Notably,

while we were finishing this work, a very interesting new approach was proposed by Siebert

and Söding [36]. Their motif model is a standard k-order Markov model in which each letter

depends on the (k − 1) previous letters in the site, but a new way for controlling over-fitting is

proposed, in which the marginals at lower orders are used a priors for the conditional proba-

bilities at higher orders, and very robust performance of this method is proposed. Interestingly,

Fig 6. Performance comparison of the DWT and PSWM models on the HT-SELEX data. Difference in the log-likelihood

per sequence between the DWT and PSWM models for each of the 45 corresponding HT-SELEX/ChIP-seq dataset

combinations, ordered from left to right by the difference in log-likelihood per sequence. The inset shows the log-likelihood

per sequence for the DWT (vertical axis) against the log-likelihood per sequence for the PSWM (horizontal axis), with each

dot corresponding to one dataset combination.

https://doi.org/10.1371/journal.pcbi.1005176.g006
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it would be straightforward to combine this method of setting priors for conditional probabili-

ties with the DWT’s method for summing over possible spanning trees, and this would be an

interesting direction to explore for future work.

The fact that DWT models inferred from ChIP-seq data also outperform PSWMs on

HT-SELEX data, suggests that the dependencies captured by the DWT reflect something in

the biophysics of the interaction between the DNA binding domain of the TF and the DNA

sequence of the site. Our observation that, while significant dependencies occur between distal

positions, interactions between neighboring positions are the most common, is also consistent

with this interpretation. Another interesting area for future research is to investigate the possi-

ble structural and biophysical basis for the observed direct dependencies. However, we should

note that, in spite of investing considerable efforts ourselves in analyzing whether the occur-

rence of dependencies can be related to structural features of the TFs, or to the way that they

interact with the DNA, we have so far not been able to uncover any consistent biophysical

interpretation of the observed dependencies. It is conceivable that there is no simple biophysi-

cal interpretation to the direct dependencies. For example, inspection of some of the DWT

models suggests that dependencies often cause combinations of deleterious mutations to

reduce the binding energy less than predicted by the PSWM model and this might be a global

effect that is spread across many dependencies, rather than reflecting particular structural fea-

tures of the TF-DNA interaction.

Our analysis has also shown that, notwithstanding the fact that DWTs strongly outperform

PSWMs for some TFs, for the majority of TFs the improvement that the DWT provides is

rather modest. This highlights that, for many TFs, PSWMs are sufficiently accurate for TFBS

prediction, and few significant dependencies exist. Consequently, robust practical application

of more complex motif models requires strong safe-guards against over-fitting, i.e. because for

many TFs there will simply not be many strong dependencies. This is arguably the biggest

advantage of the DWT models presented here: DWTs have no parameters to tune, do not

overfit, and automatically reduce to a PSWM model when no significant dependencies exist.

We believe that these properties make DWTs especially attractive for adopting in practical set-

tings and we hope that many researchers can be convinced to start using DWT models in their

motif finding and TFBS prediction.

Supporting information

S1 Text. Supporting mathematical derivations and a table of all HT-SELEX/ChIP-seq com-

binations that we analyzed.

(PDF)
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