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Abstract 14 

Fusion genes are well-known cancer drivers. However, very few known oncogenic fusions 15 

involve non-coding sequences. We develop SFyNCS with superior performance to detect fusions 16 

of both protein-coding genes and non-coding sequences from transcriptomic sequencing data. 17 

We validate fusions using somatic structural variations detected from the genomes. This allows 18 

us to comprehensively evaluate various fusion detection and filtering strategies and parameters. 19 

We detect 165,139 fusions in 9,565 tumor samples across 33 tumor types in the Cancer Genome 20 

Atlas cohort. Among them, 72% of the fusions involve non-coding sequences and many are 21 

recurrent. We discover two long non-coding RNAs recurrently fused with various partner genes 22 

in 32% of dedifferentiated liposarcomas and experimentally validated the oncogenic functions in 23 

mouse model. 24 

 25 
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Background 29 

Fusions between protein-coding genes caused by somatic SVs are well-known cancer drivers1,2, 30 

including BCR-ABL1, EWS-FLI1, PML-RARA, TMPRSS2-ERG and FGFR3-TACC3. It is 31 

estimated that 16% of cancers are driven by fusions3. Fusion proteins represent ideal drug targets 32 

since they do not exist in normal cells while tumor cell proliferation depends on them. One of the 33 

first targeted-therapy drugs in cancer, imatinib (Gleevec), is a small molecule inhibitor targeting 34 

the BCR-ABL1 fusion protein4. Many other inhibitors targeting different fusion proteins have 35 

since been approved for clinical use5. To date, more than 1,000 cancer-driving protein-coding 36 

fusions have been discovered6. However, only several oncogenic non-coding fusions have been 37 

reported, including HERV-K-ETV17, GAS5-BCL68, USP9Y-TTTY159, MALAT1-GLI110, TTYH1-38 

C19MC11, KDM4B-G039927 and EPS15L1-lncOR7C2-112. A previous study on over 9,000 39 

tumors from the Cancer Genome Atlas (TCGA) reported only 4% of fusions involving non-40 

coding sequences3. This is because the algorithm used in that study, STAR-Fusion3, was 41 

designed to mainly detect protein-coding fusions, and therefore, the proportion of fusions 42 

involving non-coding sequences being 4% was certainly an underestimation. Fusions involving 43 

non-coding sequences are of clinical significance, as they can be used as biomarkers13 and 44 

studies are ongoing to target them therapeutically14,15. The discovery and characterization of the 45 

non-coding fusions may reveal new disease mechanisms and novel drug targets.  46 

It is extremely challenging to differentiate true fusions from artifacts. Chimeric molecules in the 47 

sequencing library, sequencing errors, alignment errors and read-through fusions further 48 

complicate fusion detection. Most existing fusion callers depend on annotations of protein-49 

coding genes and non-coding RNAs (ncRNAs), including DEEPEST16 and Arriba17. However, 50 

current ncRNA databases are still far from ideal because many ncRNAs are expressed at low 51 

levels and are highly tissue specific. The low expression also poses a major challenge to detect 52 

fusions involving non-coding sequences. Therefore, known oncogenic non-coding fusions 53 

remain rare. Another major roadblock is that a ground truth fusion set is not available, and most 54 

studies depend on in silico simulation, a small number of synthetic fusions, and validation on a 55 

small set of fusions to test the performances of the algorithms. Neither of aforementioned 56 

performance-testing strategies can be effectively used to comprehensively evaluate various 57 

fusion detection and filtering strategies and parameters. Here, we report a more sensitive 58 

computational algorithm “SFyNCS” to detect fusions involving non-coding sequences. We used 59 

somatic structural variations (SVs) detected from whole-genome sequencing data to validate 60 

fusions detected from RNAseq data. This allowed us to find the best performing fusion detection 61 

and filtering strategies. We then describe several recurrent and oncogenic fusions from 9,565 62 

TCGA tumor samples. The oncogenic function of one of the recurrent fusions involving non-63 

coding sequences was validated in mouse model.  64 
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Results 65 

SFyNCS overview 66 

Here, we developed Somatic Fusions involving Non-Coding Sequences (SFyNCS) to detect both 67 

protein-coding and non-coding fusions from RNAseq data (Fig. 1a). In this study, protein-coding 68 

fusions are defined as both fusion partners being protein-coding genes, whereas fusions 69 

involving non-coding sequences (FiNCS) have one or both fusion partners being non-coding 70 

sequences. We note that FiNCS may still encode proteins since the non-coding fusion partners 71 

may provide cryptic start or stop codons. SFyNCS searches for discordant read pairs and split 72 

reads, including those mapped to non-coding regions, to detect both protein-coding fusions and 73 

FiNCS (Fig. 1b). We use very loose cutoffs to detect raw fusions—one split read support 74 

required to define fusion breakpoints (Methods). Therefore, in the detection phase, SFyNCS is 75 

very sensitive, and a large number of raw fusions will be identified. Although many algorithms, 76 

such as STAR-Fusion3 and Arriba12, detect raw fusions similar to SFyNCS, the main advantage 77 

of SFyNCS lies in our search for the best performing filtering strategies (Methods). Since in 78 

silico simulations and synthetic fusions cannot fully mimic the artifacts and noise in real tumors, 79 

we sought to use fusions detected from real tumors to test fusion detection performances. 80 

Because ground truth fusions do not exist, to test performances, we took advantage of 338 tumor 81 

samples across 22 tumor types (Supplementary Table S1) with both RNAseq and whole-82 

genome sequencing (WGS) data from the Cancer Genome Atlas (TCGA) cohort. Since tumor-83 

specific fusions detected at the RNA level should be supported by somatic SVs detected at the 84 

DNA level, the 338 tumor samples allowed us to comprehensively evaluate different filtering 85 

strategies and cutoffs to determine the best performing filters. As it was not feasible to test all 86 

possible combinations of filtering strategies and cutoffs, we iteratively tested 49,248 87 

combinations of cutoffs in three rounds (Methods) until no further improvement could be made 88 

(Fig. 1c, 1d and Supplementary Table S2). The final filters we chose to implement in SFyNCS 89 

with reasonable sensitivity and specificity were as follow: (1) at least one discordant read pair 90 

support; (2) at least one split read support; (3) at least three total read support (discordant read 91 

pair + split read); (4) the minimal distance between the discordant pairs and the split reads to be 92 

<=10 kb; (5) breakpoints for all intra-chromosomal fusions (deletion-like, duplication-like and 93 

inversion-like) not located in the same genes; (6) fusion breakpoint distance for deletion-like 94 

fusions to be >=500 kb; fusion breakpoint distance for duplication-like and inversion-like fusions 95 

to be >=20 kb; (7) standard deviation (SD) of fusion-supporting clusters within 100bp of 96 

breakpoints to be >=0.1; (8) canonical splicing motif present within 5bp of fusion breakpoints; 97 

(9) not found in any normal samples. The detailed description of the filters can be found in 98 

Methods. Using these filters, SFyNCS detected 12,923 fusions in the 338 samples 99 

(Supplementary Table S3) and 8,356 (64.7%) were supported by somatic SVs (Fig. 2a). 100 

 101 

Benchmarking SFyNCS 102 

We compared SFyNCS with other algorithms in the same 338 samples from the previous section. 103 

Recently, STAR-Fusion3, DEEPEST16, and Arriba12 reported 2,109, 2,668 and 4,448 fusions in 104 
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these samples, respectively (Fig. 2a). In contrast, SFyNCS detected 12,923 fusions which were 105 

6.1, 4.8 and 2.9 folds of the ones detected by STAR-Fusion, DEEPEST, and Arriba, respectively. 106 

Therefore, the sensitivity of SFyNCS was far better than that of STAR-Fusion, DEEPEST, and 107 

Arriba. The fractions of fusions supported by somatic SVs were quite similar across the four 108 

algorithms, ranging from 59.0% to 64.7% (Fig. 2a). Fusions detected by SFyNCS had the 109 

highest SV support (64.7%). These suggested that the quality of fusions detected by these four 110 

algorithms were quite similar, and the specificity of SFyNCS was slightly better than that of 111 

STAR-Fusion, DEEPEST, and Arriba. Surprisingly, in the 12,923 SFyNCS-detected fusions, 112 

9,520 (73.7%) were FiNCS. Among FiNCS, 64.7% were supported by SVs, which suggested 113 

that the quality of FiNCS detected by SFyNCS was as good as protein-coding fusions. STAR-114 

Fusion and DEEPEST had limited ability in detecting FiNCS (Fig. 2a). Arriba detected 2,993 115 

FiNCS and 2,145 of them were also detected by SFyNCS. SFyNCS detected 8,349 fusions that 116 

were missed by other algorithms and 63.3% of them were supported by SVs, which suggested 117 

that SFyNCS-specific fusions were of high quality. The vast majority (7,135) of these were 118 

FiNCS. In addition, SFyNCS detected 1,214 protein-coding fusions that were not detected by 119 

other algorithms. We then tested FusionCatcher18, InFusion19, Defuse20, and SQUID21 on the 338 120 

tumors (Supplementary Table S3). These four algorithms detected many more fusions than 121 

SFyNCS, ranging from 22,470 to 110,105 (Fig. 2b). However, the fractions of fusions supported 122 

by SVs for these four algorithms ranged from 2.7% to 11.1% (Fig. 2b) indicating that the 123 

majority of these fusions were false calls. This suggested that the specificity of SFyNCS was far 124 

better than FusionCatcher, InFusion, Defuse, and SQUID. 125 

We further tested SFyNCS on the breast cancer cell line MCF7 and compared to six algorithms 126 

that were previously tested24 on MCF7 (STAR-Fusion, MapSplice222, InFusion, SOAPfuse23, 127 

FusionCatcher, and EasyFuse24). SFyNCS detected a total of 377 fusions including 262 (69.5%) 128 

FiNCS (Fig. 3a and Supplementary Table S4). In SFyNCS-detected fusions, 45.1% of the 129 

fusions were supported by SVs. STAR-Fusion, MapSplice2, InFusion, and SOAPfuse detected 130 

fewer fusions than SFyNCS (ranging from 70 to 256) and the fractions of fusions supported by 131 

SVs were lower than SFyNCS (ranging from 7.3% to 35.7%) (Fig. 3a). EasyFuse and 132 

FusionCatcher detected many more fusions (1,352 and 1,915 respectively). However, very few 133 

of them were supported by SVs (5.4% and 3.1% respectively) (Fig. 3a). In order to validate the 134 

fusions predicted by FusionCatcher, we extracted split reads provided by FusionCatcher and 135 

aligned them to the reference genome by BLAT. We found that only 16.5% of the fusions 136 

predicted by FusionCatcher were supported by the split reads, which was in sharp contrast to 137 

SFyNCS (80.6%) (Supplementary Fig. S1a-S1e). This suggested that the majority of fusions 138 

detected by FusionCatcher were likely false positives due to alignment errors. EasyFuse used 5 139 

algorithms to detect fusions, including STAR-Fusion, MapSplice2, InFusion, SOAPfuse and 140 

FusionCatcher, and FusionCatcher was the only one detected a large number of fusions (Fig. 3a). 141 

Therefore, EasyFuse likely suffered from similar alignment errors. Among all these algorithms, 142 

only STAR-Fusion had comparable specificity to SFyNCS, but it detected five folds fewer 143 

fusions than SFyNCS. SFyNCS detected 275 fusions that were not detected by any other 144 

algorithms in MCF7 including 238 FiNCS. In the 275 SFyNCS-specific fusions, 49.1% were 145 

supported by SVs (Fig. 3a), which suggested that SFyNCS-specific fusions were of high quality. 146 

We randomly selected 20 FiNCS detected only by SFyNCS, performed PCR and Sanger 147 
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sequencing validation, and were able to validate 12 (60%) of them (Fig. 3b, Supplementary 148 

Fig. S2 and Supplementary Table S5). We further detected fusions in the MCF7 cell line using 149 

different RNAseq data produced by Cancer Cell Line Encyclopedia (CCLE) and Encyclopedia of 150 

DNA Elements (ENCODE) and found an additional 215 fusions (Supplementary Fig. S1f and 151 

Supplementary Table S4). We then randomly selected 10 FiNCS detected only in CCLE and 152 

ENCODE data and were able to validate 8 (80%) of them (Fig. 3b, Supplementary Fig. S3 and 153 

Supplementary Table S5). Moreover, we validated 5 out of 6 (83%) randomly selected FiNCS 154 

in the colorectal cancer cell line HCT116 and the leukemia cell line K562 (Fig. 3b, 155 

Supplementary Fig. S4, Supplementary Tables S5, S6 and S7).  156 

Taken together, SFyNCS can detect many more fusions with better specificity than other existing 157 

algorithms, and the FiNCS detected by SFyNCS are highly accurate. 158 

 159 

Fusion landscape in TCGA cohort 160 

We then used SFyNCS to analyze 9,565 TCGA tumor samples from 33 tumor types 161 

(Supplementary Table S1). A total of 165,139 fusions were detected (Supplementary Tables 162 

S8). Intriguingly, 119,191 (72.2%) of the fusions were FiNCS and were much more abundant 163 

than protein-coding fusions. Each tumor carried a median of 7 fusions ranging from 0 to 426 per 164 

tumor (Supplementary Table S9). Uterine Carcinosarcoma (UCS) and sarcoma (SARC) were 165 

the most abundant in fusions with medians of 32 and 29, respectively, whereas most kidney 166 

chromophobe cancers (KICH) and uveal melanomas (UVM) had less than 3 fusions (Fig. 4a). 167 

The abundance of fusions was consistent with somatic SV frequencies across tumor types25. 168 

STAR-Fusion, DEEPEST, and Arriba detected many fewer fusions in TCGA samples (25,664, 169 

31,007 and 48,545, respectively)3,12,16. SFyNCS detected all known oncogenic fusions reported 170 

in these samples3 (Fig. 4b), such as TMPRSS2-ERG, FGFR3-TACC3, and PML-RARA. To better 171 

identify candidate driver FiNCS, we relied on recurrent fusion breakpoints at base-pair level 172 

since the annotation of non-coding genes remains incomplete. At the base-pair level, there were a 173 

total of 1,128 recurrent (occurring in at least 3 samples within the corresponding tumor type) 174 

fusion breakpoints involving non-coding sequences (Fig. 4b, Supplementary Table S10). 175 

Interestingly, except for prostate cancer (PRAD), the most recurrent fusion breakpoints involving 176 

non-coding sequences were often as frequent as protein-coding fusion breakpoints in many 177 

tumor types (Fig. 4b). 178 

 179 

Recurrent driver fusions involving non-coding sequences 180 

In 496 prostate cancers, we identified 27 FiNCS in 13 samples (2.6%) involving a long non-181 

coding RNA (lncRNA) on chromosome 17 NONHSAG108579.1. This lncRNA acted as the 5’ 182 

fusion partner (Supplementary Table S11). These FiNCS were mutually exclusive with the 183 

well-known ETS fusions (P=0.039, one-sided Fisher’s exact test, Fig. 5a). Two out of the 13 184 

samples had WGS data, and in both samples, somatic translocations at the DNA level supported 185 

the FiNCS (Fig. 5b and 5c). In sample TCGA-EJ-5518, there was a somatic translocation 186 
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between chromosomes 8 and 17 (Fig. 5b). The translocation brought NONHSAG108579.1 and 187 

MYC together and produced a chimeric transcript. Exons 2 and 3 of MYC were fused with 188 

NONHSAG108579.1 and the chimeric transcript could produce an intact MYC protein (Fig. 5b). 189 

In another sample TCGA-CH-5771, there were two somatic translocations involving 190 

chromosomes 17 and 18 and resulting NONHSAG108579.1 being fused to ETV4 with an 8.9kb 191 

fragment from chromosome 18 inserted in-between (Fig. 5c). At the RNA level, the chromosome 192 

18 fragment was entirely spliced out. On exon 9 of ETV4, there was an alternative start codon, 193 

and therefore, the NONHSAG108579.1-ETV4 fusion transcript could produce a short ETV4 194 

protein. The lncRNA NONHSAG108579.1 was expressed at low levels in normal prostate tissues 195 

and fusion-negative prostate cancers, but highly expressed in most fusion-positive tumor samples 196 

(Fig. 5b, 5c and Supplementary Fig. S5). Most of the 3’ fusion partners were activated (Fig. 5b, 197 

5c) and had expression patterns consistent with known driver fusions26, that is higher read 198 

coverage in exons included in the fusion transcripts than exons not part of the fusion transcripts. 199 

Furthermore, many of the 3’ fusion partners were well-known oncogenes including MYC, ETV4, 200 

ETV1 and BRAF (Supplementary Table S11). Therefore, the NONHSAG108579.1 fusions in 201 

prostate cancers were highly likely to be oncogenic. 202 

In addition, recurrent FiNCS involving two lncRNAs (LINC02384 and LNCKB.11978) were 203 

detected in 259 sarcomas (Supplementary Table S12). All of these FiNCS were detected in 204 

dedifferentiated liposarcomas (DDLPS), not other subtypes, and they were mutually exclusive 205 

with each other (Fig. 6a). LINC02384 and LNCKB.11978 fusions occurred in 6 (12%) and 10 206 

(20%) DDLPS tumors, respectively, and both lncRNAs were the 3’ fusion partners. The 5’ 207 

fusion partners were either protein-coding genes, lncRNAs or pseudogenes (Supplementary 208 

Table S12). Among the 16 fusion-positive tumors, 6 had WGS data, and somatic SVs at the 209 

DNA level supported the FiNCS in all 6 samples (Fig. 6b, 6c, Supplementary Fig. S6 and S7). 210 

In sample TCGA-DX-A1L3, a somatic tandem duplication was present in protein-coding gene 211 

ZDHHC17 and upstream of LNCKB.11978 (Fig. 6b). Exon 1 of LNCKB.11978 was skipped and 212 

a chimeric transcript of exon 1 of ZDHHC17 and exon 2 of LNCKB.11978 was produced. The 213 

transcript could be translated into LNCKB.11978 and produced a chimeric protein (Fig. 6b). In 214 

sample TCGA-DX-A3LY, there was a somatic translocation between chromosomes 5 and 12 215 

(Fig. 6c). Similarly, a transcript of exon 1 of SH3RF2 and exon 2 of LINC02384 was produced 216 

and could be translated into a chimeric protein (Fig. 6c). In most of these FiNCS involving 217 

LNCKB.11978 and LINC02384, the 3’ lncRNAs were activated (Fig. 6b, 6c, Supplementary 218 

Fig. S6 and S7). The high recurrence and expression patterns indicated that these FiNCS were 219 

potential cancer drivers. To test the oncogenic functions experimentally, we synthesized the 220 

ZDHHC17-LNCKB.11978 fusion, transduced it into A549 cells (Fig. 6d), and injected the cells 221 

into immune deficient mice subcutaneously. Although the cancer cells don’t grow differently in 222 

culture, tumors carrying the fusion grew significantly faster than controls (Fig. 6e and 6f) upon 223 

grafting on mice, suggesting that the ZDHHC17-LNCKB.11978 fusion does indeed have 224 

oncogenic activity.  225 

Taken together, our results demonstrate that SFyNCS is able to detect oncogenic fusions 226 

involving non-coding sequences.  227 
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Discussion 228 

Here, we describe our fusion detection algorithm SFyNCS which can detect fusions of both 229 

protein-coding genes and non-coding sequences in transcriptome sequencing data. SFyNCS is 230 

designed for Illumina short-read sequencing data and will suffer from the limitations of short-231 

read sequencing technology, such as the lack of ability to resolve repetitive regions since human 232 

genome is highly repetitive. Fusion breakpoints in transposable elements, segmental 233 

duplications, satellite repeats, simple repeats and other types of repeats are unlikely to be reliably 234 

detected. This constraint is not specific to SFyNCS. All short-read based fusion detection 235 

algorithms suffer from this limitation. 236 

Another obstacle is the availability of normal samples to filter out germline events and 237 

systematic artifacts. Several tumor types do not have RNAseq data from matched normal 238 

samples, such as acute myeloid leukemia (LAML), lower grade glioma (LGG), ovarian cancer 239 

(OV,) testicular germ cell tumors (TCGT), uterine carcinosarcoma (USC), while some tumor 240 

types have very few matched normal samples, such as esophageal cancer (ESCA), glioblastoma 241 

(GBM), skin cutaneous melanoma (SKCM), thymoma (THYM). Therefore, many of the highly 242 

recurrent fusions detected from these tumor types are likely not cancer drivers.  243 

Although SFyNCS displayed superior performances in our benchmarking tests compared to 244 

existing tools, a small fraction of true fusions were still missed by SFyNCS. Each filter we 245 

implemented may remove some true fusions, such as true fusion junctions may not always be 246 

canonical splice sites26. For other types of somatic variants including single nucleotide variants 247 

(SNVs), copy number variations (CNVs) and SVs, multiple tools are often integrated together 248 

for variant calling27. Therefore, we recommend users to apply multiple tools to perform 249 

comprehensive fusion detection. 250 

  251 
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Conclusion 252 

We report our tool SFyNCS to detect fusions involving non-coding sequences. With rigorous 253 

benchmarking using tumor samples and cancer cell lines, we show that SFyNCS is more 254 

sensitive in fusion detection than existing tools and the quality of fusions detected by SFyNCS is 255 

better than existing tools. About three quarters of the fusions in tumor samples have non-coding 256 

fusion partners. Some recurrent fusions involving non-coding sequences can promote 257 

tumorigenesis. 258 

  259 
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Methods 260 

SFyNCS Workflow 261 

Identifying raw fusions. RNAseq reads were aligned by STAR28 to the reference genome for 262 

detection of discordant read pairs and split reads. Discordant pairs defined by STAR were 263 

paired-end reads aligned to different chromosomes or to the same chromosome but in 264 

incompatible orientations, or in compatible orientations but with distances greater than 100 kb. 265 

Some reads could not be aligned consecutively in the genome but had to be split into two parts. 266 

If the two parts were aligned to two different chromosomes or to the same chromosome but in 267 

incompatible orientations, or in compatible orientations but with distances greater than 100 kb, 268 

these reads were considered split reads which potentially spanned the fusion breakpoints. 269 

Discordant pairs and split reads aligned to multiple locations were discarded and duplicated 270 

reads (read pairs with identical mapping) were removed. Discordant pairs and split reads were 271 

merged into clusters if they were aligned to the same chromosomes, with the same orientations 272 

and within 1 Mb to each other. Raw fusions were then called from these clusters. Precise fusion 273 

breakpoints were determined by split reads. Split reads with same orientations and within 5bp 274 

were considered to support the same fusion. Each candidate fusion must be supported by at least 275 

one split read. In the initial detection phase, discordant read pair support was not required. 276 

Different numbers of read support (discordant read pair and split read) were tested in a later 277 

section. Note that one discordant pair may support more than one fusion (different isoforms) 278 

depending on how the transcripts were spliced (Supplementary Fig. S8). Gene annotation was 279 

not used in raw fusion detection, so that fusion breakpoints in both protein-coding genes and 280 

non-coding regions of the genome could be detected. The process described above was very 281 

sensitive, and hence, a large number of raw fusions would be detected in each sample. 282 

Testing filtering strategies. To detect high quality tumor-specific fusions, we comprehensively 283 

tested the performances of the fusion calling and filtering strategies as well as various cutoffs in 284 

three rounds. In the first round, we intended to find what filters were useful and tested the 285 

following: (1) Number of total read support (discordant pair and split read combined, cutoffs 286 

tested: >=2 and >=3); (2) Number of split read support (cutoffs tested: >=1 and >=2); (3) 287 

Number of discordant pair support (cutoffs tested: 0 and >=1); (4) The minimal distance between 288 

the discordant pairs and the split reads supporting the same fusion (cutoffs tested: <=5 kb, <=10 289 

kb and NA [filter not applied]); (5) Whether filter deletion-like fusions that were within the same 290 

gene annotated by GENCODE or not; (6) Whether filter duplication-like and inversion-like 291 

fusions that were within the same gene annotated by GENCODE or not; (7) Fusion breakpoint 292 

distance for deletion-like fusions (produced by somatic deletions at the DNA level, cutoffs 293 

tested: >=200 kb and >=500 kb and NA); (8) Fusion breakpoint distance for duplication-like and 294 

inversion-like fusions (produced by somatic duplications and inversions at the DNA level, 295 

cutoffs tested: >=10 kb, >=20 kb and NA); (9) Breakpoint flanking sequence identity by aligning 296 

20bp sequences (10bp from both sides) of two breakpoints with Needleman–Wunsch algorithm 297 

(cutoffs tested: <=0.5 and NA); (10) Size of breakpoint flanking region for filters (11) and (12) 298 

(cutoffs tested: 100bp); (11) Standard deviation (SD) of fusion-supporting read clusters in fusion 299 

breakpoint flanking region (described in detail in the next paragraph, cutoffs tested: >=0.05, 300 
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>=0.1 and NA); (12) Number of fusion-supporting clusters in fusion breakpoint flanking region 301 

(cutoffs tested: <=5 and NA); (13) Filter by canonical splicing motifs (GT in the donor site, 302 

AAG/CAG/TAG in the acceptor site) within 5bp of fusion breakpoints; (14) Confirming 303 

discordant pairs and split reads alignment by TopHat2 (distance between TopHat2 and STAR 304 

alignments of split reads <=5bp); 15) Confirming split reads alignment by BLAT; and (16) Filter 305 

by fusion breakpoints detected in normal samples (more details below). 306 

In the second round, to optimize the filtering parameters, we further tested more cutoffs based on 307 

the results from the first round by changing one or a few parameters at a time: (1) Number of 308 

total read support (cutoffs tested: >=3, >=4 and >=5); (2) Number of split read support (cutoffs 309 

tested: >=2, >=3, >=4 and >=5); (3) The minimal distance between the discordant pairs and the 310 

split reads supporting the same fusion (cutoffs tested: <=100bp, <=200bp, <=500bp, <=1kb, 311 

<=5kb, <=20kb, <=50kb, <=100kb, <=200kb, <=300kb, <=500kb, <=1Mb and NA); (4) Fusion 312 

breakpoint distance for deletion-like fusions (cutoffs tested: >=100kb, >=200kb, >=300kb, 313 

>=500kb, >=1Mb and NA); (5) Fusion breakpoint distance for duplication-like and inversion-314 

like fusions (cutoffs tested: >=10kb, >=30kb, >=50kb, >=100kb, >=200kb, >=300kb, >=500kb, 315 

>=1Mb and NA); (6) Breakpoint flanking sequence identity (cutoffs tested: <=0.3, <=0.5 and 316 

<=0.8); (7) Different size of breakpoint flanking region in (8) and (9) (cutoffs tested: 100bp, 317 

500bp, 1kb, 5kbp and 10kb); (8) SD of fusion-supporting read clusters in fusion breakpoint 318 

flanking region (cutoffs tested: >=0.05, >=0.15, >=0.2, >=0.25, >=0.3 and NA); (9) Number of 319 

fusion-supporting clusters in fusion breakpoint flanking region (cutoffs tested: <=5, <=10, <=15, 320 

<=20, <=25, <=30 and NA); Note that, in the second round, not all possible parameter 321 

combinations were tested. A selected subset based on the best performing combination from the 322 

first round were tested to find better performing parameters. 323 

In the third round, we either removed one filter, added one filter, or changed the cutoff for one 324 

filter based on the best performing filter combination determined in the second round to confirm 325 

that no further improvement could be made (Supplementary Table S2). 326 

For each candidate fusion breakpoint, there could be more than one read cluster supporting 327 

different fusions in its flanking region. Too many such clusters suggested that the alignments of 328 

this region were unreliable. The number of fusion-supporting clusters was tested. Standard 329 

deviations (SDs) of the proportions of fusion-supporting reads in these clusters (equation below) 330 

was tested. 331 

Standard deviation (SD) = �� �������
�

���

�
 , where �� � 	�

� 	�

�

���

 and � � � ��
�

���

�
 332 

N is the number of clusters, mi is the number of reads in cluster i, ni is the proportion of reads in 333 

cluster i. 334 

Normal samples from TCGA (Supplementary Table S13) were used to remove germline events 335 

and other systematic artifacts. A panel of 140 normal samples was first constructed by randomly 336 

selecting 10 normal samples from each tumor type that had more than 10 matched normal 337 

samples. Fusions detected in each tumor sample were filtered by this normal panel as well as all 338 
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the matched normal samples of the corresponding tumor type when available. Note that some 339 

tumor types, such as lower-grade glioma and ovarian cancer, did not have matched normal 340 

samples. These tumor samples were only filtered by the 140-sample normal panel. Fusions 341 

detected in tumor samples were discarded if there were at least two fusion supporting reads 342 

(either discordant read pairs or split reads) within 10 kb for both breakpoints in any normal 343 

samples. 344 

Note that if the fusion breakpoints were located close to the end of the transcripts, discordant 345 

read pairs may not exist. Therefore, we tested the fusion detection performance if not requiring 346 

discordant read pair support. Since fusion breakpoints were determined by split reads, we did not 347 

test fusion detection without split read support. 348 

 349 

Benchmarking fusion detection tools 350 

Fusions in 338 TCGA samples were identified by Defuse (v0.8.1), FusionCatcher (v1.33), 351 

InFusion (v0.8.1-dev), and SQUID (v1.5) with default parameters. Note SQUID failed to analyze 352 

TCGA-DX-A2IZ-01A-11R-A21T-07. Fusions detected by multiple tools needed to have 353 

identical breakpoint locations and orientations. Fusions were considered supported by somatic 354 

SVs if SV breakpoints could be found within 100 kb of fusion breakpoints and the DNA 355 

fragments produced by the SVs could be spliced into the corresponding fusion RNA. Fusions in 356 

MCF724 were identified by FusionCatcher (v1.33) with default parameters. Fusion-supporting 357 

split reads identified by both FusionCatcher (v1.33) and SFyNCS were aligned to the reference 358 

genome by BLAT to validate split-read alignment. If there were two segments of a split read 359 

aligned uniquely within 5bp of the predicted fusion breakpoints, the split read was considered 360 

validated by BLAT. Split reads not validated by BLAT mainly belonged to the following three 361 

categories: i) align entirely (more than 85bp of 101bp-long reads) to one location of the genome 362 

(Supplementary Fig. S1c), ii) not support (aligned within 5bp of the predicted breakpoints) one 363 

or more fusion breakpoints (Supplementary Fig. S1d), or iii) align to multiple locations 364 

(Supplementary Fig. S1e). If a fusion did not have any split read validated by BLAT, the fusion 365 

was considered not validated. 366 

 367 

Cell lines 368 

HEK293T cells were obtained from Dr. Alexander Muir (University of Chicago). MCF7 cells 369 

were obtained from Dr. Lev Becker (University of Chicago). HCT116 and K562 cells were 370 

obtained from Dr. Chuan He (University of Chicago). A549 cells were purchased from ATCC 371 

(American Type Culture Collection, USA). All cell lines were cultured at 37°C/5% CO2. 372 

HEK293T cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Gibco, 373 

21041025) supplemented with 10% FBS, 1% penicillin/streptomycin and 2 mM L-glutamine. 374 

MCF7 cells were cultured in Eagle's Minimum Essential Medium (Corning, 10-010-CV) with 375 

10% fetal bovine serum (FBS) (Gibco, A4766). HCT116 cells were cultured in McCoy's 5A 376 

Medium Modified (Gibco, 16600-082) with 10% FBS. K562 cells were cultured in Iscove's 377 
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Modified Dulbecco's Medium (Gibco, 12440-053) with 10% FBS. A549 cells were cultured in 378 

F-12K Medium (ATCC, 30-2004) with 10% FBS and 1% penicillin/streptomycin. All cell lines 379 

have been regularly monitored and tested negative for mycoplasma using the mycoplasma 380 

detection kit (Lonza, LT07-218). 381 

 382 

RT-PCR and Sanger sequencing validation 383 

Twenty fusions were randomly selected for validation among the 238 FiNCS in MCF7 RNA-seq 384 

data24 detected by SFyNCS but not detected by FusionCatcher (v1.0), InFusion (v0.8), 385 

MapSplic2 (v2.2.1), SOAPfuse (v1.2.7), STAR-Fusion (v1.5.0), or EasyFuse (v1.3.0). Ten 386 

FiNCS detected in MCF7 RNA-seq data produced by CCLE and ENCODE but not detected in 387 

the RNA-seq data produced by the previous study24 were randomly selected. Six FiNCS were 388 

randomly selected from HCT116 and K562 cell lines. Primers (Supplementary Table S5) were 389 

designed by Primer3 and synthesized by Integrated DNA Technologies. MCF7, HCT116 and 390 

K562 cells were plated in 6-well plates and allowed to reach 80% confluence prior to RNA 391 

extraction. After cells being lysed in 300μl/well TRYzolTM (Invitrogen, 15596026), RNA 392 

samples were prepared following the manual of Direct-zol RNA Miniprep kit (RPI, ZR2052). 393 

Reverse transcription was performed using Applied Biosystems High-Capacity cDNA Reverse 394 

Transcription Kit (43-688-14) following manufacturer’s instructions. PCR was conducted on 395 

SimpliAmpTM Thermo Cycler (Applied Biosystems, A24811), with HotStarTaq Plus Master 396 

Mix (QIAGEN, 1039620) following the manufacturer’s instructions. PCR products were 397 

extracted from 2% agarose gel with MinElute Gel Extraction kit (QIAGEN, 28604) and purified 398 

with MinElute PCR purification kit (QIAGEN, 28004). Then the DNA samples were sent to the 399 

DNA Sequencing & Genotyping Facility of the University of Chicago Comprehensive Cancer 400 

Center for Sanger sequencing. 401 

 402 

Synthesis of ZDHHC17-LNCKB.11978.4 403 

The 1,870 bp ZDHHC17-LNCKB.11978.4 fusion cDNA was synthesized by GenScript (New 404 

Jersey, USA) and subcloned into the lentiviral pCDH-CMV-MCS-EF1-Puro plasmid (SBI, 405 

CD510B-1). The cDNA sequence in the plasmid was verified by Sanger sequencing at 406 

University of Chicago Medicine Comprehensive Cancer Center core facility. The ZDHHC17-407 

LNCKB.11978.4 fusion cDNA sequence is 408 

TTGTATCCATGTTTTTCCGGGCGTCCCCCGGAGGGACAGGTTGCGGGTGACCTTTTC409 

AAGTGTGGAGGAAAGGGAAGCTGCTTTTGTCTTCAGGAATGATGCAGGTCTCGACTC410 

AAGCCTGACGGGCCCAAACCTCCCTGGAGCTGGCTGACGACTCTGCCCGAGTTCCTG411 

AAGAGGGGTCCCGGGGGTCCCGGAGCGGAAGTGGGAGCGCGTGGGCGTGGGCTCCT412 

CGGCTGCCTGGGGCTCCAGACTTGTGCTGCGTGCGGCTCCGGAGCTCTGTTCTCGCT413 

CCTGAGCAGCTGCTAGGTTTCCCAAGCGACTGTCTCAACCGCCCGGCCGCCTCCCCC414 

GGGCAGCCAGAGCTTCACATCTACCTCCAGCCGGGACCCGCCCCCGAGCCGCGGGG415 

CCCACGCCCAGAGCCCTCCGCCGTCCCCAGCGCAGTGCAGCAGAGCGCGATCCAGT416 

CTGGGGCCGGGCCGCGCTTCCGCGCACGCGCGGAGAAACCCGCGCCCTCCGAGGGG417 
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GGAGGGGACAGAGGGGGCGTCACGGGGGCAGGAGAAGAAGGAGGAGGAGGCCCG418 

CGTCGCCTCCGGCGGGGCTCGCGCTCGCCCCGCGCTCGCCCTCCGCCTCGCCCGAGC419 

CCCGGGAGGGTGAAACGCTTTCTCCCAGCATGCAGCGGGAGGAGGGATTTAACACC420 

AAGATGGCGGACGGCCCGGATGAGTACGATACCGAAGCGGGCTGTGTGCCCCTTCT421 

CCACCCAGAGTCAACATGCCCGAGTGCTGTGAACGTTATGAGAGGGCCTTGTTGGG422 

AACACGTGCTCCTGGGAATCAGCCCTTCCCTCTGTCCTGTTCCCACTCCTCCCCGACG423 

ATGCTCCTGCTCAGAACCCACTCCTCACCTCAGTGAAGCAACGCAGCGGGCACCCTG424 

TGGACAAAGCTGGATATTGGCTCTGAATAAAAGCGAATCATGGGGAAAATCAGTGT425 

CTCAGTAAAATGGGGTTTTCTTAGTAGAGACCAGACTGTGAAGGACCTTGCTTCATT426 

CCATCTTTGAGGAGGATGATGATTCAGGGACATTGGCCCAAGATCAAAGTGGTATTT427 

TTAGGTTGTATTTACTTAGCTATTTGCCGTCTACCTCCTTATTTCCAGGTAGCAACTT428 

CCTTCTTATATCTGAGATGTTTAAGAGATGATGAAACCAGCTTGCACACACTTCTCA429 

AAGTGTGTTTGTTCGCATCCATTATTTCACTGGGGACCGGCTATTATCCTCTCCATTT430 

TCTTTATAAGGATATTGAAAGAGAGATTAAATAACTTGTTCAAGGCCGCATAGCTAG431 

TTAACAGCTGAACTAGGCTTAAAACCAACGTCTGAAGGCTCCTATTCCAGTGGCAGC432 

TGCTGTGTGCTTCTTCTGTTTTCCATCAGTTTGGAAGGGAGCATAAAGTCTACAGCCA433 

CATGGGTGGGGTCAGCAGAAAGATTGACCACCAAGCCTGAGGCAGGTGAGGCTGAT434 

CTCCTGGGCACAGCCTCTCTGCACAGGAGTTCACAGAAGTGATATGATCCAAAGTTG435 

CTGAGGGAAAAGCCCTTATTTGTGGAATTAACGGCAGGTCTCTCTTGAGGTCAGAAT436 

GAATGTTATTGACATTATTGTTTGTATTGTGGTAAGGTATACATAATGGAAAATGTA437 

CCATTTTGGCTGGACATGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCAA438 

GGTGGGCGCATCACCTGAGGTCAGGAGTTCGAGACCAGCCTGCCAACATGGTGAAA439 

CCTCATCTCTACTAAAAATACAAAAATTAGCCGGGCGTGGTGGTGGGTGCCTGTAGT440 

CCCAGCTACTTGGGAGACTGAGGCAGGAGAATCACCTGAACCCAGGAAGCAGAAG. 441 

 442 

Lentiviral transduction and qPCR 443 

ZDHHC17-LNCKB.11978 was subcloned into pCDH-CMV-Puro lentiviral vector and then co-444 

transfected with psPAX2 and pMD2.G plasmids into HEK293T cells to generate lentiviral 445 

particles respectively. pCDH-CMV-Puro lentiviral vector was also transfected as the control. 446 

After 48 hours, the lentivirus was harvested and transduced into A549 cells with 10 μg/mL 447 

polybrene. Puromycin (1 μg/mL) was added into cells for positive selection at 48 hours post 448 

transduction for 7 days to establish stable A549 cell lines with ZDHHC17-LNCKB.11978 fusion. 449 

Total RNA from cells was isolated using Direct-zol RNA MiniPrep Kit (Zymo Research) 450 

according to the manufacturer’s instructions. cDNA was synthesized using SuperScript VILO 451 

cDNA synthesis kit (Life Technologies). qPCR was performed using SYBR green qPCR Master 452 

Mix (Sigma) on an Applied Biosystems QuantStudio 3 Real-Time PCR System. Primer 453 

sequences used were as follows: 454 

GAPDH forward: 5’ -GTCTCCTCTGACTTCAACAGCG- 3’ 455 

GAPDH reverse: 5’ -ACCACCCTGTTGCTGTAGCCAA- 3’ 456 

ACTIN forward: 5’ -CACCATTGGCAATGAGCGGTTC- 3’ 457 

ACTIN reverse: 5’ -AGGTCTTTGCGGATGTCCACGT- 3’ 458 
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ZDHHC17-Inckb.11978 primer 1 forward: 5’ -GAGTACGATACCGAAGCGGG- 3’ 459 

ZDHHC17-Inckb.11978 primer 1 reverse: 5’ -ACTGAGGTGAGGAGTGGGTT- 3’ 460 

ZDHHC17-Inckb.11978 primer 2 forward: 5’ -CGGCCCGGATGAGTACGATA- 3’ 461 

ZDHHC17-Inckb.11978 primer 2 reverse: 5’ -TAACGTTCACAGCACTCGGG- 3’ 462 

 463 

Xenograft models 464 

NOD.CB17-Prkdcscid/J (NOD-SCID) mice were purchased from The Jackson Laboratory. All 465 

animal experiments complied with the standards approved by University of Chicago. For tumor 466 

transplantation, 5x105 A549 cells with pCDH control and ZDHHC17-LNCKB.11978 fusions 467 

were resuspended in PBS and mixed with Matrigel (R&D Cultrex Type 3, Pathclear) at 1:1 ratio, 468 

followed by subcutaneously injection into NOD-SCID mice. Tumor volume was assessed by 469 

calipers every week. At 7 weeks post tumor grafting, animals were euthanized, and the engrafted 470 

tumors were weighed and photographed.  471 

  472 
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SOAPfuse (v1.2.7), and STAR-Fusion (v1.5.0) were downloaded from the previous study24. 498 
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Figure Legends 519 

Figure 1. SFyNCS. a, Fusions of different types. Pink and blue shapes denote two fusion 520 

partners. Fusions can be in any combinations of protein-coding genes and non-coding sequences. 521 

b, Overview of SFyNCS. There are two main steps: detect raw fusions and filter fusions. c, A 522 

total of 49,248 combinations of filtering strategies and parameters are tested. Each dot represents 523 

one combination. The number of fusions is used to measure sensitivity and the percentage of 524 

fusions supported by somatic SVs is used to measure specificity. A portion of the plot is zoomed 525 

in in the upper right corner. d, Sensitivity and specificity of final filtering strategy implemented 526 

in SFyNCS compared to changing one parameter at a time. In both c and d, the sensitivity and 527 

specificity for Arriba, DEEPEST and STAR-Fusion are also shown. 528 

Figure 2. Benchmarking tools in TCGA samples. a, UpSet plot of four fusion-detection 529 

algorithms in 338 TCGA samples with both WGS and RNAseq data. The stacked bars on the 530 

bottom right are the total fusions detected by four tools respectively. The stacked bars on the top 531 

show the number of fusions identified by one or more tools. The black dots under the stacked 532 

bars indicate tools used. The numbers on the top and on the right side of the bars are numbers of 533 

fusions. The percentages in the parenthesis indicate percentages of fusions supported by somatic 534 

SVs. b, Comparison of SFyNCS with four fusion-detection algorithms, FusionCatcher v1.33, 535 

InFusion, Defuse, and SQUID, in the same 338 TCGA samples.  536 

Figure 3. Benchmarking tools in MCF7 cell line. a, Comparison of SFyNCS with six fusion 537 

detection algorithms in MCF7 cell line: STAR-Fusion, MapSplice2, InFusion, SOAPfuse, 538 

EasyFuse, and FusionCatcher v1.0. Stacked bars on top are grouped into fusions identified by 539 

SFyNCS and not identified by SFyNCS. The stacked bars on the bottom right are the total 540 

fusions detected by seven tools respectively. The stacked bars on the top show the number of 541 

fusions identified by one or more tools. The black dots under the stacked bars indicate tools used. 542 

The numbers on the top and on the right side of the bars are numbers of fusions. The percentages 543 

in the parenthesis indicate percentages of fusions supported by somatic SVs. b, Percentages of 544 

FiNCS validated by PCR and Sanger sequencing in three cancer cell lines. The number of FiNCS 545 

tested are shown on the right side of bars.  546 

Figure 4. The landscape of fusion and recurrent fusion breakpoint in TCGA samples. a, 547 

The landscape of fusions in 9,565 TCGA samples. Each dot represents a tumor sample grouped 548 

by tumor type. Tumor types are sorted by median number of fusions per sample which is 549 

indicated by red lines. The numbers in the parenthesis are the numbers of tumor samples in the 550 

corresponding tumor types. b, Recurrent fusion breakpoints in 9,565 TCGA samples. Each 551 

orange or green dot represents a recurrent fusion breakpoint detected in at least three samples. 552 

The y axis indicates the percentage of samples carrying the fusion breakpoints in the 553 

corresponding tumor types. The numbers in parenthesis represent numbers of samples carrying 554 

the breakpoints. All breakpoints are at base-pair level. For example, TMPRSS2-ERG is the most 555 

recurrent fusion in adult solid tumors and can be detected in 183 out of 496 prostate cancers. 556 

Among them, 168 tumors have more than one TMPRSS2-ERG isoforms involving various exons 557 

of TMPRSS2. Therefore, 3 out of the top 4 recurrent fusion breakpoints in prostate cancer are in 558 

TMPRSS2 gene and these breakpoints are observed in 186, 131 and 78 samples.  559 
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Figure 5. Recurrent FiNCS in prostate cancer. a, Oncoprint plot of 496 prostate cancers 560 

showing fusions involving TMPRSS2 and NONHSAG108579.1. b and c, Structures of two 561 

NONHSAG108579.1 fusions and their expression. The top three rows are gene and fusion 562 

structure cartoons of the reference genome, tumor DNA, and tumor RNA. Pink and blue boxes 563 

denote two fusion partners. The NONHSAG108579.1-ETV4 fusion in sample TCGA-CH-5771 is 564 

produced by two different translocations. The orange fragment from chromosome 18 is entirely 565 

spliced out from the fusion transcript. Five tracks of RNAseq coverage are shown for five 566 

samples at the bottom and the reference gene structures are given above the five tracks. Exons 567 

and introns are re-scaled to better illustrate fusion structures. In b, the tumor samples without 568 

fusions (fusion-) are TCGA-HI-7169-01A-11R-2118-07 and TCGA-EJ-A7NJ-01A-22R-A352-569 

07, the normal samples are TCGA-EJ-7327-11A-01R-2118-07 and TCGA-HC-7742-11A-01R-570 

2118-07. In c, the fusion- samples are TCGA-G9-6365-01A-11R-1789-07 and TCGA-HI-7169-571 

01A-11R-2118-07, the normal samples are TCGA-EJ-7123-11A-01R-1965-07 and TCGA-EJ-572 

7125-11A-01R-1965-07.  573 

Figure 6. Recurrent FiNCS in sarcoma. a, Oncoprint plot of 259 sarcomas showing FiNCS 574 

involving LNCKB.11978 and LINC02384. DDLPS: dedifferentiated liposarcoma, STLMS: Soft 575 

Tissue Leiomyosarcoma, UPS: Undifferentiated Pleomorphic Sarcoma, ULMS: Gynecologic 576 

Leiomyosarcoma, MFS: Myxofibrosarcoma, SS: Synovial Sarcoma, MPNST: Malignant 577 

Peripheral Nerve Sheath Tumor. b and c, Structures of a LNCKB.11978 fusion and a LINC02384 578 

fusion in DDLPS and their expression. The top three rows are gene and fusion structure cartoons 579 

of the reference genome, tumor DNA, and tumor RNA. Pink and blue boxes denote two fusion 580 

partners. The tumor samples without fusions (fusion-) are TCGA-IE-A4EI-01A-11R-A24X-07 581 

and TCGA-IW-A3M4-01A-11R-A21T-07, the normal samples are SRX636240 and SRX640265 582 

respectively. d, Quantitative PCR showing the presence of ZDHHC17-LNCKB.11978 fusion 583 

transcript in A549 cells. e, Tumor growth curves after subcutaneous injection from week 1 to 584 

week 6. Error bars are standard deviations. P value is calculated by two-sided Student’s t-test. f, 585 

Pictures of 10 tumors and tumor weights at week 7 after subcutaneous injection. Error bars are 586 

standard deviations. P value is calculated by two-sided Student’s t-test. 587 
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