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INTRODUCTION

Substantial global efforts have been focused on the large-scale structural char-

acterization of proteomes (see http://www.isgo.org/home/index.php and Refs. 1–5).

However, the high-throughput approaches of ‘‘structural genomics’’ (SG)

consortia typically result in high-resolution molecular models for only 5%

to 10% of selected protein targets.4,6,7 Various strategies have been proposed

to increase this rate of success, such as obtaining one representative structure

per protein family and working with multiple orthologues.8–12 In order to

realize the potential of these approaches, it is necessary to rank proteins

according to their propensity to make good progress through the structure

determination pipeline. Crystallization is a bottleneck in structure determination

so one approach is to estimate the likelihood of obtaining diffraction-quality

crystals as part of the target selection process.13–16

Studies of the relationship between protein sequence properties (hydro-

phobicity, charge, etc.) and progression through the structure determina-

tion pipeline have suggested features relevant to predicting crystallization

propensity.16–18 Several predictors have been developed in this area

including the OB-Score,19 XtalPred,20 ParCrys,21 and PXS.16 These

methods draw on a variety of computational techniques, training data,

and protein sequence properties. While some studies have examined the

biophysical mechanisms underlying protein sequence determinants of

crystallization propensity,16,18,22 the work presented here focuses on

predicting protein targets’ propensity to progress to the stage of diffrac-

tion-quality crystals.

This paper describes two new neural networks (XANNpred-PDB and

XANNpred-SG) that predict protein propensity to yield diffraction-quality

crystals. In addition, a sliding window of XANNpred scores along the
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ABSTRACT

Production of diffracting crystals is a

critical step in determining the three-

dimensional structure of a protein by

X-ray crystallography. Computational

techniques to rank proteins by their pro-

pensity to yield diffraction-quality crystals

can improve efficiency in obtaining struc-

tural data by guiding both protein selec-

tion and construct design. XANNpred

comprises a pair of artificial neural net-

works that each predict the propensity of a

selected protein sequence to produce dif-

fraction-quality crystals by current struc-

tural biology techniques. Blind tests show

XANNpred has accuracy and Matthews

correlation values ranging from 75% to

81% and 0.50 to 0.63 respectively; values

of area under the receiver operator charac-

teristic (ROC) curve range from 0.81 to

0.88. On blind test data XANNpred out-

performs the other available algorithms

XtalPred, PXS, OB-Score, and ParCrys.

XANNpred also guides construct design by

presenting graphs of predicted propensity

for diffraction-quality crystals against resi-

due sequence position. The XANNpred-SG

algorithm is likely to be most useful to tar-

get selection in structural genomics con-

sortia, while the XANNpred-PDB algo-

rithm is more suited to the general struc-

tural biology community. XANNpred

predictions that include sliding window

graphs are freely available from http://

www.compbio.dundee.ac.uk/xannpred
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length of individual protein sequences provides a guide

for selection of regions most likely to succeed in struc-

tural studies.

METHODS

Datasets summary

The selection of training and testing data is a critical

stage in the development and evaluation of a predictive

algorithm. Selection of inappropriate data can lead to

unrealistic estimates of an algorithm’s performance, and

may bias the algorithm toward only a subset of possible

problems. Therefore, rigorous procedures were applied in

selecting datasets for the development and testing of the

XANNpred predictors. These datasets are detailed in Sup-

porting Information, Figure S1, Table S1 and described

in the sections below. In summary, data to represent pro-

teins that produce diffraction-quality crystals were taken

from either PDB23 or PepcDB (http://pepcdb.pdb.org/

index.html) and these were respectively taken as the posi-

tive training (and testing) sets for the XANNpred-PDB

and XANNpred-SG predictors. Negative data for both

XANNpred-PDB and XANNpred-SG were protein targets

where work was stopped before obtaining crystals as

reported in PepcDB. PepcDB provides details of con-

struct sequences and reasons for stopping work, while

the PDB is less influenced than PepcDB by the sequence-

based target selection criteria of Structural Genomics

consortia. Therefore PDB and PepcDB provide comple-

mentary data sources. In order to produce representative

datasets for algorithm development and evaluation, a

stringent redundancy filtering procedure was applied.

This procedure aims to generate a set of sequence and

structurally dissimilar proteins, in order to minimize bias

and to control for overlap in the training and blind test

datasets.24 Blind test datasets were not used in any stage

of algorithm development, as an essential condition for

fair assessment of predictive performance.24

Production of training and blind test
datasets

The protocols to generate datasets for XANNpred-

PDB were as follows. In order to obtain representatives

of diffraction-quality crystals, the 1538 SCOP 1.69

superfamily representatives25,26 were searched against

the PDB with BLASTP,27 to identify the top-scoring

PDB sequence for each superfamily representative. After

exclusion of NMR structures, this gave the PDB_TOP

dataset (1180 sequences) which was structural super-

family non-redundant. To provide sequence redundancy

filtering PDB_TOP was combined with SEG28 and

helixfilt (D. Jones, personal communication) filtered

sequences from UniRef5029 to give the database

PDB_TOP_U50. Searching PDB_TOP against

PDB_TOP_U50 with PSIBLAST27 followed by single-

linkage clustering according to published thresholds30

gave the PDB_CLUS dataset. Further clustering with

AMPS31 SD score threshold of 5 and exclusion of

structures with resolution >3Å provided a second,

stringent sequence redundancy filtering step to generate

the PDB_POOL dataset of 888 nonredundant sequen-

ces. Sequences where work had been stopped before

crystals were obtained were represented by PepcDB

(http://pepcdb.pdb.org/index.html) trial sequences with

Status ‘‘work stopped’’ and Status History including

‘‘Cloned’’ but without an indicator of crystallisation

(e.g. ‘‘Crystals’’). Sequences were excluded if they were

DNA, or annotated as ‘‘test target,’’ or where the stop-

Details included ‘‘duplicate target found,’’ thus generat-

ing PEP_WS. A PSIBLAST filtering step of PEP_WS

against a database of the whole PDB embedded in

UniRef50 was performed using published thresholds.30

This filtering step was implemented because structural

genomics consortia deselect targets that match to

solved structures.9 Therefore some of the ‘‘work

stopped’’ sequences are associated with solved structures

and so should be excluded from the negative dataset.

The remaining sequences were clustered with a PSI-

BLAST all-versus-all search as described for

PDB_POOL, to generate PEP_CLUS as a first step in

removing sequence redundancy. A HMMER search32,33

of PEP_CLUS against Pfam was applied to select a rep-

resentative PEP_CLUS sequence for each of the 807

Pfam profiles matched, to generate PEP_PFAM (E-

value threshold 0.1, topscoring match taken). Redun-

dancy filtering with HMMER/Pfam is complementary

to the PSIBLAST-based filtering and provides for more

sensitive detection of evolutionary relationships. As a

final, stringent sequence redundancy filtering step

PEP_PFAM was clustered with AMPS31 at SD score

threshold of 5 to produce a set of 747 nonredundant

sequences (PEP_NEG). The above redundancy filtering

approaches, involving three different algorithms,

represents a highly stringent protocol that controls for

overlap in the training and blind test datasets as

prerequisite for proper evaluation of the XANNpred

algorithms.

For the XANNpred-SG algorithm a second positive

dataset was taken from PepcDB (http://pepcdb.pdb.org/

index.html) trial sequences with Status History including

‘‘diffraction-quality crystals’’ (PEP_DIFF, 36,156 sequen-

ces). PEP_DIFF was processed according to the protocol

described in generating PEP_NEG but omitting the PDB

filtering step, to produce a set of 521 nonredundant

sequences (PEP_POS). Negative data for the XANNpred-

SG algorithm was taken from the PEP_NEG dataset.

In order to generate balanced datasets for training and

testing the XANNpred-PDB algorithm, 747 sequences

(PDB_POS) were randomly chosen from PDB_POOL to

balance with the 747 sequences in PEP_NEG. A random
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selection of 75 sequences from each of PDB_POS and

PEP_NEG were set aside as the blind test set (TEST-

PDB, 150 sequences). The remaining 672 sequences from

each of PDB_POS and PEP_NEG (POS_TRAIN-PDB

and NEG_TRAIN-PDB respectively) were combined to

form the XANNpred-PDB training dataset (TRAIN-PDB,

1344 sequences), which was input for 10-fold cross-vali-

dation. Balanced datasets for training and testing the

XANNpred-SG algorithm were generated from PEP_POS

and PEP_NEG in a similar fashion (details given in

Supp. Info.).

Production of hybrid blind test datasets

Datasets were constructed in order to investigate the

algorithm robustness to predicting over proteins from

databases that were not used in algorithm development.

These datasets therefore offer a more stringent evaluation

of the algorithms because they aim to control for bias in-

herent across individual databases. XANNpred-PDB was

initially developed and tested with PDB sequences to rep-

resent diffraction-quality crystals; therefore the

XANNpred-PDB hybrid blind test dataset took sequences

from PepcDB in place of the PDB sequences. Conversely,

XANNpred-SG was developed and tested with PepcDB

sequences, and so the XANNpred-SG hybrid blind test

dataset took PDB sequences as representatives of diffrac-

tion-quality crystals in place of PepcDB sequences. Strin-

gent filtering procedures were applied to the hybrid test

datasets, in order to control for overlap with the data

used in algorithm development.

To generate a hybrid blind test set for XANNpred-

PDB, sequences from the ‘‘diffraction-quality’’ portion of

TEST-SG (POS_TEST-SG, 53 sequences) were searched

against the XANNpred-PDB training data (TRAIN-PDB)

with BLASTP.27 Matches were assigned with published

thresholds,30 and matching sequences were excluded to

give POS_TEST-SG_FILT (44 sequences). A random

selection of 44 sequences from the ‘‘work stopped’’ por-

tion of TEST-PDB produced NEG_TEST-PDB44. TEST-

PDB was already a blind test dataset for XANNpred-PDB

and therefore NEG_TEST-PDB44 did not require any

further filtering to eliminate overlap with XANNpred-

PDB training data. NEG_TEST-PDB44 was combined

with POS_TEST-SG_FILT to form the HTEST-PDB data-

set (88 sequences). A similar approach was applied to

generate a hybrid blind test set for XANNpred-SG

(details given in Supp. Info.).

Features

The 428 features employed by XANNpred were: 20

amino acid and 400 dipeptide frequencies, isoelectric

point, averaged GES hydrophobicity,34 fraction of strand

and helix residues predicted by Jpred,35 fraction of

RONN disorder,36 sequence length, fraction of

TMHMM2 transmembrane regions,37 and molecular

weight. The features and their scaled values are summar-

ized in Supporting Information, Table S2. Feature selec-

tion was based on our expectations of sequence-derived

properties that may be informative, according to previous

studies.9,13,17,18,38–40

The neural network

Two feed-forward artificial neural networks were cre-

ated within the SNNS package41 named XANNpred-

PDB and XANNpred-SG to reflect the different datasets

employed in the development of these algorithms. The

networks each had 428 input nodes, a single hidden

layer with 100 nodes and 1 output node. The number

of hidden nodes was not optimized, however an archi-

tecture with 100 hidden nodes was found to provide

good performance in the JPRED algorithm.35

XANNpred-PDB and XANNpred-SG had respective

optima for the number of training cycles at 2100 and

1600, performed using back-propagation with a learning

rate of 0.01 and an ‘‘early stopping’’ protocol.24

Sequences from the positive and negative training sets

had target outputs of 1 and 0, respectively. From cross-

validation over the training data, the XANNpred-PDB/

XANNpred-SG Area under the Receiver Operator Char-

acteristic (AROC) curves were 0.784/0.823, respectively.

The cutoffs for XANNpred-PDB and XANNpred-SG Ar-

tificial Neural Network output values were 0.517 and

0.418, respectively; and were chosen to maximize Mat-

thews correlation coefficient (respective values 0.462,

0.525) over the training data.

Sliding window system

In order to study the utility of XANNpred in identi-

fying regions of a protein more likely to produce dif-

fraction-quality crystals, the algorithm was applied to a

sliding window of 61 amino acids rather than the

entire protein sequence and the network outputs

reported for the central amino acid. The window size

was chosen to resemble the length of a relatively small

domain, but was not optimised. The whole protein

sequence was analyzed by relevant external programs

(e.g. Jpred,35 TMHMM237) and a sliding window of

61 residues was passed over the output from these

programs. However, windowed values for amino acid

and dipeptide frequencies as well as the pI, hydropho-

bicity, length and molecular weight features were calcu-

lated directly over the 61-residue window sequences.

Feature values associated with each window position in

the sequence were taken as input to the XANNpred-

PDB artificial neural network. By this process a

XANNpred score was assigned to each window position

in the sequence. A graph of the XANNpred sliding

XANNpred: Protein Crystallization Predictor
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window was visually inspected for each of the proteins

in the NEG_TEST-PDB dataset.

RESULTS AND DISCUSSION

Table I summarizes the performance of six algorithms

(XANNpred-PDB, XANNpred-SG, XtalPred, ParCrys, OB-

Score, PXS) on the blind test datasets. XANNpred-PDB ac-

curacy and Matthews correlation values on the TEST-PDB

dataset were 81.3% and 0.63, respectively. Figure 1 shows

Receiver Operator Characteristic (ROC) curves for relevant

algorithms predictions on the TEST-PDB dataset which

was not used in feature selection, machine learning or

any other aspect of XANNpred-PDB development.

XANNpred-PDB had a significantly larger area under the

ROC curve than the next best algorithm XtalPred (two-

tailed P � 0.0062). The maximum possible XtalPred accu-

racy and Matthews correlation on TEST-PDB were 68.0%

and 0.37, respectively. The procedure to convert XtalPred

classes into scores for ROC analysis is detailed in Support-

ing Information, section 3. The XANNpred-SG algorithm

gave accuracy and Matthews correlation values of 75.5%

and 0.52, respectively on the blind test dataset TEST-SG.

Figure 2 shows ROC curves for predictions on TEST-SG;

XANNpred-SG had a slightly larger area under the ROC

curve than XtalPred. The maximum possible XtalPred ac-

curacy and Matthews correlation on TEST-SG were 73.6%

and 0.47, respectively.

Key data for training XtalPred20 and ParCrys21 were

taken from SG consortia, so it is possible that XtalPred

and ParCrys are optimized for SG datasets. It is routine

for SG consortia to apply sequence-based selection con-

straints on their targets; these constraints influence the

composition of databases such as PepcDB.8,9,43 Consist-

ent with the idea that XtalPred and ParCrys are opti-

mized for prediction over SG datasets, both XtalPred and

ParCrys had larger areas under their ROC curve on

TEST-SG compared with TEST-PDB; while these differ-

ences were not significant, the trend is suggestive. More-

over, XANNpred-PDB significantly outperforms XtalPred

on TEST-PDB (two-tailed P � 0.0062), while

XANNpred-SG and XtalPred have similar performance

on TEST-SG (as discussed in the preceding paragraph).

Further investigations were made to determine whether

XANNpred-PDB and XANNpred-SG predictions were

respectively optimized to predict over the PDB and SG

(PepcDB) datasets. For this purpose, hybrid blind test

datasets were generated with positive (diffraction quality

crystals) examples taken from an alternative source data-

base (i.e. PDB/PepcDB). Therefore XANNpred-SG pre-

Table I
Summary of Performance on Blind Test Datasets

Algorithm

Dataset

TEST-PDB TEST-SG HTEST-PDB HTEST-SG

AROC MCC AROC MCC AROC MCC AROC MCC

XANNpred-PDB 0.854 0.63 —a —a 0.810 0.50 —a —a

XANNpred-SG —a —a 0.836 0.52 —a —a 0.877 0.58
XtalPredb 0.707 0.37 (0.29) 0.791 0.47 (0.47) 0.770 0.48 (0.48) 0.701 0.34 (0.27)
OB-Scoreb 0.612 0.23 (0.17) 0.658 0.37 (0.31) 0.644 0.32 (0.30) 0.613 0.24 (0.19)
ParCrysb 0.541 0.17 (0.12) 0.655 0.36 (0.25) 0.634 0.32 (0.21) 0.562 0.23 (0.13)
PXSb 0.574 0.21 (0.17) 0.522 0.13 (0.02) 0.599 0.30 (0.05) 0.416 0 (20.02)

aThese values may be inflated due to overlap with training data and therefore are omitted from the table. For completeness, respective AROC/MCC values for

XANNpred-SG on TEST-PDB are 0.917/0.66; on HTEST-PDB 0.880/0.62. Respective AROC/MCC values for XANNpred-PDB on TEST-SG are 0.822/0.47; on HTEST-

SG 0.857/0.65.
bMatthews correlation values given for XtalPred, OB-Score, ParCrys, and PXS are maximum possible values. Matthews correlation values in brackets were determined

with predictive thresholds quoted in the literature for OB-Score and ParCrys; bracketed values for XtalPred reflect a threshold of 3; bracketed values for PXS reflect a

threshold of 0.2.

Figure 1
ROC curves for XANNpred-PDB, XtalPred,20 OB-Score,19 PXS,16 and

ParCrys21 on the blind test dataset TEST-PDB. XANNpred-PDB

significantly outperforms the next best algorithm XtalPred (two-tailed

P � 0.0062). Areas under the ROC curves are given in the bottom

right-hand corner. This figure was generated using the R package.42

I.M. Overton et al.
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dictions were generated for a hybrid blind test dataset

where positive examples were taken from the PDB

(HTEST-SG); XANNpred-PDB predictions were gener-

ated for a hybrid blind test dataset where positive exam-

ples were taken from PepcDB (HTEST-PDB). A summary

of all datasets is given in Supporting Information, Table

S1. Both HTEST-SG and HTEST-PDB took negative

examples from PepcDB and were controlled to be inde-

pendent of the relevant training datasets. See Methods

for more detailed discussion of the hybrid blind test

datasets. Supporting Information, Figures S2 and S3

show the algorithms’ performance on the HTEST-PDB

and HTEST-SG datasets respectively. The results for

XANNpred-SG on HTEST-SG were similar to those

obtained on TEST-SG (DAROC two-tailed P � 0.43); for

XANNpred-PDB the results on HTEST-PDB were similar

to those obtained over TEST-PDB (DAROC two-tailed P

� 0.43). Therefore both XANNpred-SG and XANNpred-

PDB appeared robust to predicting on blind test datasets

from either PDB or PepcDB. As shown in Table I

XANNpred-PDB significantly outperformed XtalPred on

TEST-PDB (DAROC two-tailed P � 0.0062) while similar

performance was found on HTEST-PDB (DAROC two-

tailed P � 0.56). Furthermore, XANNpred-SG signifi-

cantly outperformed XtalPred on HTEST-SG (DAROC

two-tailed P � 0.007), with similar performance on

TEST-SG (DAROC two-tailed P � 0.45). Therefore both

XANNpred-PDB and XANNpred-SG significantly outper-

formed XtalPred on data drawn from the PDB (TEST-

PDB, HTEST-SG), while the XANNpred algorithms gave

similar results to XtalPred on SG data (TEST-SG,

HTEST-PDB). The PDB contains a number of membrane

proteins, which are frequently excluded from structural

genomics efforts and so expected to be under-represented

in the PepcDB database. However the POS_TEST-PDB

dataset only had one sequence (1.3%) with predicted

transmembrane regions. Therefore the expected enrich-

ment of membrane proteins in the PDB (when compared

with PepcDB) is of minor importance in explaining the

significantly better performance of both XANNpred-PDB

and XANNpred-SG over XtalPred on PDB-based data-

sets. These results are consistent with the knowledge that

XtalPred was trained on SG data.20 The analysis pre-

sented in this article makes a generous assessment of

XtalPred performance, because the best possible values

for XtalPred predictions were taken over the datasets.

Also, XtalPred predictive power may be inflated due to

the potential for overlap between these test data and the

XtalPred training data. In summary, both XANNpred

algorithms were robust to predicting over data from ei-

ther PDB or SG consortia (PepcDB), and outperformed

the other algorithms examined.

The OB-Score and ParCrys AROC on TEST-PDB were

0.612 and 0.541 respectively, although this difference was

not significant (P � 0.28). Also, OB-Score and ParCrys

had similar AROC on TEST-SG (0.658, 0.655 respec-

tively). In earlier work, ParCrys significantly outper-

formed the OB-Score over blind test datasets taken from

TargetDB.21 These data suggest that the OB-Score may

be more robust to differences in database composition

than ParCrys. One explanation for these findings may be

that while ParCrys has a more sophisticated statistical

model and additional features compared with the OB-

Score,21 selected ParCrys features reflect the TargetDB44

composition when ParCrys was trained.

The PXS algorithm performed relatively poorly over

the data examined, which suggests that surface entropy

may not be an overriding factor for the successful pro-

gression of selected targets to crystal structures. It is im-

portant to note that PXS was developed to predict the

crystallization of ‘‘well behaved’’ soluble proteins,16

which is a different aim to the one that examined here;

namely to predict the progression of a protein through

the structure determination pipeline to the stage of dif-

fraction-quality crystals. The XANNpred algorithms were

developed to facilitate prioritization of proteins with the

particular balance of properties required for success at all

of the pipeline stages necessary for the production of dif-

fracting crystals.

In order to investigate the variation of XANNpred

score along the length of individual protein sequences, a

sliding window system was implemented (methods). This

approach is anticipated to have applications in construct

design. Figure 3 shows a XANNpred-PDB score plot for

the ‘‘HVA22-like protein a’’ from Arabidopsis thaliana

(Q9S7V4), which was part of the NEG_TEST-PDB data-

set. ‘‘HVA22-like protein a’’ was a selected structural

Figure 2
ROC curves for XANNpred-SG, XtalPred,20 OB-Score,19 ParCrys,21

and PXS16 on the blind test dataset TEST-SG. Areas under the ROC

curves are given in the bottom right-hand corner. This figure was

generated using the R package.42
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genomics target annotated as ‘‘Work Stopped’’ in the

PepcDB database (http://pepcdb.pdb.org/index.html). It

is induced in response to stress (cold, drought, salt) and

annotated with the Pfam domain PF03134.33,45 The

proteins in this Pfam family include tumor suppressors

deleted in severe human familial adenomatous polyop-

sis.46 The region of ‘‘HVA22-like protein a’’ that matched

to the Pfam domain PF03134 had very low XANNpred

score; however, the remainder of the protein was very

high-scoring and so predicted to be relatively amenable

to crystallization. This example provides indication of

how the XANNpred sliding window plot may be helpful

in construct design. Further experimental work would be

required to validate this approach, which is beyond the

scope of this study.

CONCLUSIONS

XANNpred is a pair of artificial neural networks that may

be used in structural biology protein target selection. From

analysis of several nonredundant blind test datasets,

XANNpred was found to outperform the other available algo-

rithms in predicting the successful progression of a protein

target through the experimental processes required to produce

diffraction-quality protein crystals. However, XANNpred is

not anticipated to be strongly predictive of transmembrane

protein crystallization propensity. High XANNpred-SG scores

predict that the protein would yield diffraction-quality crystals

in a structural genomics pipeline. Therefore, XANNpred-SG

is suggested to be most applicable to proteins that have passed

structural genomics consortia selection criteria, and that are

to be approached by ‘‘high-throughput’’ laboratory methods.

The XANNpred-PDB scores predict crystallization success for

the range of methodologies taken in producing PDB struc-

tures, including traditional laboratory methods; XANNpred-

PDB is therefore expected to be more relevant to the structural

biology community as a whole. XANNpred predictions,

including sliding window graphs are freely available from

http://www.compbio.dundee.ac.uk/xannpred. We would wel-

come suggestions of genomes or other large sequence sets for

analysis by XANNpred.
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