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Abstract: The natural history of hepatitis C virus (HCV) infection is determined by a 

complex interplay between host genetic, immunological and viral factors. This review 

highlights genes involved in innate and adaptive immune responses associated with 

different outcomes of HCV infection. For example, an association of HCV clearance with 

certain HLA alleles has been demonstrated. The mechanisms responsible for these 

associations have been linked to specific T cell responses for some particular alleles (e.g., 

HLA-B27). Genetic associations involved in T cell regulation and function further 

underline the role of the adaptive immune response in the natural history of HCV infection. 

In addition, some genes involved in innate NK cell responses demonstrate the complex 

interplay between components of the immune system necessary for a successful host 

response to HCV infection. 
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1. Introduction 

Hepatitis C virus (HCV) is an RNA flavivirus currently infecting approx. 170 million people 

worldwide [1]. Acute HCV infection is asymptomatic in the majority of patients, but persists in about 

70% of them. These patients with persistent liver inflammation are at risk of disease progression to 
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liver fibrosis, liver cirrhosis and hepatocellular carcinoma (HCC) with potentially fatal outcomes. 

Currently, there is no effective vaccine against HCV available and antiviral treatment options have 

limited efficacy, especially in patients infected with HCV genotype 1 or 4, and have potentially severe 

side-effects. Thus, the understanding of the mechanisms that determine the natural course of HCV 

infection is of pivotal importance. In this review, the host genetic factors influencing the outcome 

(viral clearance vs. viral persistence) of HCV infection will be discussed. It is interesting to note that 

the genetic associations that have been identified in different cohorts worldwide pertain to genes that 

are prominently involved in the host antiviral immune response (depicted in Figure 1). 

The host immune response to viral infections is characterized by various independent components. 

Next to physical barriers, innate immunity comprises soluble components (e.g., complement factors, 

type I interferons) and cellular components (e.g., granulocytes, macrophages, dendritic cells, natural 

killer (NK) cells). Adaptive immunity includes humoral components (antibodies produced by B cells) 

and, especially important in viral infections, cellular immune responses (CD4+ and CD8+ T cells). 

Studies in humans and animal models of HCV infection have demonstrated that HCV elicits innate 

immune responses early after infection. However, the virus can persist in the face of the innate 

immune response. Indeed, viral clearance occurs only in the presence of antiviral CD4+ and CD8+ T 

cell responses [1, 2]. A successful T cell response requires the presentation of viral peptides bound to 

HLA molecules on the surface of antigen-presenting cells to T cells bearing a reactive T cell receptor 

(TCR). Importantly, HLA alleles are extremely variable in the human population and several HLA 

types have been identified that are associated with different outcomes of HCV infection, the most 

prominent one being the protective HLA-B27 allele.  

In chronic HCV infection, the antiviral T cell response is typically dysfunctional. This is probably 

due to multiple coexisting mechanisms (reviewed in [3]) that include the presence and activity of 

regulatory T cells and an immunosuppressive cytokine milieu (IL-10). Studies that report associations 

between different polymorphisms in the IL-10 gene and IL-10 promoter regions support a role of the 

genetic background in modulating the function of regulatory cell subsets in HCV infection. In 

addition, alterations in T cell differentiation and function that may contribute to viral persistence have 

been demonstrated in chronic HCV infection. Of note, several genes involved in T cell differentiation 

have also been linked to different outcomes of HCV infection.  

Here we will give an overview about the genetic factors and their impact on the natural course of 

HCV infection. The association of several genes with treatment response has been reviewed elsewhere 

[4] and will not be discussed here. It is important to bear in mind that most genetic association studies 

have been performed in different cohorts using different methodological approaches. Also, studies 

with relatively small patient cohorts may be unable to determine the role of single polymorphisms in 

the outcome of HCV infection due to the lack of statistical power. In addition, only few genetic studies 

addressing the natural history of HCV infection have been performed in which the sequence of the 

initial viral inoculum was known. Hence, viral factors that affect the outcome often cannot be 

excluded. Genetic association studies that are not supported by experimental evidence have thus to be 

interpreted with caution. 
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Figure 1. Schematic illustration of the components involved in the immune system against 

HCV based on evidence from genetic association studies. 

 
 

2. Review  

2.1. Genes involved in innate immunity 

Virus infection can elicit an immediate antiviral response in the infected cell, including the 

activation of the interferon (IFN) system [5]. IFNs induce several genes that encode for proteins with 

antiviral activity. Interestingly, Knapp et al. identified polymorphisms in IFN-induced genes, such as 

myxovirus resistance-1 (MxA), 2-5-oligoadenylate synthetase 1 (OAS-1) and double-stranded RNA-

dependent protein kinase (PKR), which are associated with self-limiting infection [6]. While MxA 

polymorphisms were not associated with the outcome of HCV infection in another study [7], single 

nucleotide polymorphisms in the promoter region of the IFN regulatory factor-1 (IRF-1) were 

associated with protection from viral persistence [7]. These results indicate that differences in genes 

involved in early innate immunity responses may affect the natural course of HCV infection.  

Currently, limited information is available regarding the role of host genetic factors involved in 

cellular innate immune responses by dendritic cells or macrophages. These cells present antigen to T 

cells and may sense viral infection by pattern-recognition receptors, consequently providing 

coregulatory signals for virus-specific T cells. A role of these cell types in the immunobiology of HCV 

infection can be assumed from several experimental studies (reviewed in [8]). Unfortunately, to our 

knowledge, no epidemiological studies addressing genetic factors involved in macrophage or dendritic 

cell function have been published thus far. 
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NK cells are lymphoid cells with the ability to exert antiviral functions through secretion of 

antiviral cytokines or lysis of infected cells. The function of NK cells is regulated by several inhibitory 

and activating NK receptors. Inhibitory receptors of NK cells that interact with target cells are of 

particular importance to avoid NK cell cytotoxicity. Importantly, killer cell immunoglobulin-like 

receptors (KIR) expressed by NK cells interact with certain HLA class I molecules expressed by target 

cells (Table 1). Thus, it can be hypothesized that a genetic background that favors activating NK cell 

signals due to weaker inhibitory interactions of KIR receptors and HLA class I ligands or the 

expression of activating KIR-HLA pairs might support HCV clearance [9].  

Table 1. KIR receptors and their ligands (modified from [9]). 

KIR gene   Signalling  Ligand 

2DL1   Inhibiting HLA‐C2 

2DL2  Inhibiting HLA‐C1

2DL3   Inhibiting HLA‐C1

2DL4   Activating HLA‐G

2DL5   Inhibiting not known

3DL1  Inhibiting HLA‐Bw4

3DL2  Inhibiting HLA‐A3, HLA‐A11

2DS1  Activating HLA‐C2 

2DS2   Activating HLA‐C1

2DS3  Activating not known

2DS4  Activating not known

2DS5  Activating not known

3DS1  Activating HLA‐Bw4

3DL3  not known not known

 

The majority of identified KIR ligands is composed of HLA-C alleles (Table 1). These alleles can 

be grouped depending on their binding characteristics into HLA-C1 and HLA-C2. Importantly, the 

strongest inhibitory signals of KIR-HLA pairs have been observed for HLA-C2 ligands. Presence of 

two HLA-C2 alleles is therefore likely to result in stronger inhibitory NK cell signals since this 

genomic background excludes interactions with HLA-C1 alleles. Interestingly, it has been shown that 

HLA-C2C2 alleles are enriched in patients with chronic HCV infection, while HLA-C1C1 alleles are 

associated with viral clearance [10, 11]. This suggests that genes regulating the activation of NK cells 

may have an impact on the outcome of HCV infection. In line with this, HLA-Cw*01 and HLA-Cw*3 

(HLA-C1 group) were found to be associated with viral clearance while HLA-Cw*04 (HLA-C2 

group) was associated with viral persistence [11-14]. However, recently, HLA-Cw*05 (HLA-C2 

group) was found to be protective [15]. A critical role for NK cells in HCV infection is further 

supported by the finding that NK cells are inhibited by the HCV envelope glycoprotein E2, indicating 

that evasion of antiviral NK cell responses might be advantageous to the virus [16, 17]. However, this 

view is challenged by experimental evidence from an in vitro cell culture system, in which there was 

no inhibition of NK cells by HCV virions [18]. Therefore, the current understanding that high-dose 

infection including high levels of E2 might be able to inhibit NK cell function and result in viral 
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persistence has to be reevaluated. Nevertheless, there is some evidence that clearance of low-dose 

infection may be related to NK cell responses. Indeed, expression of KIR2DL3 and ligand HLA-C1, 

that generate only weak inhibitory signals, were found to confer protection in a cohort with low-dose 

exposure to infection [10, 11]. Another study identified a decrease of KIR2DL2 (intermediate 

inhibitory signal when engaged by HLA-C1) and KIR2DS2 accompanied by an increase of the 

activating receptor KIR2DS5 (unknown ligand) in patients who cleared the virus [19]. In the same 

study, an increased frequency of the activating receptor KIR2DS3 (unknown ligand) was found to be 

associated with high levels of liver transaminases in patients with chronic HCV infection. In addition, 

the presence of two copies of the activating receptor-ligand pair KIR3DS1 and HLA-Bw4 was 

markedly enriched in patients with chronic HCV that had progressed to cirrhosis. Interestingly, these 

alleles were protective against HCC development in a Spanish cohort of patients [20]. These studies 

indicate that combinations of KIR and HLA class I molecules may result in a low activation of NK 

cells and may thus be beneficial in the initial phase of low-dose-infection. However, if the innate 

immune response is overwhelmed (as it might generally be in high-dose infection), activating KIR-

HLA interactions may result in increased NK cell activity with increased liver damage and progression 

to liver fibrosis or cirrhosis.  

Next to receptor-ligand interactions, the function of NK cells can be inhibited by transforming 

growth factor (TGF)-β [21]. Interestingly, polymorphisms in the promoter region of the TGF-β1 gene 

that result in a reduced expression of TGF-β1 have been associated with HCV clearance [22, 23]. 

These findings support the notion that NK cells that are not inhibited by TGF-β1 may be protective in 

HCV infection. This is in line with the finding that polymorphisms associated with higher levels of 

TGF-β1 production are associated with viral persistence [24, 25]. In addition, TGF-β1 gene 

polymorphisms have been found to influence the viral load in chronic HCV infection [26]. However, 

TGF-β1 is likely to have several other, non-NK cell related effects, for example a pivotal role in 

fibrogenesis [27]. Indeed, polymorphisms associated with high production of TGF-β1 are a risk factor 

for progressive hepatic fibrosis [24].  

In sum, genes involved in innate immune responses are associated with different outcomes of HCV 

infection. Particularly genes involved in balancing the NK cell activation threshold may play an 

important role in HCV natural history.  

2.2. Genes involved in adaptive immunity 

2.2.1. HLA class I 

CD8+ T cell responses play a pivotal role in the outcome in HCV infection. Viral clearance is 

associated temporally with the presence of polyfunctional, multispecific CD8+ T cell responses, while 

the absence or impairment of CD8+ T cell responses results in viral persistence. CD8+ T cell 

responses depend on the interaction of virus-specific TCRs with viral peptides bound to HLA class I 

molecules presented by antigen-presenting cells (e.g., virus-infected hepatocytes). The HLA locus 

displays a high genetic variability in humans. One important distinguishing feature between the 

multitude of HLA alleles are polymorphisms in the peptide binding region that determine which 

peptides can be bound and presented to T cells. Thus, different HLA alleles are able to bind and 

present different viral epitopes, likely influencing both the quantity and the quality of the antiviral T 
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cell response. While a high number of potential epitopes presented by an HLA allele may be 

advantageous, viral escape mutations may occur that evade the immune response in several epitopes 

and abrogate this protective effect. However, since viral mutations confer a varying degree of 

replicative fitness cost to the virus, HLA alleles able to present viral epitopes that cannot mutate easily 

are likely to be beneficial to the host.  

Several associations between HLA class I alleles and the natural course of HCV infection have been 

described in a large number of studies worldwide (Table 2). These studies varied significantly in 

design (e.g., patients with chronic HCV vs. controls, viral clearance vs. controls, outcome after single-

source infection) and cohort characteristics (e.g., ethnic background, route of infection, gender, age) 

which may account for some contradictory findings. However, there is general agreement that certain 

HLA class I alleles are associated with protection. For example, in a large study by Thio et al. in 

Caucasians and black Americans [13], HLA-A1101 and HLA-B57 were found significantly more often 

in 231 individuals with well-documented HCV clearance compared to 444 matched chronically 

infected patients. HLA-B57 was also found to be protective in a West African population [28]. Some 

HCV-specific CD8+ T cell epitopes have been identified that are restricted by HLA-B57 [29, 30], 

however, the mechanisms that contribute to protection have not been identified thus far. In an analysis 

of Irish women who had been inoculated from a single source during rhesus prophylaxis, McKiernan 

et al. identified HLA-A03 and HLA-B27 as alleles protecting from chronic HCV infection [12], of 

which HLA-B27 showed the strongest association with protection (OR = 7.99). Interestingly, the 

protective role of HLA-B27 could be linked to a CD8+ T cell epitope that was targeted by the majority 

of individuals with resolution of infection [31]. Importantly, viral escape mutations in the HLA-B27 

binding anchors of this epitope result in a profound viral fitness cost and thus do not occur [32]. 

Hence, viral escape mutations occur in non-anchor binding sites, but a cluster of mutations is required 

to escape T cell recognition. These data reveal a protective role for HLA-B27 in HCV infection due to 

the generation of CD8+ T cell responses against a single epitope in which escape mutations are 

difficult for the virus to achieve. However, if viral escape mutations are preexistent (e.g., due to 

sequence variations in other viral genotypes or selection pressure on circulating strains in the 

population), the protective effect of HLA-B27 may be lost. It is possible that any observed HLA 

association may be due to linkage disequilibrium with other genes in proximity to the HLA locus that 

may influence the outcome of HCV infection. In the case of HLA-B27, however, the observation that 

the association with protection can be linked to a specific CD8+ T cell epitope derived from HCV 

genotype 1 but not genotype 3 (Neumann-Haefelin et al., in revision) argues against a confounding 

role of linkage disequilibrium. The data regarding associations of other HLA class I alleles and HCV 

infection is less clear: HLA-B35 was found to be a protective allele in a Tunisian study population 

[33], but was associated with viral persistence in a Korean study [34]. A potential protective role for 

HLA-B8 was seen in a Saudi patient cohort [35] and HLA-B8 was underrepresented in a large cohort 

of patients with chronic HCV infection who received a liver transplant [36], however, HLA-B8 was 

clearly associated with viral persistence in the Irish study population [12]. This discrepancy may be 

due to preexistent escape mutations in the immunodominant HLA-B8 restricted T cell response in the 

Irish cohort [37]. In addition, several other HLA class I alleles have been associated with viral 

persistence (Table 2).  
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Table 2. Associations between HLA class I alleles and HCV outcome. 

HLA‐Type  Cohort  Association / Virological Effect  Reference 

HLA‐A03  Irish  Viral Clearance  McKiernan 2004 [12] 

HLA‐A03  American  Viral Clearance in Blacks  Wang 2009 [15] 

HLA‐A03  Korean  Persistence  Yoon 2005 [34] 

HLA‐A1101  American  Viral Clearance  Thio 2002 [13] 

HLA‐A19  Saudi  Persistence  Hadhoud 2003 [35] 

HLA‐A2  American  Clearance in Blacks, Persistence in Whites  Wang 2009 [15] 

HLA‐A2301  American  Persistence  Thio 2002 [13] 

HLA‐A28  Egyptian  Persistence  Zekri 2005 [38] 

HLA‐A29  Egyptian  Persistence  Zekri 2005 [38] 

HLA‐B14  Egyptian  Persistence  Zekri 2005 [38] 

HLA‐B14  Italian  Persistence  Zavaglia 1996 [39] 

HLA‐B27  Irish  Viral Clearance  McKiernan 2004 [12] 

HLA‐B35  Tunisian  Viral Clearance  Ksiaa 2007 [33] 

HLA‐B35  Korean  Persistence  Yoon 2005 [34] 

HLA‐B46  Korean  Persistence  Yoon 2005 [34] 

HLA‐B57  American  Viral Clearance  Thio 2002 [13] 

HLA‐B57  African  Viral Clearance  Chuang 2007 [28] 

HLA‐B61  Japanese  Persistence  Higashi 1996 [14] 

HLA‐B8  Saudi  Viral Clearance  Hadhoud 2003 [35] 

HLA‐B8  Irish  Persistence  McKiernan 2004 [12] 

HLA‐C1C1  USA+UK  Viral Clearance  Khakoo 2004 [10] 

HLA‐C1C1  Puerto Rican  Viral Clearance  Romero 2008 [11] 

HLA‐C2C2  USA+UK  Persistence  Khakoo 2004 [10] 

HLA‐Cw*05  American  Viral Clearance  Wang 2009 [15] 

HLA‐Cw*3  Japanese  Persistence  Higashi 1996 [14] 

HLA‐Cw01   Irish  Viral Clearance  McKiernan 2004 [12] 

HLA‐Cw0102  American  Viral Clearance  Thio 2002 [13] 

HLA‐Cw04  American  Persistence  Thio 2002 [13] 

HLA‐Cw04  Irish  Persistence  Fanning 2004 [40] 

 

In sum, several HLA class I alleles are associated with different outcomes of HCV infection. 

Clearly at this point, associations between HLA alleles and outcome are still primarily descriptive. The 

determination of mechanisms behind theses associations is crucial to understand potential causal 

relationships of the observed HLA associations. Among the protective alleles, HLA-B27 plays a 

prominent role since the mechanisms of protection can be tracked down to the generation of HCV-

specific CD8+ T cell responses against a single viral epitope [31]. This clearly demonstrates the 

influence of the genetic HLA class I background on the natural course of HCV infection. 
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2.2.2. HLA class II 

CD4+ T cells play an important role in the immune response against viral infections. Functions of 

CD4+ T cells include, among others, the provision of supportive signals to CD8+ T cells and B cells, 

polarization of the immune response and. to a minor degree, direct antiviral efficacy [41]. Lack of 

CD4+ T cells results in the inability to control HCV infection in an animal model of HCV [42]. During 

acute HCV infection in humans, only weak and monospecific CD4+ T cell responses are detectable in 

patients with evolving viral persistence while strong and multispecific CD4+ T cell responses can be 

detected in acute resolving disease [1]. CD4+ T cells are activated through the binding of the TCR to 

peptides presented by HLA class II molecules (HLA-DP, -DQ and -DR in humans). The peptide-

binding region of the HLA class II molecules is formed by both the alpha and the beta chain. Thus, 

both gene loci may contribute to differences in peptide binding and one individual may have four 

different types of HLA-DQ and HLA-DR molecules. Comparable to HLA class I molecules, different 

HLA class II molecules bind to different viral peptides which may modulate the antiviral T cell 

response depending on the genetic background of the individual. 

Several associations between HLA class II alleles and the outcome of HCV infection have been 

identified (Table 3). DQB1*0301 was associated with clearance of HCV infection in studies conducted 

in populations throughout the world [43-49]. Interestingly, DQB1*0301 is in close linkage 

disequilibrium (non-random association between polymorphisms at different loci) with DRB1*1101 

and, indeed, DRB1*1101 is also associated with HCV clearance in several studies [13, 14, 43-45, 49-

52]. Given the data, it may seem surprising that DRB1*1101 was not identified as a protective HLA 

allele in the well-documented Irish cohort that originated from a single source infection [53]. In 

addition, only a trend towards a protective role of DQB1*0301 was seen in that cohort [53]. Instead, 

DRB1*01 and DQB1*0501 were associated with viral clearance in several studies performed in the 

Irish cohort [12, 53-56]. Interestingly, the protective role of DRB1*01 and DQB1*0501 was also 

found in studies performed in the USA, but only among whites [13, 15]. A study in Puerto Rico found 

an association of DQB1*0501 and viral persistence [11]. It is intriguing to speculate that the protective 

effects of DRB1*01 and DQB1*0501 might be restricted to a population of Irish descent, including 

people that migrated from Ireland to the United States in the past centuries. In the Irish cohort, 

DRB1*0401 and DRB1*15 were identified as additional alleles associated with viral clearance [12]. 

For DRB1*15, the same effect was found in patients from central Europe [47, 57, 58]. Different roles 

for the contribution of HLA class II alleles to the natural history of HCV infection may exist between 

European and Asian populations. While DRB1*0701 was associated with viral persistence in Irish, 

Polish and mixed European populations, the same allele was associated with viral clearance in a Thai 

cohort [47, 56, 58, 59]. In addition, contrary associations of DRB1*0301 have been described in 

European and Asian cohorts [34, 47, 59, 60]. These results indicate that allelic associations with the 

outcome of HCV infection may vary depending on the ethnic background of the study population. 

Little is known about the mechanisms that determine the role of HLA class II alleles in HCV infection. 

Immunodominant HCV-specific CD4+ T cell epitopes (epitopes targeted by the majority of patients) 

were identified in patients with acute HCV infection [61, 62]. Interestingly, the sequence of these 

epitopes was highly conserved among the genotypes analyzed. Notably, the immunodominant epitopes 

were restricted by HLA class II alleles with known protective associations (DRB1*04, DRB1*11, 
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DRB1*15 and DQB1*0301). Furthermore, in vitro binding studies revealed that most peptides also 

bound with high affinity to the DRB1*0101 allele, which was associated with protection in the Irish 

cohort. Nevertheless, these CD4+ T cell responses were infrequently detected in other studies [63, 64]. 

In a recent study that analyzed the magnitude of CD4+ T cell responses in an anti-HCV positive 

cohort, no correlation between the outcome of HCV infection and the magnitude of CD4+ T cell 

responses was found, despite a clear association of the outcome of HCV infection with the alleles 

DRB1*11, DQB1*03 and DRB3*02 [49]. This indicates that the CD4+ T cell responses detected do 

not fully explain the associations of HLA class II alleles and the outcome of HCV infection. However, 

it should be noted that CD4+ T cells are heterogenous, including regulatory T cells, TH1, TH2 and 

TH17 cells [41]. Since detection of CD4+ T cell responses in the above studies was performed largely 

by functional tests skewed to detect TH1 responses, it is possible that the contribution of other CD4+ T 

cell subsets could not be assessed. Indeed, regulatory T cells are enriched in chronic HCV infection 

compared to healthy controls and after viral clearance [65-69]. Furthermore, TH17 cells may play a 

role in the immunobiology of HCV infection [70]. It is thus possible that certain HLA class II alleles 

may modify the repertoire of these T cell populations and contribute to the outcome of HCV infection. 

Clearly, additional studies will be needed to address the immunological mechanisms that determine the 

protective or detrimental effects of HLA class II alleles in HCV infection. 

Taken together, several HLA class II alleles have been associated with viral clearance or 

persistence in HCV infection. However, these results are quite variable in study populations of 

different ethnic backgrounds and the reasons for these findings have not been identified so far. In 

addition, the mechanisms determining the role of HLA class II alleles in HCV infection have yet to be 

elucidated. 

Table 3. Associations between HLA class II alleles and HCV outcome. 

HLA‐Type  Cohort  Association / Virological Effect  Reference 

DQA1*0103  German  Viral Clearance  Hohler 1997 [60] 

DQA1*0201  Thai  Viral Clearance  Vejbaesya 2000 [59] 

DQA1*03  Caucasian  Viral Clearance  Cramp 1998 [50] 

DQA1*03  Northern European  Viral Clearance  Tibbs 1996 [71] 

DQA1*03  Caucasian/UK  Viral Clearance  Cramp 1998 [50] 

DQA1*0501  Korean  Viral Clearance  Yoon 2005 [34] 

DQB1*02  French  Persistence  Alric 2000 [43] 

DQB1*02  American  Persistence  Wang 2009 [15] 

DQB1*0201  Irish  Persistence  McKiernan 2000 [53] 

DQB1*0201  Thai  Persistence  Vejbaesya 2000 [59] 

DQB1*0201  Korean  Viral Clearance  Yoon 2005 [34] 

DQB1*03  American  Viral Clearance  Wang 2009 [15] 

DQB1*03  American  Viral Clearance  Harris 2008 [49] 

DQB1*0301  French  Viral Clearance  Alric 1997 [44] 

DQB1*0301  Caucasian  Viral Clearance  Cramp 1998 [50] 

DQB1*0301  Caucasian  Viral Clearance  Minton 1998 [45] 
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Table 3. Cont. 

DQB1*0301  Italian  Viral Clearance  Mangia 1999 [51] 

DQB1*0301  Europeans  Viral Clearance  Thursz 1999 [47] 

DQB1*0301  French  Viral Clearance  Alric 2000 [43] 

DQB1*0301  American  Viral Clearance  Thio 2002 [13] 

DQB1*0301  Italian  Viral Clearance  Zavaglia 1998 [72] 

DQB1*0301  Polish  Viral Clearance  Wawrzynowicz 2000 [58] 

DQB1*0301  Japanese  Viral Clearance  Higashi 1996 [14] 

DQB1*0301  Caucasian/UK  Viral Clearance  Cramp 1998 [50] 

DQB1*0302  Northern European  Viral Clearance  Tibbs 1996 [71] 

DQB1*0303  Japanese  Viral Clearance  Higashi 1996 [14] 

DQB1*05  American  Viral Clearance  Wang 2009 [15] 

DQB1*0501  Irish  Viral Clearance  McKiernan 2000 [53] 

DQB1*0501  American  Viral Clearance  Thio 2002 [13] 

DQB1*0501  Puerto Rican  Persistence  Romero 2008 [11] 

DQB1*0502  Italian  Viral Clearance  Congia 1996 [73] 

DQB1*0601  Korean  Persistence  Yoon 2005 [34] 

DQB1*0604  Korean  Persistence  Yoon 2005 [34] 

DRB1*01  Irish  Viral Clearance  Barrett 1999 [55] 

DRB1*01  Irish  Viral Clearance  Fanning 2000 [56] 

DRB1*01  Irish  Viral Clearance  Barrett 2001 [54] 

DRB1*01  American  Viral Clearance  Wang 2009 [15] 

DRB1*0101  Irish  Viral Clearance  McKiernan 2000 [53] 

DRB1*0101  American  Viral Clearance  Thio 2002 [13] 

DRB1*0101  Irish  Viral Clearance  McKiernan 2004 [12] 

DRB1*0301  Europeans  Viral Clearance  Thursz 1999 [47] 

DRB1*0301  Thai  Persistence  Vejbaesya 2000 [59] 

DRB1*0301  Korean  Viral Clearance  Yoon 2005 [34] 

DRB1*0301  German  Persistence  Hohler 1997 [60] 

DRB1*03011  Irish  Persistence  McKiernan 2000 [53] 

DRB1*04  Caucasian/UK  Viral Clearance  Cramp 1998 [50] 

DRB1*04   Caucasian/UK  Viral Clearance  Cramp 1998 [50] 

DRB1*0401  Irish  Viral Clearance  McKiernan 2004 [12] 

DRB1*0701  Europeans  Persistence  Thursz 1999 [47] 

DRB1*0701  Irish  Persistence  Fanning 2000 [56] 

DRB1*0701  Polish  Persistence  Wawrzynowicz 2000 [58] 

DRB1*0701  Thai  Viral Clearance  Vejbaesya 2000 [59] 

DRB1*08  Tunisian  Viral Clearance  Ksiaa 2007 [33] 

DRB1*0803  Korean  Persistence  Yoon 2005 [34] 

DRB1*11  Caucasian  Viral Clearance  Minton 1998 [45] 
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Table 3. Cont. 

DRB1*11  American  Viral Clearance  Harris 2008 [49] 

DRB1*1101  French  Viral Clearance  Alric 1997 [44] 

DRB1*1101  Europeans/UK  Viral Clearance  Thursz 1999 [47] 

DRB1*1101  French  Viral Clearance  Alric 2000 [43] 

DRB1*1101  Italian  Viral Clearance  Scotto 2003 [46] 

DRB1*1101  Turkish  Viral Clearance  Yenigun 2002 [48] 

DRB1*1104  Italian  Viral Clearance  Mangia 1999 [51] 

DRB1*1104  Italian  Viral Clearance  Zavaglia 1998 [72] 

DRB1*12  American  Clearance in Blacks, Persistence in Whites  Wang 2009 [15] 

DRB1*1201  Europeans  Viral Clearance  Thursz 1999 [47] 

DRB1*1301  German  Viral Clearance  Hohler 1997 [60] 

DRB1*15  Irish  Viral Clearance  McKiernan 2004 [12] 

DRB1*1501  Europeans  Persistence  Thursz 1999 [47] 

DRB1*1501  Polish  Persistence  Wawrzynowicz 2000 [58] 

DRB1*15011  German  Viral Clearance  Lechmann 1999 [57] 

DRB1*1601  Italian  Viral Clearance  Congia 1996 [73] 

DRB3*02  American  Viral Clearance  Harris 2008 [49] 

DRB4*0101  Europeans  Persistence  Thursz 1999 [47] 

 

2.3. Genes involved in T cell regulation and function 

Suppression of effector T cell functions may be beneficial for the host since it limits overwhelming 

immunopathology. Of note, this may explain the high frequency of regulatory T cells observed in 

chronic HCV infection (reviewed in [74]). Regulatory T cells have the ability to suppress cytotoxic T 

cell responses by cell-cell contact and the production of immunosuppressive cytokines (e.g., IL-10). 

Next to regulatory T cells, other non-T cells can produce IL-10 (e.g., monocytes, dendritic cells). The 

suppressive function of IL-10 on T cell responses during viral infections has been demonstrated in 

mice [75, 76]. Viral persistence and high levels of viremia were associated with high levels of IL-10 

and exhaustion of virus-specific CD8+ T cells. Importantly, blockade of IL-10 resulted in viral 

clearance and reversal of the T cell exhaustion. Interestingly, IL-10 was also identified as a soluble 

factor involved in the suppression of T cell responses in the livers of patients with HCV infection [77]. 

Several studies have analyzed the role of promoter polymorphisms that result in an altered production 

of IL-10 in HCV infection. Indeed, viral clearance was associated with polymorphisms that result in a 

low production of IL-10 [78-80]. Similarly, low levels of IL-10 production by monocytes were 

associated with viral clearance [81]. In contrast, polymorphisms associated with high IL10 levels were 

associated with viral persistence [78-80]. This is in agreement with the finding that higher IL-10 levels 

were detected in chronic HCV infection compared to controls [82]. This finding may possibly be 

explained by experimental evidence in vitro that HCV induces IL-10 production [83]. However, an 

association of IL-10 polymorphisms with the outcome of HCV infection was not seen in other studies 
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[23, 82] or only in certain genetic ethnic groups (e.g., black Americans, but not Caucasians) [84]. 

These results support the hypothesis that the reduced inhibition of antiviral T cell responses by low IL-

10 levels may result in enhanced viral clearance, while in contrast, high IL-10 levels are associated 

with viral persistence. A role for IL-10 in HCV immunobiology is further supported by a study that 

analyzed IL-10 receptor polymorphisms and found associations with different outcomes of HCV 

infection [85]. In sum, gene polymorphisms associated with IL-10 production and signaling most 

likely affect the outcome of HCV infection due to altered immunoregulatory functionality. 

The function of virus-specific CD8+ T cells is an important parameter that determines the outcome 

of HCV infection. In a recent study, polyfunctional HCV-specific T cells that were able to produce 

antiviral cytokines, to secrete cytotoxic granula and possessed higher levels of anti-apoptotic 

molecules were associated with viral clearance, while T cells with few antiviral functions were 

associated with viral persistence [86]. Only few HCV-specific CD8+ T cell functions are seen in 

chronic infection in the liver, which indicates that impairment of CD8+ T cell functions may be an 

important determinant for viral persistence [87]. Polymorphisms influencing the expression of antiviral 

cytokines have been analyzed in several studies [23, 82, 88-92]. For example, an association between a 

polymorphism in the TNF gene with the outcome of HCV infection was found in a Taiwanese cohort 

[82], but not in other studies [23, 25, 80, 92]. No influence of IFN-γ gene polymorphisms on HCV 

natural history was noted in several studies [23, 25, 80], however, a single nucleotide polymorphism in 

the proximal IFN-γ promoter region that conferred higher promoter activity was associated with 

spontaneous recovery from HCV infection [93]. Hence, the role of genetic factors in the impairment of 

T cell responses in chronic HCV infection is not clear to date. 

The function of CD8+ T cells depends on the maturation stage, which can be assessed by the 

combination of several differentiation markers linked to T cell functions [94]. Naïve T cells express a 

large isoform of the protein tyrosine phosphatase CD45, termed CD45RA. Upon activation, expression 

of this isoform is down-regulated in T cells and a short isoform, CD45RO, is expressed. Reexpression 

of CD45RA may occur in antigen-experienced CD8+ T cells, but is associated with late differentiation 

stages that have impaired proliferative capacity [94]. Interestingly, the CD45 gene polymorphism 

C77G was more frequent in patients with HCV infection compared to the overall population [95]. This 

point mutation results in the coexistence of both CD45RA and CD45RO splicing variant expression 

and may influence T cell signaling [95]. Alterations in the differentiation of virus-specific CD8+ T 

cells have been identified in patients with chronic HCV infection [29, 96-99]. However, to date no 

study has addressed the influence of the C77G polymorphism on HCV-specific CD8+ T cells. The 

differentiation of CD4+ T cells is influenced by several cytokines that promote polarization of CD4+ T 

cell responses (e.g., into TH1 or TH2) [41]. IL-12 is a cytokine that is prominently involved in the 

polarization of CD4+ T cells into TH1 cells [100]. Interestingly, a protective association of 

polymorphisms in the IL-12B gene has been identified in a cohort that was exposed to HCV but was 

not infected [101]. Also, polymorphisms in the promoter of the proinflammatory cytokine IL-18 were 

linked to viral clearance in a cohort of African American drug users [102]. These studies indicate that 

differences in the polarization of the T cell response due to the individuals’ genetic background may 

have an impact on the natural course of HCV infection.  

Chemokine receptors play an important role in T cell differentiation and function, regulating 

migration and T cell effector functions. Chemokines are likely to play an important role in HCV 
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infection, but only few genetic studies addressing the chemokine/chemokine receptor system have 

been performed to date [103]. A CCR2 polymorphism was associated with viral clearance in one 

report [104], but could not be confirmed by another [105]. Interestingly, a study in a German cohort 

found a higher prevalence of homozygosity of the HIV protective CCR5delta32 polymorphism in 

patients with chronic HCV infection [106]. However, heterozygosity of this polymorphism was 

protective in the well-defined Irish cohort [107]. CCR5delta32 was associated with reduced liver 

inflammation [107-110], indicating a role of genetic alterations of CCR5 in the outcome and 

progression of HCV infection. However, no association of different CCR5 gene alleles with viral 

persistence was found in several other cohorts [104, 109, 111, 112]. A recent study addressed the 

effects of CCR5delta32 mutation on HCV specific T cell responses [113]. IFN-γ responses were 

reduced in patients carrying the mutation but other T cell functions (migration, proliferation, IL-4 

production) were not altered. Taken together, it is unclear whether CCR5delta32 mutations play a 

significant role in HCV infection. Clearly, it is less important than in HIV infection, where 

CCR5delta32 confers resistance to infection. 

In sum, genes associated with T cell regulation and function have been reported to influence the 

outcome of HCV infection. Specifically, polymorphisms involved in the suppression of T cell 

responses by IL-10 may affect the natural history of HCV infection. Further studies will be needed to 

clarify the relevance of genetic alterations for other molecules important for T cell functions and/ or 

differentiation. 

3. Conclusions  

A large number of studies have analyzed the influence of the host genetic background on the natural 

history of HCV infection. The strongest impact was found for factors involved in the immune 

response, particularly the CD8+ T cell response. In the interaction between virus and host, these 

protective alleles may determine the success of the overall antiviral immune response. It is important 

to note that viral factors are also likely to play a role in determining the impact of the host genetic 

background on the natural history of HCV infection. For example, different HCV genotypes carry 

different peptide sequences within T cell epitopes and HLA alleles with protective effects associated 

with one genotype may not be advantageous when challenged by another genotype. Nevertheless, the 

evidence obtained thus far indicates that the genetic background of the innate and adaptive immune 

response may significantly affect the natural history of HCV infection. A better understanding of the 

role of the host genetic background in patients with HCV infection is crucial for the development of 

new prophylactic and immunomodulatory antiviral strategies. 
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