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Alloimmune cells consume interleukin-2 and competitively inhibit the
anti-tumour effects of interleukin-2

A.M.M. Eggermont, E.P. Steller, W. Matthews & P.H. Sugarbaker
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Summary Adoptive immunotherapy with lymphokine activated killer (LAK) cells and recombinant
interleukin-2 (IL-2) is successful in a variety of tumour models in both the normal and the
immunocompromised mouse. We investigated the effects of an immune response to an allogeneic challenge on
the metabolism of IL-2. Serum IL-2 levels at different time points after the administration of 20,000 units of
IL-2 intraperitoneally were 2-4 fold higher in normal mice than in recently alloimmunized mice. In an
intraperitoneal tumour model the alloimmunization of mice with allogeneic P815 tumour cells or splenocytes
IP prior to the intraperitoneal inoculation of syngeneic tumour significantly diminished the anti-tumour
effects of IL-2 and LAK cell immunotherapy in 7 consecutive experiments. High doses of IL-2 or
pretreatment with cyclophosphamide restored the efficacy of IL-2 and LAK cell immunotherapy. From these
results we hypothesize that T cells, activated by the allogeneic challenge, consume IL-2 and thus inhibit the
effects of IL-2 and LAK cell treatment by competitive inhibition. LAK cell activity with reduced levels of
IL-2 cannot be maintained and anti-tumour effects are lost. High doses of IL-2 were shown to overcome
the competition for IL-2. Alternatively activated T-cells could be eliminated by pretreatment with
cyclophosphamide and anti-tumour effects restored. These results are important in that they provide an
alternative explanation as to the mechanism of non-specific cell mediated suppression and may in part explain
the failure of some cancer patients to respond to treatment with IL-2 plus LAK immunotherapy.

Adoptive immunotherapy with lymphokine activated killer
(LAK) cells and recombinant interleukin-2 (IL-2) has been
shown to be successful in murine lung, liver, and i.p. tumour
models (Lafreniere & Rosenberg, 1985; Mule et al., 1984;
Steller et al., 1985). The first reports on the use of this
immunotherapic approach in humans with advanced cancers
have been promising (Rosenberg et al., 1985a; Rosenberg,
1986). An attractive feature of adoptive immunotherapy with
IL-2 and LAK cells is its efficacy in the immunocompro-
mised tumour bearing host (Andriole et al., 1985; Mule &
Rosenberg, 1985). Often the cancer patient's immune system
is actively involved in the response to the sequelae of an
operation, a blood transfusion or an infectious process. To
understand why some cancer patients respond to LAK and
IL-2 treatment and other do not, it was considered
important to study the interactions of exogenously
administered IL-2 and the host's immune system. The studies
reported here focus on the fact that IL-2 can be utilized by
different lymphocyte populations and, consequently,
competition for IL-2 may ensue. We show that in mice
actively responding to a strong allogeneic stimulus IL-2
metabolism proceeds more rapidly. Furthermore we show
that the immunotherapeutic effects of IL-2 and LAK cells
are diminished in alloimmunized mice. We hypothesize that
allo-activated T-cells bind IL-2 more readily than LAK cells
and consume the available IL-2. LAK cell activity cannot be
maintained under these conditions of competitive inhibition
and the antitumour effect is lost. The administration of high
doses of IL-2 or the elimination of suppressor cells by
pretreatment with cyclophosphamide were found to restore
the antitumour effect of treatment with IL-2 and LAK cells.

Materials and methods

Mice

C57BL/6 (BL/6) (H-2b) female mice were obtained from
Jackson Laboratory (Bar Harbor, ME) and used 9-12 weeks

old. They were maintained on laboratory chow and acidified
water ad libitum in a pathogen free environment.

Tumours

MCA- 105, a weakly immunogenic, 3-methylcholanthrene
induced sarcoma in BL/6 mice was passaged s.c. in the
syngeneic host and used in the first 6 transplant generations.
Single cell suspensions were obtained by excising the tumour,
mincing the tissue in Hanks balanced salt solution (HBSS,
Biofluids, Rockville, MD) followed by repeated treatment at
37°C with 0.25% trypsin without calcium or magnesium
(Biofluids, Rockville, MD). After 3min of stirring, the
supernatant was discarded and an equal vol of fresh trypsin
was added to the flask. For the next three 8 min periods the
supernatants, containing released tumour cells, were
collected, and fresh trypsin again added back to the tumour.
The supernatants were pooled in ice-cold HBSS. The cells
were passed through a 100 gauge nylon mesh (Tobler, Ernst
& Traber Co., Elmsford, NY), washed three times in HBSS
and live cells counted in 0.08% trypan blue.
P815 tumour is a mastocytoma maintained in DBA/2J

mice (H-2d) by serial (i.p.) passage in our laboratory. Single
cell suspensions were obtained by washing the abdominal
cavity with PBS. The cells obtained were washed 3 times in
HBSS and viable cells were counted by trypan blue (0.08%)
exclusion.

"lChromium release assay

Effector cells were obtained from the spleens of BL/6 mice
that had received 1 x 107 live P815 tumour cells i.p. On days
7, 10, 14, 17, 21 and 24 two mice were sacrificed, their
spleens harvested, passed through a 100 gauge wire mesh,
the erythrocytes lysed osmotically with ACK buffer (Media
Unit, NIH, Bethesda, MD) and the remaining lymphocytes
pooled and washed three times with HBSS. Target cells were
prepared by incubating one ml of a P815 tumour cell
suspension (5 x I07 cells ml- 1) with IICr (specific activity
250-2500 mci mg- 1) for 30 min. The labelled cells were
washed 3 times and resuspended at I x I05 cellsml-'.
Labelled tumour cells (0.1ml) and 0.1ml of effector cells
were incubated in plates of 96 round-bottom wells (Linbro
Chemical Co., Hamden, CT). Each well contained 104
labelled targets and various numbers of effector cells. After
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an incubation of 16 h, supernatants were harvested
employing the Titertek collecting system (Flow Laboratories,
Inc., McLean, VA). The percentage of lysis was calculated as
follows: (experimental cpm - spontaneous cpm)/(maximal
cpm - spontaneous cpm) x 100. Spontaneous cpm was the
amount of 5ICr released from the targets in the absence of
effectors. Lytic units per 107 effector cells were determined
from triplicate samples.

Interleukin-2

Recombinant interleukin-2 (IL-2) was kindly supplied by the
Cetus Corporation (Emeryville, CA) (Rosenberg et al.,
1984). It was used for preparation of LAK cells and for i.p.
administration. For the studies reported here the titer, in
U ml- 1, was defined as the reciprocal of the dilution
required to sustain one-half of the maximum 3H-thymidine
incorporation into a long-term IL-2 dependent murine cell
line referred to as M-53.

Cyclophosphamide

Cyclophosphamide was purchased from Mead Johnson and
Co. (Evansville, IN). It was dissolved in sterile water to a
concentration of 200mg ml- 1 and further diluted to a
concentration of 1 mg ml in HBSS. Mice were treated with
100 mg kg- 1 cyclophosphamide i.p.

IL-2 titrations

BL/6 mice were given 5 x 107 DBA/2 splenocytes i.p. Six
days later 20,000 units of IL-2 in 0.5 ml HBSS were given
i.p. Two mice were bled at 1/2, 1, 2, 3, 4, 6, and 8 h after the
administration of IL-2. Blood collected at each time point
was pooled and serum was obtained and frozen at - 20°C
for IL-2 determination at a later time. Serial two-fold
dilutions of an IL-2 containing solution were prepared by
adding 0.01 ml to a 96 flat bottom microtitre plate (No.
3596, Costar, Cambridge, MA). M-53 cells, a name
designated for an IL-2 dependent cell line in this laboratory,
were washed free of IL-2 and suspended in complete media
at 5 x 104 cells ml- 1. 0.01 ml of cell suspension was added to
each well of the microtitre plate. Plates were incubated for
20h and then pulsed with 2 micro Curie 3H-thymidine (New
England Nuclear, Boston, MA). Activity of 3H-thymidine
was 50-80 Ci mmol- 1. Pulsing lasted for 4 h prior to
harvesting and determination of 3H-thymidine uptake. For
the studies reported here, the titre in Uml-1 was defined as
the reciprocal of the dilution in a series of 2-fold dilutions
required to sustain one-half of the maximum 3H-thymidine
incorporation.

Lymphokine-activated killer (LAK) cells

BL/6 spleen cells were harvested aseptically and mashed in
ice cold complete media with the hub of a syringe to
produce a single cell suspension. Erythrocytes were lysed
osmotically with ACK buffer (Media Unit, NIH, Bethesda,
MD). The remaining lymphocytes were washed three times
in HBSS. LAK cells were generated by placing 5 x 108
splenocytes in 175cm2 (750ml) flasks (Falcon, Oxnard, CA)
with 175 ml of RPMI 1640 media (Biofluids, Rockville,
MD), 10% foetal calf serum, 0.1 mM nonessential amino
acids, 0.1 mM sodium pyruvate (all Gibco Laboratories,
Grand Island, NY), 5 x 10-I M 2-mercapto-ethanol (Aldridge
Chemical Co., Milwaukee, WI), 0.3% glutamine, 100 Uml-1
penicillin and 100 ,ug ml- 1 streptomycin (all Media Unit,
NIH, Bethesda, MD), 50 ,ug ml- 1 gentamicin (Shearing,
Kenilworth, NJ) and 0.5 jug ml- 1 fungizone (Flow Labs,
McLean, VA), 25mM HEPES buffer (Biofluids, Rockville,
MD). IL-2 was added at a concentration of 1000 U ml- 1.
The flasks were incubated supine at 37°C in 5% CO2 for
72 h. In all experiments viable cells were counted by 0.08%
trypan blue exclusion.

Intraperitoneal tumour experiments

BL/6 mice received 1 x 107 allogeneic P815 tumour cells i.p.
14 days prior to the i.p. inoculation of 1 x 105 syngeneic
MCA-105 tumour cells (Table I: experiment 1-6). In one
experiment 5 x 108 allogeneic splenocytes instead of
allogeneic P815 tumour cells were given (Table I: experiment
7A-B). The mice were then randomly allocated into a
treatment group. The tumour cells and the LAK cells were
injected in 2ml HBSS. Animals not receiving LAK cells or
IL-2 received injections of an identical volume of HBSS.
About 14 days after the i.p. inoculation of syngeneic tumour
cells the animals were sacrificed and the i.p. tumour mass
scored in a blinded fashion on a scale from 0-3. The score
was termed the Peritoneal Cancer Index (PCI). Scoring of
the PCI was performed using the following methodology: On
the day of sacrifice all mice were eartagged and their
numbers recorded. All groups were mixed together. Mice
were taken from the pool without reference to their ear tags,
the abdomen opened widely, and scored after thorough
inspection of the entire abdominal cavity. Mice of similar
score were placed in groups of peritoneal cancer index of
0-3, where 0 is defined as no i.p. tumour, 1 as .3 pin point
tumour foci with a diameter . 1 mm, 2 as moderate i.p.
tumour, and 3 as abundant i.p. tumour load replacing most
of the peritoneal cavity. After all mice were scored, placed in
their groups, and checked by a second observer, the ear tags
were read and the data were analyzed. Each experimental
group in the i.p. tumour experiments consisted of a least 6
mice.

Statistics

Overall significance of difference in an i.p. tumour
experiment was examined with the Jonckheere test for trend
(Hollander & Wolfe, 1973). If this test showed a two-sided P
value . 0.05, pairwise comparisons of differences in the
tumour indices were examined with the Wilcoxon rank sum
test with a correction for ties. A two-sided P value .0.05
was considered significant.

Results

IL-2 consumption in alloimmunized mice is increased

BL/6 mice were given 5 x 107 DBA/2 splenocytes i.p. on day
0. On day 6 they were given 20,000 units of IL-2 in 0.5 ml
HBSS i.p. Two mice were bled at 0.5, 1, 2, 3, 4, 6, and 8h
after the administration of IL-2. Blood collected at each time
point was pooled and their serum frozen for IL-2
determinations at a later time. IL-2 levels in these serum
specimens were determined using an IL-2 dependent cell line.
As is illustrated in Figure 1, IL-2 levels in the alloimmunized
mice were lower than in the control mice at each time point
following the administration of IL-2 i.p. We concluded from
these experiments that IL-2 consumption is increased in mice
actively engaged in an alloimmune response.

Cytolytic activity in splenocytes after i.p. challenge with
allogeneic tumour

In order to determine the optimal time for assessment of the
interaction of an immune response and i.p. immunotherapy
with IL-2 we studied the kinetics of the cytolytic responses
generated after i.p. allogeneic tumour challenge. BL/6 mice
were given 1 x 107 live P815 tumour cells. On day 7, 10, 14,
17, 21, and 24, two mice were sacrificed, spleen cells pooled
and cytotoxicity against 51Cr labelled P815 tumour cells
determined in vitro in a 16 h assay.

Figure 2 shows the cytolytic activity of 107 spleen cells
after i.p. allogeneic stimulation with P815 cells. Note the
plateau of cytolytic activity from day 10 till day 17. From
this experiment we concluded that maximal cytolytic
responses in the host are present 10-17 days following i.p.
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Figure 1 In vivo absorption of IL-2 in normal mice and
alloimmunized mice. BL/6 mice were given 5 x 107 DBA/2J
splenocytes i.p. in 1 ml HBSS or HBSS only. After 6 days 20,000
units of IL-2 were given i.p. and mice were bled at various time
intervals. Serum was obtained and frozen for IL-2
determinations at a later time. IL-2 levels in the serum of the
alloimmunized mice were 2-3 fold lower at each time point
following the injection of IL-2.

allogeneic tumour challenge. In all but the final in vivo
experiment we used mice 14 days after allogeneic tumour
challenge for immunotherapy experiments with IL-2 and
LAK cells. In the last experiment shown in Table I
allogeneic splenocytes were given i.p.

Decreased immunotherapeutic effects of IL-2 and LAK cells in
alloimmunized mice

BL/6 mice were given x 107 live allogeneic P815 tumour
cells i.p. 14 days prior to the i.p. inoculation of I x 10l
syngeneic MCA-105 tumour cells. The mice were treated
with I x 108 LAK cells on day 3 and 10,000 units of IL-2 i.p.
twice daily from day 3 through 7. In 7 consecutive
experiments (see Table I) the i.p. growth of the syngeneic
tumour MCA-105 was significantly reduced by LAK and IL-
2 treatment in the non-immunized mice. But, in all mice that
received allogeneic tumour cells or splenocytes (Experiment
7A) the antitumour effect of IL-2 and LAK therapy was

lost. Although not statistically significant, it should be noted
that in 6 out of 7 experiments with IL-2 alone decreased i.p.
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Figure 2 Sequential determination of the cytolytic activity in
splenocytes after i.p. challenge with allogeneic tumour. BL/6
mice were sacrificed, their spleens harvested, their splenocytes
pooled and the specific cytolytic activity against P815 cells
determined in a "1chromium release assay. Cytolytic activity is
expressed in lytic units 10- 7 cells. Note the plateau of peak
cytolytic activity from day 10-17.

tumour load. This effect was also lost in alloimmunized
mice. It was concluded from these experiments that in mice

at the peak of response to an allogeneic challenge IL-2 and
LAK effects were substantially decreased.

High doses of IL-2 override the detrimental effect of
alloimmunization on IL-2 and LAK immunotherapy

BL/6 mice were pretreated with P815 cells i.p. 14 days prior
to the i.p. inoculation of syngeneic MCA-105 tumour cells.
Subsequently they were treated with IL-2 and LAK as

described above. Mice received either 10,000 units or 50,000
units of IL-2 twice a day. In the alloimmunized mice that
received 10,000 units of IL-2, LAK cell activity was

apparently not maintained in vivo, since no antitumour effect
was seen. The administration of 50,000 units of IL-2
effectively maintained LAK antitumour activity and i.p.

Table I Loss of IL-2 LAK antitumour effect after alloimmunization. Data presented is mean peritoneal cancer
index + s.e.m.

EXP no. Control Alloimmunized IL-2 Alloim/IL-2 IL-2+LAK Alloim/IL-2+LAK

EXP 1 3.00 + O.0Oa 3.00+0.00 2.50+0.34 3.00+0.00 1.50+0.43* 2.62 + 0.26*
(P2 < 0.04)*

EXP 2 2.83 +0.17 2.82+0.17 2.33 +0.21 2.67+0.21 1.33 +0.42* 2.50+0.22*
(P2 < 0.05)*

EXP 3 1.90+0.35 2.50+0.50 1.40+0.40 2.17+0.31 0.50+0.34* 2.50+0.22*
(P2 < 0.003)*

EXP 4 1.85 +0.30b 2.50 +0.38 0.67 +0.33 1.83 + 0.48 0.83 + 0.31 * 1.83 + 0.40*
(P2 < 0.06)*

EXP 5 2.50+0.19 2.40+0.60 2.17+0.48 2.40+0.24 0.83 +0.48* 2.50+0.34*
(P2 < 0.03)*

EXP 6 2.62+0.14 3.00+0.00 2.20+0.49 2.50+0.34 2.17 +0.31* 3.00 +0.00*
(P2 < 0.03)*

EXP 7(A) 3.00+0.00 2.83+0.17 2.83+0.17 2.83+0.17 1.67+0.21* 2.50+0.21*
(P2 < 0.02)*

EXP 7(B) 3.00+0.00 2.83 +0.17 2.83 +0.17 2.50+0.17 1.67+0.21* 2.50+0.22*
(P2 < 0.04)*

aIn all but one experiment the difference between the PCI of the control animals and the mice treated with IL-2 + LAK
was statistically significant: exp 1 (P<0.0009), exp 2 (P<0.02), exp 3 (P<0.03), exp 4 (P<0.05), exp 5 (P<0.009), exp 6
(P=NS) and exp 7(A-B) (P<0.002); bControl vs. IL-2: P<0.03.
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tumour load was significantly reduced (Figure 3). From this
experiment we suggest that the administration of high doses
of IL-2 overcame the increased IL-2 consumption in
alloimmunized mice. LAK cell activity, and thus the
antitumour effects, were maintained.
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Figure 4 Pretreatment of alloimmunized mice with 100 mg kg
cyclophosphamide (CT) i.p. restores the anti-tumour effects of
IL-2 plus LAK immunotherapy. BL/6 mice received 5 x 108
DBA/2J splenocytes i.p. 5 days prior to the i.p. inoculation of
syngeneic MCA-105 tumour cells. IL-2 plus LAK cell
immunotherapy was ineffective in alloimmunized mice. The
administration of 100mg kg- 1 cyclophosphamide i.p. 2 days
prior to the inoculationi of MCA-105 restored the anti-tumour
efficacy of IL-2 + LAK cell immunotherapy.
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Figure 3 High doses of IL-2 override the detrimental effect of
alloimmunization on the efficacy of IL-2 plus LAK cell
immunotherapy. BL/6 mice received 1 x 107 allogeneic live P815
tumour cells i.p. in I ml HBSS or HBSS alone 14 days prior to
the i.p. inoculation of I x 105 syngeneic MCA-105 tumour cells.
Mice were treated with 1 x 108 LAK cells i.p. on day 3 and
either 10,000 or 50,000 units of IL-2 i.p. twice a day from day 3
to 7. Mice were sacrificed on day 14 and their i.p. tumour load
was scored according to the PCI. The anti-tumour effect of IL-2
plus LAK is lost in alloimmunized mice receiving 10,000 units
IL-2, but restored in alloimmunized mice receiving 50,000 units
of IL-2 i.p.

Pretreatment of alloimmunized mice with cyclophosphamide
restores the antitumour effect ofLAK and IL-2 therapy

BL/6 mice received 5 x 108 DBA/2 splenocytes i.p. either on

day -10 or on day -5. This time schedule was chosen since
the peak level of CTL activity after alloimmunization with
allogeneic splenocytes i.p. is reached 6 days earlier than after
alloimmunization with P815 tumour cells i.p. (data not
shown). Two days prior to the i.p. inoculation of the
syngeneic tumour MCA- 105, alloimmunized mice received
100mgkg-1 of cyclophosphamide i.p. Standard LAK and
IL-2 treatment was given on days 3 to 7. The results after
alloimmunization at day 5 are shown in Figure 4. The effect
of IL-2 plus LAK cell treatment was abrogated in the mice
immunized with the allogeneic splenocytes. In the allo-
immunized mice that were pretreated with cyclophosphamide
on day -2 the antitumour effect of LAK and IL-2 was
retained. As is shown by the results in the appropriate
controls, cyclophosphamide administered on day -2 had no
effect on the growth of the syngeneic tumour. The i.p.
administration of DBA/2J splenocytes at day -10 similarly
diminished IL-2 plus LAK cell antitumour effects (see Table
1: exp. 7A). Pretreatment with cyclophosphamide resulted in
an identical restoration of the immunotherapeutic effects of
IL-2 plus LAK (data not shown). These results suggest that
the administration of cyclophosphamide eliminated the

population of activated T-cells in the alloimmunized mice
and thus eliminated the competition for IL-2 with the
adoptively transferred LAK cells. Their activity and
antitumour effect were therefore maintained.

Discussion

These studies show that the antitumour effect of IL-2 in
conjunction with the adoptive transfer of LAK cells in an
i.p. tumour model is diminished in mice that are actively
engaged in an immune response to an alloantigen. IL-2 is a
lymphokine that can be used by different subpopulations of
lymphocytes in order to expand and activate effector
functions (Brooks et al., 1985; Cheever et al., 1984;
Ettinghausen et al., 1985a,b; Hefeneider et al., 1983). The
number of IL-2 receptors and the affinity of these receptors
for IL-2 on a given lymphocyte population will determine
the amount of IL-2 that can be bound and consumed. We
hypothesize that the observed inactivation of IL-2 and LAK
immunotherapy in alloimmunized mice is due to the
consumption of IL-2 by the highly activated and expanded
CTL population in these mice. Through a mechanism of
competitive inhibition IL-2 will not be present in sufficient
quantities in order to maintain LAK cell activity and as a
result the antitumour effect is lost. The hypothesis that IL-2
consumption in recently alloimmunized mice is more rapid
than in normal mice was corroborated by the finding that
serum IL-2 levels following the administration of 20,000
units of IL-2 in these mice were lower than in nonimmunized
mice after any given time interval. These in vivo experiments
therefore corroborate the findings of our in vitro studies,
which showed the impressive capacity of CTLs to absorb IL-
2 and thereby inhibit the generation as well as the
maintenance of LAK cell activity when these two cell
populations were mixed in the presence of IL-2 (Sugarbaker
et al., 1986; and unpublished data). Since IL-2 rapidly
upregulates the number of IL-2 receptors (Andrew et al.,
1984; Lipkowitz et al., 1984) and has a strong proliferative
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effect on T-cells (Jacques et al., 1986; Rubin et al., 1985) we
speculate that this rapidly expanding activated lymphocyte
population absorbs the administered IL-2. Both the
increased expression of IL-2 receptors on the cells as well as
the soluble IL-2 receptors that are shed may be involved in
the absorption of IL-2 (Hardt et al., 1981; Rubin et al.,
1985) and thus play a part in the putative competitive
inhibition model. The fact that LAK cell activity can be
restored by administering high doses of IL-2 strongly
supports this concept.

Other in vitro studies with alloactivated T-cells have
focused on the suppressive effects these cells may have on
cytotoxic T lymphocytes by absorption of IL-2 and/or
through their rapid expansion in the presence of IL-2 (Fink
et al., 1984; Gunther et al., 1982; Orosz & Ferguson, 1985;
Palacios & Moller, 1981; Salomon et al., 1984; Susskind et
al., 1983). D'Amore and Golub (1985) reported on the
suppression of NK cell activity by a MLC generated
poptlation of NK-like cells and showed that this suppression
was most likely caused by blocking of the target cells by this
lymphocyte population. Alternatively, D'Amore and Golubs'
data may suggest that the concentration of biological
response modifiers in the microenvironment of the effector
cell is extremely important to the continued function of that
cell. Local-regional suppressor effects may be stronger than
systemic suppressor effects.
The existence of soluble anti-IL-2 factors that are

produced by CTL (Hardt et al., 1981; Honda et al., 1985) or
the role of other suppressive factors (Kitamura et al., 1984;
Truit et al., 1978) were found to play no role in our in vitro
analysis (Sugarbaker, unpublished). In our tumour system
the overriding cause for suppression seems to be competition
for IL-2 by activated alloimmune cells. We thus postulate an
alternative explanation as to the nature of suppression and
suppressor cells.

It is of interest that suppression of IL-2 and LAK effects
were shown to be eliminated by the administration of
100 mg kg- I cyclophosphamide 3 to 8 days after the
allogeneic challenge. This dose of cyclophosphamide is
known to abrogate an ongoing cytolytic T-cell response
(Glasser, 1979) and has been shown to destroy T-cells
cytolytic for P815 mastocytoma (North, 1985). The
suppressor cell population is then presumably at the peak of
its proliferative activity and most susceptible to cyclophos-
phamide (Turk & Poulter, 1972; Turk & Parker, 1982). The
administration of cyclophosphamide two days prior to the
inoculation of syngeneic tumour was shown to have no effect

on tumour growth and the observed restoration of the
antitumour effects of LAK and IL-2 therapy can be
interpreted as a purely immunomodulative effect, presumably
reflecting the elimination of the suppressor cell population as
the source of IL-2 consumption. This effect of cyclophos-
phamide is reminiscent of the experimental work of North
(1982). He showed that the adoptive immunotherapy with
cytotoxic T lymphocytes was facilitated by the elimination of
suppressor T-cells by cyclophosphamide.
Our competitive inhibition model for IL-2 offers an

alternative interpretation for some of the immunosuppressive
phenomena observed, but often not fully understood. It may
lead to a reexamination and reinterpretation of some of the
many immunosuppressive conditions that are known to exist
and may lead us to the relevance of our observations with
respect to the clinical situation in which a cancer patient is
often involved in an active immune response to the sequelae
of an operation, a blood transfusion or an infectious process.
These conditions are known to be 'immunosuppressive' and
this suppression may well in part be due to a consumption
of biological response modifiers that otherwise could have
been integrated into an antitumour directed immune
response. In order to give immunotherapy an optimal
chance, it may therefore be necessary to eliminate first these
'competitive conditions' mentioned above. The restoration of
an immune response in mice with a chronic Trypanosoma
Cruzi infection by IL-2 (Reed et al., 1984), the impaired IL-2
production in granuloma bearing mice (Kobayashi et al.,
1985), the role of T-cells in abscess formatiom (Shapiro et
al., 1986), the beneficial effects of blood transfusions on the
survival of kidney transplants (Opelz & Terasaki, 1980), the
detrimental effect of blood transfusions on the five-year
survival of patients with sarcoma (Rosenberg et al., 1985b),
breast, lung (Tartter et al., 1983; 1984), or colorectal cancer
(Agarwal & Blumberg, 1983; Burrows & Tartter, 1982), and
the detrimental effect of a postoperative infection on the
five-year survival rates after surgery for colorectal cancer
(Nowacki & Szymendera, 1983) may all reflect the sequelae
of an immunosuppressive state due to competition for IL-2
and/or other biological response modifiers. In order to
obtain a maximal effect of the administration of IL-2 with a
minimal dose of IL-2, which in view of the high dose IL-2
related toxicity (Lotze et al., 1984; Matory et al., 1985) is an
important aspect, it may therefore be necessary to first
eliminate competitive immune responses. Cyclophosphamide
may be of value to attain this goal.
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