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Abstract

Ribonucleotide reductase (RNR) is the rate-limiting enzyme in the de novo synthesis of deoxyribonucleoside triphosphates.
Expression of RNR subunits is closely associated with DNA replication and repair. Mammalian RNR M2 subunit (R2) functions
exclusively in DNA replication of normal cells due to its S phase-specific expression and late mitotic degradation. Herein, we
demonstrate the control of R2 expression through alternative promoters, splicing and polyadenylation sites in zebrafish.
Three functional R2 promoters were identified to generate six transcript variants with distinct 5’ termini. The proximal
promoter contains a conserved E2F binding site and two CCAAT boxes, which are crucial for the transcription of R2 gene
during cell cycle. Activity of the distal promoter can be induced by DNA damage to generate four transcript variants
through alternative splicing. In addition, two novel splice variants were found to encode distinct N-truncated R2 isoforms
containing residues for enzymatic activity but no KEN box essential for its proteolysis. These two N-truncated R2 isoforms
remained in the cytoplasm and were able to interact with RNR M1 subunit (R1). Thus, our results suggest that multilayered
mechanisms control the differential expression and function of zebrafish R2 gene during cell cycle and under genotoxic
stress.
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Introduction

Ribonucleotide reductase (RNR) is the rate-limiting enzyme to
catalyze the de novo synthesis of deoxyribonucleoside triphos-
phates (dNTPs) by reducing four ribonucleoside diphosphates
(NDPs) to their corresponding deoxyribonucleoside diphosphates
(ANDPs). These dNDPs are then phosphorylated to their 5'-
triphosphate forms. Thus, RNR provides the fundamental
nucleotide building blocks for DNA synthesis and repair in all
living organisms. RNRs are divided into three classes according to
their mechanisms for radical generation. Nearly all eukaryotes
have a class I RNR, which is a heterotetramer composed of two
large and two small subunits. Both large and small subunits are
required for the enzymatic activity. The large subunit contains one
catalytic active site and two allosteric sites for allosteric effectors.
The small subunit contributes a binuclear iron center and a tyrosyl
free radical that are essential for catalysis [1]. It has been shown
that unbalanced dN'TPs supply can lead to genetic abnormalities
and cell death [2]. Therefore, functions and expression regula-
tion of RNR subunits from yeast to mammals have attracted
extensive attention due to their critical roles in DNA synthesis and
repair.

Budding yeast (S. cerevisiae) has two large subunits (R1 and R3)
and two small subunits (R2 and R4). R1 is essential for mitotic
viability and its transcription is regulated in a cell cycle-specific
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manner and can be induced by DNA damage [3]. R3 transcript is
nearly absent during normal growth, but highly induced after
DNA damage; this transcript plays a significant role in genotoxic
stress [4]. R2 and R4 can be regulated in a cell cycle-specific
manner and induced by DNA damage. R2 and R4 are essential
for mitotic growth [5]. R4 lacks several conserved residues
required for enzymic activity, but it works together with R2 to
form a functional heterodimer [6]. Inhibitory proteins competing
with R2 and R4 for the large subunit and the nucleus-to-cytoplasm
redistribution of small subunits can also regulate RNR activity [7].
In addition, fission yeast (S. pombe) contains one large and one small
RNR subunit, cdc22 and suc22, respectively [8]. Inhibitory
regulation of the large subunit, redistribution of small subunit
and a unique posttranscriptional control are also shown to regulate
RNR activity in fission yeast [9,10].

In higher plants, tobacco contains at least two R1 subunits and
one R2, all of which are transcribed in a cell cycle-specific manner
and mediated by E2F sites [11,12,13]. E2F sites also mediate the
induced transcription of R1a gene and subcellular relocalization of
R1a protein upon UV-C irradiation [14]. Arabidopsis has one R1
and three small subunits: AtTSO2, AtR2A and AtR2B. These
small subunits display a degree of functional redundancy, but
AtTSO2 normally plays a more predominant role than AtR2A
and AtR2B. AtR2B is truncated in the N-terminal region and
some residues involved in catalytic activity are missing and
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modified [15]. Transcription of AtI'SO2 and AtR2A are S
phase-specific and genes encoding three small subunits are
differentially expressed in response to genotoxins [16].

Mammals contain one large subunit R1 and two small subunits:
R2 and the newly identified p53R2. Levels of R1 are nearly
constant throughout the cell cycle and in excess relative to that of
R2 [17]. The enzymatic activity of RNR is therefore controlled by
the level of R2. R2 is specifically transcribed during S phase
through cell cycle-associated factors [18,19], and degraded in late
mitosis by a Cdh1-APC-mediated proteolysis via a KEN box in its
N terminal [20]. Thus, it is suggested that R2 mainly supplies
dNTPs for the nuclear DNA replication during S-phase [18].
Although expression of R2 gene is not induced by DNA damage in
normal cells [21], it is upregulated in some cancer cells to supply
dNTPs for DNA damage repair due to impaired p53-dependent
induction of p53R2 [22]. p53R2 is a transcriptional target in
ATM/CHK2 pathways and is markedly induced by p53 after
DNA damage [23,24]. p53R2 contains no KEN box and is
stabilized after DNA damage through an ATM dependent
mechanism [25]. However, p53R2 is constitutively expressed at
a low level throughout the cell cycle under normal conditions [26].
In addition to its role in supplying dNTPs for DNA damage repair,
p33R2 plays crucial roles in supplying cells outside of the S phase
with dN'TPs for “everyday” DNA repair as a result of oxidative
damage and depurination, and for mitochondrial DNA replication
[27,28].

The zebrafish (Danio rerio) has been widely accepted as an ideal
model for genetics, developmental biology, mechanisms of human
diseases and drug discovery [29]. Molecular features of zebrafish
R1 and R2 were previously described [30], but expression and
functions of RNR subunit genes in zebrafish remain largely
unknown. We have recently revealed the expression and functions
of zebrafish p53R2 in response to DNA damage [31]. In this
study, we aimed to uncover molecular mechanism(s) underlying
the expression of zebrafish R2 gene during the cell cycle and in
response to DNA damage.

Results

In silico analysis of the 5’- and 3’- flanking regions of
zebrafish R2 gene

To address the transcriptional regulation of R2 gene, we first
performed a promoter prediction algorithm for the 5'-regulatory
sequence of R2 gene in zebrafish. Three putative transcriptional
start sites were found and two of them (T'SS1 and TSS2) are
shown in Figure 1. Another TSS was eventually proved to be a
false-positive predication by our RT-PCR analysis of its tran-
scriptional products and promoter activity detection (data not
shown). In addition, @ silico cloning based on ESTs in the
Genbank database revealed the third transcriptional start site
(T'SS3, Figure 1) for zebrafish R2 gene.

Numerous potential transcriptional factor binding sites includ-
ing TATA box, CCAAT box, E2F, SRY, GC box, HSF, GATA2,
AP-1, CdxA, MyoD, Elf-1, NIT2, USF, ADRI, GATAI, S8,
CF2-1I, cap, NIT2, Sox-5, Dfd, Oct-1, AML-1a and BR-CZ, were
found in three potential promoter regions, designated P1, P2 and
P3. P1 and P2 contain a typical TATA-box sequence, but no
TATA-box consensus sequence was found in the core region of
P3.

Moreover, two functional polyadenylation sites (pASI and
pAS2) in the 3'-most exon of R2 gene were found through
bioinformatic analysis of existing cDNA/ESTs (Figure S1A) and
functional elements around pAS1 and pAS2 are highly conserved
as shown in previous studies [32].
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Thus, the existence of alternative potential promoters and
polyadenylation sites suggests multiple transcript variants for R2
gene in zebrafish.

Identification of R2 transcript variants in zebrafish

To validate the in silico prediction of R2 transcript variants in
zebrafish, RT-PCR assays were performed using primer pairs
specific for the transcripts from three promoters (Table S1). A
comparative analysis of genomic structures for R2 genes of human
[33] and zebrafish demonstrated their difference in the numbers of
TSSs, introns, exons and pASs. Forward primers P1_f, P2_f, and
P3_f are located immediately downstream of three predicted
transcriptional start sites of zebrafish R2 gene, respectively. A
reverse primer P_r is located in the immediate vicinity of the
pAS2. The primer nest-P_r was used for the nested-PCR
(Figure 2A).

As shown in Figure 2B, RT-PCR assays with primer pairs P1_f/
P_r and P2_{/P_r, which were designed to target the transcripts of
promoter P1 and P2, produced a 1989-bp (R2_v1) and a 2562-bp
(R2_v2) amplicon, respectively. Four amplicons from R2_v3a,
R2_v3b, R2_v3c and R2_v3d were obtained using the primer pair
P3_{/P_r (Figure 2C) and these amplicons were confirmed by a
nested PCR with primers P3_f/P_r-nest (Figure 2D). As shown in
Figure 2E, six types of R2 transcript variants contain exons 3 to
10, but exhibit significant differences at their 5" termini. R2_v1
generated from promoter Pl contains a medium-length exonl
(Ela). R2_v2, the product of promoter P2, contains a long exonl
(E1b). The other four types of transcripts are products of promoter
P3, including three alternative splicing variants (R2_v3b, R2_v3c
and R2_v3d), and ESTs for R2_v3a and R2_v3c are found in the
database of Genbank. Compared with R2_v1 and R2_v2, R2_v3
transcripts contain an extra E-1 with variations in length (E-1a and
E-1b). R2_v3a, R2_v3c and R2_v3d contain a long exon-1(E-1a),
whereas R2_v3b has a short exon-1(E-1b) from an alternative
splicing donor site in E-1. R2_v3c derives from the skipping of
Elc, whereas R2_v3d from the skipping of both Elc and E2. All
splicing events occurred in six R2 transcript variants follow the
“GU-AG” rule (data not shown).

Taken together, our results uncover six different transcript
variants that derive from three predicated promoters and
alternative splicing.

Identification and characterization of three R2 promoters

in Hela cells and developing embryos

To identify and characterize the three predicated R2 promoters,
luciferase reporter assays were performed in Hela cells and
developing embryos. A 5.2-kb DNA fragment (-5194 to -1) of R2
gene was isolated from zebrafish genomic DNA (Figure 3A) and a
series of promoter deletions from its termini were generated using
primers listed in Table S1. These DNA fragments were then
subcloned into the pGL3-Basic vector to drive the expression of
luciferase reporter in transfected cells or microinjected embryos.
The pGL3-Basic and pGL3-Promoter vectors were used as
negative and positive controls.

To test the activity of the P3 promoter, ten promoter deletion
constructs were made. As shown in Figure 3B, luciferase activities
of four promoter regions (-4046/-954, -3074/-954, -2223/-954
and -1609/-954) were about 3 to 8-fold higher than those of SV40
promoter (pGL3-Promoter) in developing embryos. These results
strongly suggest the presence of a predicated promoter P3. In
addition, the activity of a DNA fragment (-1609/-1358, 245-bp
immediately upstream of T'SS3) was 2- or 8-fold higher than that
of pGL3-Promoter in Hela cells and embryos. However, the
activities of promoter region (-1609/-1481) and (-1480/-1358)
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Figure 1. 5'-flanking region of zebrafish R2 locus. Nucleotides are numbered with the first nucleotide of the proximal ATG designated as +1
(indicated by solid triangle). Two putative translational initiation sites (ATGs) are shadowed. Potential binding sites for a variety of transcription
factors are underlined or overlined. Three alternative transcriptional start sites (TSS1, TSS2 and TSS3) are indicated by rightwards arrows. Exons (E-1a,

E-1b, E1a, E1b and E1c) are boxed.
doi:10.1371/journal.pone.0024089.g001

were sharply decreased to the level of promoterless vector (pGL3-
Basic). These data suggest that the DNA fragment (-1609 to -1358)
contains the core sequence that is required for the basal activity of
P3 promoter.

To investigate the activity of P2, five deletion constructs were
made. As shown in Figure 3C, the activity of fragment (-953/-724)
was nearly the same as that of pGL3-Basic, but activity of
fragment (-1357/-724) in embryos was 10-fold higher than that of
pGL3-Basic. These data suggest that the region (-1357/-724)
harbors a minimal promoter of functional P2. Other three deletion
fragments (-3074/-724, -2223/-724 and -1609/-724) exhibited
higher luciferase activities than that of the fragment (-1357/-724),
even though activities of all deletions were lower than that of
pGL3-Promoter.

To detect the activity of the P1, eight promoter deletions were
generated. As shown in Figure 3D, the luciferase activity of
promoter region (-723/-1, a fragment between TSS2 and ATG1)
showed 3- and 4-fold higher than that of SV40 promoter in both
Hela cells and developing embryos, suggesting a functional P1 in
zebrafish. Moreover, the promoter region (-394/-150, a fragment
immediately upstream of TSS1), exhibited almost the same level of
luciferase activity as that of pGL3-Promoter, indicating that this
region contains a minimal promoter of P1. Since other promoter
regions (-2223/-1, -1069/-1, -1357/-1 and -953/-1) contain
elements of P2 and P3, luciferase activities of them were
significantly higher than that of the promoter region (-723/-1).

Taken together, three functional promoters were characterized
to drive alternative transcription of R2 gene in zebrafish and P1
appears to be the most active one.

@ PLoS ONE | www.plosone.org

Spatiotemporal expression pattern of R2 transcript
variants

To address the distribution of R2 transcript variants in
developing embryos and adult tissues, quantitative PCR assays
were performed. The data showed that high levels of total R2
transcripts including R2_vl and R2_v2 were detected in early
developing embryos at 1-6 hpf (Figure 4A) and in proliferating
adult tissues including testis, ovary and kidney (Figure 4B). In
comparison with R2_v3 wvariants, R2_vl and R2_v2 were
dominantly distributed in developing embryos and adult tissues.
Moreover, ESTs for R2_v2 were not found in the GenBank
database (data not shown) and activity of P2 is lower than PI.
These data suggest that R2_v1 represents the vast majority of R2
transcripts and is highly expressed in proliferating cells.

In addition, R2_v3 were ubiquitously distributed in developing
embryos and expressed at a high level in the late stage embryos
(Figure 4A). However, the level of R2_v3 remains very low in most
of tissues except testis (Figure 4B). Among four R2_v3 variants,
R2_v3a is the dominant transcript variant in most of adult tissues
examined and developing embryos at different stages (Figure 4A
and 4B).

S phase-specific expression of R2 gene in zebrafish
Since R2_vl initiated by Pl appears to be preferentially
expressed in proliferating cells, we next sought to determine
molecular mechanism(s) underlying the regulation of R2_vl
expression. The sequences in the proximal regions of R2
promoters from zebrafish, frog, chicken and human were aligned.
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Figure 2. Genomic organization and transcript variants of zebrafish R2 gene. (A) Comparative analysis of R2 gene organization between
human and zebrafish. Exons (E-1 to E10) are numbered and indicated by boxes. Solid boxes indicate the R2 coding region, whereas open boxes
represent the 5'/3’-untranslated regions. Introns and other 5’-flanking regions are indicated by solid lines. Positions of primers used for RT-PCR are
named and indicated by arrows. Alternative polyadenylation sites in exon 10 are shown as pAS1 and pAS2. (B-D) RT-PCR analysis of zebrafish R2
transcript variants. M: DNA size markers. (E) Schematic representation of zebrafish R2 transcript variants. Three distinct transcript variants named
R2_v1, R2_v2 and R2_v3 are generated through alternative promoter usage. Alternative splicing of R2_v3 transcripts results in four transcript variants
R2_v3a, R2_v3b, R2_v3c and R2_v3d. All six transcript variants contain E3 to E10. The three R2 forms are referred to as R2, A29R2 and A52R2.

doi:10.1371/journal.pone.0024089.g002

As shown in Figure 5A, a 230-bp DNA fragment immediately
upstream T'SS of the three R2 genes contains one TATA box (or
its variant, TTTAAA), one E2F-binding site [34], and two
(chicken and human) or three (zebrafish and frog) CCAAT boxes
[35]. It is known that E2F-binding site and CCAAT boxes are
essential for both basal and S phase-specific expression of mammal
R2 [18]. To address whether these conserved elements in P1 of
zebrafish R2 gene are required for the control of R2 expression
during cell proliferation, three mutants of pGL-(-1609/-1) (mE2F,
mCCAAT-I and mCCAAT-II) were generated via a PCR-based
mutagenesis in the E2F-binding site or CCAAT box of wild type
P1 (Left panel of Figure 5B). Then, effects of these mutations on
P1 activity were detected in exponentially growing HepG2 cells.
As shown in the right panel of Figure 5B, the mutation in E2F

@ PLoS ONE | www.plosone.org

binding site led to an 65% increase in Pl activity (p<<0.01),
whereas mutations in CCAAT box I or II decreased P1 activity by
35% or 28%, respectively (p<<0.05 in both cases). Thus, the E2F-
binding site and CCAAT boxes are key cis-elements for the control
of P1 activity in zebrafish. The E2F-binding site functions as a
negative element, while CCAAT boxes serve as positive elements.

Since E2F-dependent repression is essential for cell cycle-
specific expression of R2 gene in mouse [18], we then examined
the negative effect of E2F binding site on expression of R2 gene in
zebrafish. Transcriptional activities of wild type P1 and E2F
mutant were determined in transiently transfected cells. Cells were
synchronized by serum starvation followed by readdition of serum.
It has been shown that the S phase duration of serum-deprived
HepG2 cells 1s about 11-29 h after serum stimulation [36]. Our
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Figure 3. Analysis of the transcriptional regulatory region of the zebrafish R2 locus. (A) Genomic structure of the 5’ control region of R2
gene. The proximal translational initiation site (ATG) is designated as +1. Positions of two ATGs and three alternative transcriptional start sites (TSS1,
TSS2 and TSS3) are shown. (B-D) Relative luciferase (LUC) activities (firefly/Renilla) of deletion constructs from three R2 promoters in zebrafish
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of the 5’-flanking region of R2 gene are listed in the left panel. Relative luciferase activities (firefly/Renilla) of corresponding constructs are presented
in the right panel. Histograms represent means *+ SD of three independent experiments.

doi:10.1371/journal.pone.0024089.g003

data showed that the luciferase activity of wild-type P1 markedly
increased at 12 h and peaked at 20 h after serum stimulation,
suggesting an S phase-specific induction; however, this effect was
less pronounced for the mE2F construct (Figure 5C).

Taken together, our results indicate that the preferential
expression of R2 gene in proliferating cells is associated with S
phase-specific P1 activation that results from the relief of E2F-
mediated repression.

DNA damage-induced expression of R2 gene in zebrafish

Through evolution, expression of RNR subunit genes is tightly
controlled in response to DNA damage [37] and their transcripts
from multiple promoters or alternative splicing often exhibit

@ PLoS ONE | www.plosone.org

distinct physiological implications [38]. To determine whether and
which transcript variant of R2 gene in zebrafish is induced by
DNA damage, expression of R2 gene in developing embryos
treated with DNA damage reagents was investigated using real-
time PCR. As shown in Figure 6A, treatment of developing
embryos with 2 000 or 4 000 nM Camptothecin (CPT) led to a 3-
to 13-fold increase in the levels of four R2_v3 transcripts that are
derived from P3 promoter. Levels of R2_v3c and R2_v3d
increased 11- and 13-fold, respectively; however, R2_v1&2 levels
were nearly unaffected. To further determine whether DNA
damage reagent could induce expression of R2_v3 at the level of
transcription, luciferase activity of pGL-(-5194/-954) in CPT-
treated embryos was tested. As shown in Iigure 6B, the activity of

August 2011 | Volume 6 | Issue 8 | 24089



>

0.016
0.012 -
0.008

0.004
0.001 r

0.00008 ]
0.00006
0.00004
0.00002

0 Y

0.005
0.004 -

0.003 r
0.0012}

mR2_v3b

vl

Relative Expression
(R2/18S rRNA)

24

B

[ Total R2
M R2_v3b

0.0009
0.0006 |

0.0003 F
0.0001

Relative Expression
(R2/18S rRNA)

0.00008

0.00006
0.00004

0.00002 -

oY = i
Ovary Testis Kidney Intestine Eye

B R2_v1&2
B R2_v3c

Brain Gill

Regulation of R2 Gene Expression in Zebrafish

OTotal R2 BMR2_v1&2 BER2 v3a
#H R2_v3c

il

m R2_v3d

48 72

B R2_v3a
W R2_v3d

Heart  Muscle Liver

Figure 4. Spatiotemporal expression patterns of R2 transcript variants in zebrafish. Expression levels of R2 transcripts were detected by
qPCR. (A) Expression of R2 transcripts during embryogenesis. Total RNA was isolated from thirty embryos at indicated stages. (B) Distribution of R2
transcripts in adult tissues examined. Total RNA was isolated from indicated tissues of two adult zebrafish. Expression levels of R2 transcripts were
normalized to 18S rRNA expression, and the vertical bars represent the mean = SD of three independent experiments.

doi:10.1371/journal.pone.0024089.g004

P3 was induced by certain concentrations of CPT in a dose-
dependent manner. These results suggest that R2_v3 transcripts
are specifically induced by DNA damage signals and that this
inductive effect i1s closely associated with the transcriptional
activation of P3.

Protein isoforms derived from zebrafish R2 transcript
variants

As shown in Figure 2E, three R2 isoforms were deduced from
six transcript variants derived from alternative promoters and
splicing. R2_v1, R2_v2, R2_v3a and R2_v3b encode the normal
subtype of R2, which resembles mammal R2. R2_v3c and R2_v3d
are generated by skipping of exon lc (Elc) and exon 1c&2 (Elc&
E2), and translated from an alternative translation start site at
nucleotide position -950 (Figure 1). As a result, R2_v3c and
R2_v3d encode two N-terminally truncated forms of R2, which
will hereinafter be referred to as A29R2 and A52R2.

To further analyze the functional difference among three R2
isoforms in zebrafish, multi-alignments of RNR small subunits

@ PLoS ONE | www.plosone.org

from many species were performed. As shown in Figure 7, all of
R2 isoforms in zebrafish contain most of the residues that are
essential for RNR enzyme activity and are conserved in RNR
small subunits from different species. These residues are necessary
for iron ligands, tyrosyl free radical generation, formation of
hydrophobic pocket surrounding the radical, electron transport
and C-terminal heptapeptide binding to the R1 protein [39,40]. In
particular, the KEN box that mediates the degradation of
mammalian R2 outside of the S phase [20] is conserved in the
normal form of zebrafish R2, whereas both A29R2 and A52R2
lack this functional domain at their N-terminus.

Isoforms of zebrafish R2 are localized in the cytosol and
physically interact with R1

Since subcellular distribution of RNR subunits play crucial
roles in the regulation of RNR activity, we investigated the
localization of the three putative R2 isoforms in transfected
Hela cells. As previously described [41], the coding sequences
of three R2 isoforms and R1 were tagged with Flag, HA, GIP
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Human  CCACGGGGGTGTCCCCGGGGGTCTCCGGAAGGCGCCCGCGGAGGEICCCGCGEPGCGCTTGAAAATCGCGCGCGGCCCCE
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Figure 5. Functional analysis of E2F site and CCAAT box in the proximal promoter of zebrafish R2 gene. (A) Comparative analysis of
230-bp nucleotides upstream of the proximal TSS (indicated by vertical box) from human, chicken, frog and zebrafish. Predicated E2F binding site,
CCAAT and TATA boxes are shown as ovals, arrows and rectangles, respectively. Accession numbers of these sequences were listed in Table S2.
(B) Effects of mutations in the E2F binding site and CCAAT box on strength of proximal promoter in zebrafish R2 gene. Wild type (WT) and mutated
promoters are indicated in the left panel and relative luciferase (LUC) activities of corresponding constructs are expressed as a percentage of wild
type promoter activity in the right panel. ** and * indicate p<<0.01 and p<<0.05, respectively. (C) Effects of an E2F mutation on cell cycle-specific
activation of zebrafish R2 promoter. HepG2 cells were transfected with wild type or mE2F reporter constructs plus reference vector pRL-SV40,
synchronized by serum-starvation for 48 h and then stimulated by adding fresh DMEM with 20% FBS. Cells were harvested for luciferase assays at
indicated time points. Values are expressed as fold induction compared with the relative luciferase activity (firefly/Renilla) at 0 h. Data represent mean
+ SD from three independent experiments.

doi:10.1371/journal.pone.0024089.g005

or RFP. Immunofluorescence staining assays indicated that three
isoforms of zebrafish R2 were mainly distributed in the
cytoplasm of Hela cells (Figure 8A). Moreover, GFP-tagged R2
and RFP-tagged R1 were co-localized in the cytosol of Hela cells
(Figure 8B).

Next, we addressed whether N-terminally truncated R2
isoforms are able to associate with R1. HA-tagged R1 and one
of the Ilag-tagged R2 isoforms were co-expressed in transfected

@ PLoS ONE | www.plosone.org

HEK?293T cells. Co-immunoprecipitation and Western blotting
assays were then conducted with monoclonal antibodies against
Flag or HA. As shown in Figure 9, A29R2 and A52R2 can be
precipitated with HA-tagged R1 and detected using the anti-Flag
antibody, while R1 can be precipitated with either Flag-tagged
A29R2 or A52R2 and detected using the anti-HA antibody. These
results suggest that N-terminally truncated isoforms of zebrafish
R2 are able to physically interact with R1.
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Figure 6. DNA damage-induced expression of zebrafish R2 gene. (A) Induced expression of R2 transcripts in CPT-treated embryos. Embryos
at 24 hpf were treated with 2000 or 4000 nM CPT for 6 h and total RNA was isolated for real-time PCR. The relative expression levels of R2 transcripts
are normalized to B-actin expression. Values are showed as the fold induction compared with untreated samples. (B) The activity of promoter P3 for
zebrafish R2 gene was induced by CPT. The P3 pGL-(-5149/-954) reporter construct was co-injected with pRL-SV40 into one-cell stage embryos and
injected embryos at 24 hpf were treated with indicated concentration of CPT for another 24 h. Then, luciferase (LUC) assays were performed with
embryo lysates. Values are expressed as fold induction compared with untreated samples. All data represent means = SD of three independent

experiments.
doi:10.1371/journal.pone.0024089.g006

Discussion

RNR subunits are highly conserved during evolution and
their expression is tightly controlled by multiple mechanisms [1].
However, it remains largely unknown about regulation and
functions of RNR subunits in zebrafish. A transcript encoding
the normal form R2 in zebrafish has been identified without
characterization of its functions [30]. We have recently shown
that expression and functions of p53R2 in zebrafish are closely
associated with its activities in DNA repair and synthesis [31]. In
this study, we demonstrate intrinsic mechanisms underlying
the control of zebrafish R2 expression, including alternative
promoter usage, pre-mRNA splicing and polyadenylation site
selection. Six distinct transcripts that are derived from three
promoters are characterized to encode three R2 isoforms.
Transcripts of normal R2 is mainly expressed in a cell cycle-
specific manner, while transcripts of A29R2 and A52R2 are
induced by DNA damage. Our results provide new evidence
for the tight control of differential expression and functions of

R2.

@ PLoS ONE | www.plosone.org

Regulation of R2 gene expression by alternative

promoters in zebrafish

It has been shown that the use of alternative promoters is
prevalent in many eukaryotic genes [42] and orthologs of R2 genes
in human and fission yeast harbor two promoters with distinct
transcriptional activities [33]. In this study, we have identified
three functional promoters of R2 gene in zebrafish. These three
promoters are able to generate six different transcripts with dif-
ferent 5" termini. In accordance with previous studies on functions
of R2 genes in other species [43,44], our data from quantitative
PCR and characterization of P1 activity indicate that zebrafish R2
gene is preferentially expressed in proliferating and dividing cells.
Activity of P1 mainly generates a transcript variant of R2_v1 in an
S phase-specific manner. Similar to those in human and mouse
[19,33,45], the CCAAT box in zebrafish P1 is required for the
promoter strength, while the E2F-binding site is indispensable for
the S phase specificity. Additionally, it is shown that the E2F-
binding site, identified as E2F4 in mouse R2 gene [18], functions
as a marginal transcriptional repressor [46]. Interestingly, the
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Budding yeast R2 —MPKETPSKA AADALSDLEI KDSKSNLNKE LETLREENRV KSDMLKEKLS KDAENHKAYL KSHQVHRHKL KEMEKEEPLL NEDKERTVLF go
C-Ellegans R2 -MTLTEIQNV EKENAGASVP KHSSNKLKLE KELEKLEIVD QTKAASAEET N—-————-—— ————] NESEV NELDADEPML QDLDNRFVIF 75
Fruit fly R2 —MASKENT ADNMEKFSLK SPSKKILTDS TNNVRKMSIG HEANGQLAKE SSTVNGIGKS ANSLMEKSVT PFDPSLEPLL RENPRRFVIF g7
Human R2 MLSLRVPLAP ITDPQQLQLS PLKGLSL PALSGT RVLASKTAR- ——-—RIFQE PTEPKTKAAA —PGVEDEPLL RENPRRFVIF g3
Mouse R2 MLSVRTPLAT IADQQQLQLS PLKRLT PTLSST RVLASKAAR- -———-RIFQD SAELESKAPT NPSVEDEPLL RENPRRFVVF g4
Zebrafish R2 STRSPLKT KNENT——IST SLSST RILASKTAR- ——KIFDE —SEGQSKAKK —GAVEEEPLL KENPHRFVIF go
Zebrafish A29R2 ~HK ——PPSLSST RILASKTAR- ————KIFDE —SEFQSKAKK —GAVEEEPLL KENPHRFVIF 51
Zebrafish A52R2 -MKGQSKAKK -GAVEEEPLL KENPHRFVIF 28
Vaccinia virus R2 MEPIL APHNPNRFVIF 15
Arabidopsis R2A MG SLKEGQGRD- M EEGESEEPLL MAQNQRFTHF 32
Zebrafish R2 MNSC TSNTPTVITG YQNG HKDVD PNSVEDEPLL RENPKREVIF 43
Human p53R2 M GDPERPEAAG LDQDERSSS- ————————— ————- DTNES EIKSNEEPLL RKSSRRFVIF 45
Mouse p53R2 M GDPERPEAAR PEKGEQLCS- ———-————— ————ETEEN VVRSNEEPLL RKSSRRFVIF 45
Budding yeast R2 PIKYHEIWQA YKRAEASH| 401 HDWNNRHNEN ERFFISRVLA FFAAYDLIVN ENLVENFSTE VQIPEAKSFY GFQIMIR 179
C.elegans R2 PLKHHDIWNF YKKAVASHW| M NDWE—KMNGD EQYFISRILA FFAAYDGIVN ENLCERFSNE VQVSEARFFY GFQIAIR 164
Fruitfly R2 PIQYHDIWQM YKKAEASHW] TDWH-RLKDD ERHFISHVLA FFAASDGIVN ENLVERFSQE VQITEARCFY GFQIAME 176
Human R2 PIETHDIWQM YKKAEASHW| QHWE-SLKPE ERYFISHVLA FFAASDGIVN ENLVERFSQE VQITEARCFY GFQIAMH 172
Mouse R2 PIEYHDIWQM YKKAEASHW| QHWE-ALKPD ERHFISHVLA FFAASDGIVN ENLVERFSQE VQVTEARCFY GFQIAMH 173
Zebrafish R2 PIQYHDIWQM YKKAEASHW| QHWD—SLKDE ERYFISHVLA FFAASDGIVN ENLVERFTQE VQVTEARCFY GFQIAMMNIH| 169
Zebrafish A29R2 PIQYHDIWQM YKKAEASHWI QHWD-SLKDE ERYFISHVLA FFAASDGIVN ENLVERFTQE VQVTEARCFY GFQIAMR 140
Zebrafish A52R2 PIQYHDIWQM YKKAEASHW| QHWD-SLKDE ERYFISHVLA FFAASDGIVN ENLVERFTQE VQVTEARCFY GFQIAMMNIH| 117
Vaccinia virus R2 PIQYHDIWNM YKKAEA: 'ul NDWN-KVTPD EKYFIKHVLA FFAAYDGIVN ENLAERFCTE VQITEARCFY GFRMAIR | 104
Arabidopsis R2A PIRYKSIWEM YKKAEASHW| QQWE-ALTDS EKHFISHILA FFAASDGIVL ENLAARFLND VQVPEARAFY GFQIAMMNIH| 121
Zebrafish R2 PIQYPDIWKH YKQAQASHW( THWD-GLKSE EKHFISHVLA FFAASDGIVN ENLVQRFSQE VQLPEARSFY GFQILIT 132
Human p53R2  PIQYPDIWKM YKQAQASHW PHWN-KLKAD EKYFISHILA FFAASDGIVN ENLVERFSQE VQVPEARCFY GFQILIH 134
Mouse p53R2  PIQYPDIWRM YKQAQASHW| PHWN-KLKSD EKYFISHILA FFAASDGIVN ENLVERFSQE VQVPEARCFY GFQIL w i 134
[ ]
Budding yeast R2 YSLLIDT YIKDPKESEF LFNATHTIPE IGEKAEWALR WIQDADALFG ERLVAFASIE| GVHFsG4HAS IFWLKKRGMM PGLTFSHEL[T 269
C.elegans R2 MYSKLIET YIRDETERNT LFNAVDEFEF IKKKADWALR WISDKKASFA ERLIAFAAWE| GIRFISGYFIAS IFWLKKRGLM PGLTHSNELfT| 254
Fruitfly R2 MYSVLIDT YIRDPHQREY LFNAIETHPA VKRKADWALS WISSKSANFG ERIIAFAAVE| G dFlAS IFWLKKRGLM PGLTFSNEL|I| 266
Human R2 SLLIDT YIKDPKEREF LFNAIETMPC VKKKADWALR WIGDKEATYG ERVVAFAAWE| GIMFISGIFIAS IFWLKKRGLM PGLTFSNEL|I| 262
Mouse R2 SLLIDT YIKDPKEREY LFNAIETHPC VKKKADWALR WIGDKEATYG ERVVAFAAWE| G 4FlAS IFWLKKRGLM PGLTFSNEL|I| 263
Zebrafish R2 SLLIDT YIKDSKEREF LFNATIETMPC VKKKADWALN WIGDKNARYG ERVVAFAAWE| GIMFISGIFIAS IFWLKKRGLM PGLTFSNELI| 259
Zebrafish A29R2 SLLIDT YIKDSKEREF LFNAIETHPC VKKKADWALN WIGDKNARYG ERVVAFAAE| G dFlAS TFWLKKRGLM PGLTRSNEL|I| 230
Zebrafish A52R2 SLLIDT YIKDSKEREF LFNATETHPC VKKKADWALN WIGDKNARYG ERVVAFAAWE| G 4FlAS TFWLKKRGLM PGLTFSNELI| 207
Vaccinia virus R2 ELLIDT YVKDSHEKNY LFNAIETMPC VKKKADWAQK WIHDS-AGYG ERLIAFAAVE| GI AS TFWLKKRGLM PGLTFSNELT| 193
Arabidopsis R2A SLLLET FIKDSKEKDR LFNAIETIPC ISKKAKWCLD WIQSP-MSFA VRLVAF. G A TFWLKKRGLM PGLTFSNELJI| 210
Zebrafish R2 SMLINT YIRDLKERDY LFNAVQTMPC VRRKADWALQ WISDTNSTFG ERLVAFAAWE| GI AA TYWLKKRGLM PGLTYSNEL|| 222
Human p53R2 SLLIDT YIRDPKKREF LFNAIETHPY VKKKADWALR WIADRKSTFG ERVVAFAAME| GVHFISGIFAA IFWLKEKRGLM PGLTFSNELJ| 224
Mouse p53R2 SLLIDT YIRDPKKREF LFNATETHMPY VKKKADWALR WIADRKSTFG ERVVAFAAVE| GI 3 AAA IFWLKKRGLM PGLTFSNE u 224
L]
Budding yeast R2 CHDEFIHIDF ACLLFAHLKN KPDPAIVEKI VIEAVEIEQR YFLDALPVAL LGHNADLMNQ [FWEFVADRLL VAFGNKKYYK VENPFDFMEN 359
C.elegans R2 RDEGIHRDF ACLLYSKLQK KLTQQRIYDI IKDAVAIEQE FLTEALPVDM IGHMNCRLMSQ [Y[IEFVADHLL VELGCDKLYK SKNPFDFMEN 344
Fruitfly R2 RDE] E F AVIMFQHLVQ RPKRERITEI TRDAVAIEQE FLTDALPYNL IGMNCDLMSQ [YIEFVADRLL VELGVGKIYN TKNPFNFMEM 356
Human R2 RDEGUHCDF ACLMFKHLVH KPSEERVREI IINAVRIEQE FLTEALPVKL IGMNCTLMKQ [YIEFVADRLM LELGFSKVFR VENPFDFMEN 352
Mouse R2 RDEGLHCDF ACLMFKHLVH KPAEQRVREI ITNAVRIEQE FLTEALPVKL IGMNCTLMKQ [YIEFVADRLM LELGFNKIFR VENPFDFMEN 353
Zebrafish R? D] HCDF ACLMFKHLIN KPSEETVKKI IMNAVEIEQE FLTDALPVKL IGMNCDLMKQ [YJIEFVADRLL LELGFDKVYR VENPFDFMEN 349
Zebrafish A29R2 SHDH] HCDF ACLMFKHLIN KPSEETVKKI IHNAVEIEQE FLTDALPVKL IGHNCDLMKQ (VIEFVADRLL LELGFDKVYR VENPFDFMEN 320
Zebrafish A52R2 SHDEGLUHCDF ACLMFKHLIN KPSEETVKKI IMNAVEIEQE FLTDALPVKL IGMNCDLMKQ [YIEFVADRLL LELGFDKVYR VENPFDFMEN 297
Vaccinia virus R2 HCDF ACLHFKHLLH PPSEETVRSI ITDAVSIEQE FLTAALPVKL IGHNCEMMKT (VIEFVADRLI SELGFKKIYN VINPFDFHEN 283
Arabidopsis R2A HCDF ACLLYSLLQK QLPLEKVYQI VHEAVEIETE FVCKALPCDL IGMNSNLMSQ [YIQFVADRLL VTLGCERTYK AENPFDWMEF 300
Zebrafish R2 HCNF ACLIYSYLVK KPSVDRVNDI IAKAVSIEQE FLTEALPVNL IGMNCSLMKQ [YIEFVADRLL TDLGLPKAYC SENPFDFHES 312
Human p53R2 HCDF ACLMFQYLVN KPSEERVREI IVDAVKIEQE FLTEALPVGL IGHMNCILMKQ [YIEFVADRLL VELGFSKVFQ AFNPFDFMEN 314
Mouse p53R2 ICDF ACLMFQYLVN KPSEDRVREI IADAVQIEQE FLTEALPVGL IGMNCVLMKQ [YIEFVADRLL GELGFSKIFQ AENPFDFMEN 314
[ ] [ ]

Budding yeast R2 ISLAGKTNFF [d] KA GVHMSKSTKQE AG-AFTFNED F| 399

C.elegans R2 ISIDGKTHFF [BK RP GVMVNEAERQ ———-FDLEAD F| 381

Fruitfly R2 ISLDGKTHFF [EK RM GVVSNPLDNV ———FTLDAD F| 393

Human R2 ISLEGKTNFF [EK RM GVMSSPTENS ———-FTLDAD H| 389

Mouse R2 ISLEGKTNFF [F RM GVMSNSTENS ———-FTLDAD F| 390

Zebrafish R2 ISLEGKTNFF [ER ORM GVMSGTTDNT ——-{FTLDAD F| 286

Zebrafish A29R2 ISLEGKTNFF [ER RM GVMSGTTDNT ———{FTLDAD F| 357

Zebrafish A52R2 ISLEGKTNEF |[F} RM GVMSGTTDNT ———-FTLDAD F| 234

Vaccinia virus R2 ISLEGKTNFF [EK KM GVMS-QKDNH ——FSLDVD F| 319

Arabidopsis R2A ISLQGKTHFF [f A SVHMSNLQNGN QNYHFTTEED F| 341

Zebrafish R2 ISLEGKTNFF [EK GVMSHVKDCE ———-FTLDAD F| 349

Human p53R2  ISLEGKTNEF [f] YRF AVMAETTDNY ———FTLDAD F| 251

Mouse p53R2 ISLEGKTNFF [EK F AVHAETTDNV ———FTLDAD F| 351

B

Figure 7. Multiple sequence alignments of RNR small subunits from nine species. Gaps were introduced to maximize the alignment.
Amino acids with a similarity of more than 80% are shadowed. The KEN boxes are indicated by rectangle. The N-termini of three zebrafish R2 isoforms
is indicated by rounded rectangle. Residues crucial for enzyme activity are boxed and indicated by different symbols: @ = iron ligands; A = tyrosyl
radical; A=hydrophobic pocket; ¢ =electron transport; B = R1 binding heptapeptide. Accession numbers of these sequences were listed in

Table S2.
doi:10.1371/journal.pone.0024089.g007

E2F-binding site in higher plants also plays a crucial role in cell
cycle-specific transcription of R2 homologous gene [11,16]. Thus,
E2F repression appears to be a conserved mechanism underlying
the cell cycle-specific transcription of R2 genes in high plants and

vertebrates.

Transcription of RNR small subunit genes in many species
including social amoeba [47], yeast [48,49] and higher plants [16],

@ PLoS ONE | www.plosone.org

can be induced by DNA damage signals. In this study, we
demonstrate that the expression of four R2_v3 tanscript variants
are induced by DNA damage regents and this inductive effect is
closely associated with the differential activation of P3, which leads
to a 3-13 fold induction of R2_v3 variant. It is shown that
homologues of Crtl/Rfx1 which work as transcription repressors
play an important role in for DNA damage induced transcription
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Figure 8. Subcellular localization of zebrafish R2 isoforms. (A) Immunofluorescence staining was performed to detect the subcellular
distribution of zebrafish R2 isoforms in transfected Hela cells. Three R2 isoforms were tagged with a Flag at N-terminus. At 36 h after transfection, R2
isoforms were detected with primary anti-Flag antibody and FITC-conjugated secondary antibody. Nuclei were stained with DAPI. (B) Co-localization
of fluorescent protein-tagged zebrafish R1 and R2 isoforms in the cytosol of Hela cells. R2 isoforms or R1 of zebrafish were fused with GFP or RFP to
their C-termini. At 36 h after transfection, images were directly acquired under fluorescence microscopy.

doi:10.1371/journal.pone.0024089.g008

[50].
Furthermore, E2F factors are also involved in the DNA damage-
induced expression of the R2 gene in human tumors [51],
particularly E2F sites directly mediates this induction effect in
plants [11,16]. Interestingly, the P3 of zebrafish R2 gene contains
binding sites for E2F, Rfx1 and other transcription factors Oct-1
and AP-1 (data not shown), which are known to be involved in the
regulation of stress-induction [52]. Therefore, further efforts are
needed to address mechanism(s) underlying the induced expression
of R2 gene upon DNA damage.

of R2 gene in yeast and mammalian cancer cells

Regulation of R2 gene expression by alternative splicing

and polyadenylation in zebrafish

Alternative promoters can initiate transcription from different
exons and tend to generate alternative splicing which is a
widespread mechanism of gene regulation in higher eukaryotes
[53]. In this study, we have identified six R2 transcript variants

with distinct 5" termini in zebrafish. Three of the transcript

IP: anti-HA |P: anti-Flag TCL
HAR1T + - + + - + + - +
FlagR2s - + + - + + - + +
WB: anti-HA - e ®R
— — —— R2
anti-Flag R2 - s e O0R2
W W e AS2R2

Figure 9. Physical interaction of zebrafish R2 isoforms with R1.
293T cells were transfected with vectors expressing HA-R1 and one of
Flag-R2 isoforms. At 45 h after transfection, protein extracts were
subjected to immunoprecipitation (IP) with anti-HA or anti-Flag
antibodies. IP materials and total cell lysates (TCL) were detected by
Western blotting (WB) analysis. Data for R1 are representative of three
IP samples.

doi:10.1371/journal.pone.0024089.g009
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10

variants generated by P3 are derived from exon skipping and
usage of alternative splice donor sites. Furthermore, we demon-
strate that transcript variants from P3 promoter are differentially
induced by DNA damage reagents. This observation is consistent
with previous studies showing that alternative splice sites can be
selected by cells responding to extracellular signals [54]. However,
it remains unclear how the activity and specificity of the splicing
machine is controlled by DNA damage signals.

Alternative polyadenylation is another mechanism that yields
transcripts with identical protein-coding sequences and different 3’
UTRs, which provides the potential for differential regulation of
mRNA expression by RNA binding proteins and/or miRNAs
[55]. Two functional polyadenylation sites and several conserved
cis-elements are found in the 3’ untranslated region (3" UTR) of
zebrafish R2 gene (Figure S1). The proximal polyadenylation
signal is likely required for the abundant expression of zebrafish
R2 gene during early embryonic development and in reproductive
tissues since it exists in most of ESTs from the GenBank database
(Figure S1). In addition, a cytoplasmic polyadenylation element
that mediate the maternal expression of R2 gene in sea urchin egg
[56] is found near the proximal polyadenylation site of zebrafish
R2, and shorter 3 UTRs are usually associated with cell
proliferation [57]. Moreover, the distal polyadenylation signal
appears to link with DNA damage-induced expression of R2 gene,
since eight AU-rich elements are found in the 3" UTR between
two polyadenylation signals in zebrafish R2 gene. These AU-rich
elements are well known to target mRINAs for rapid degradation
and their presence can lead to the stabilization of a mRNA
depending on precise stimulus [58].

The putative isoforms of zebrafish R2 are catalytically
active

Most of alternative splicing events can lead to the synthesis of
different protein isoforms because of alterations in their coding
region [59]. In this study, we show that alternative splicing of
R2_v3 transcripts give rise to three R2 isoforms: one normal R2
and two novel R2 isoforms truncated at N-terminus (A29R2 and
A52R?2). Although alterations in the sequence of proteins can
affect their binding properties, subcellular localization, enzymatic
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activity and/or stability [60], our @ vitro data indicate that N-
terminal truncations of zebrafish R2 isoforms didn’t alter their
cytoplasmatic localization and interaction with R1.

Several lines of evidence suggest that the N-terminal region of
vertebrate R2 is dispensable for its catalytic activity. First, amino
acid residues at the N-terminus of R2 genes from different species
are not conserved and their N-terminal regions differ in length.
For instance, N-terminal regions of R2 are missed in large DNA
viruses [61], protozoan parasites [62], higher plants [13], and
Escherichia coli [63]. In mammals, the major difference between R2
and p53R2 is that the latter lacks 33 residues in its N-terminus
[23]. Second, the structural biology of mouse R2 indicates that 65
residues at its N-terminus are disordered and thus not visible in the
crystal structure [64]. Third, a recombinant mouse R2 protein
lacking the N-terminal 61 residues is able to interact with the R1
and is fully active in vitro [20]. Vaccinia R2 lacking the N-terminal
65 residues interacts with mouse R1 to form active complexes
vio [65]. Thus, two N-terminally truncated isoforms of zebrafish
R2 are likely to have the catalytic activity.

The N-terminal region of R2 appears to be important for cell
cycle-specific regulation of R2 expression. It is shown that residues
30-32 in the KEN box of mouse R2 mediate its mitotic
degradation and these N-terminal regulatory sequences are
conserved among R2s from metazoan, C. elegans and fruit fly
[20]. The normal form of R2 in zebrafish contains a KEN box,
whereas two N-terminally truncated isoforms (A29R2 and A52R2)
lose it. It is likely that the ingenious truncation in zebrafish R2
results in active and stable forms of R2 throughout the cell cycle.

Zebrafish R2 gene has a redundant function, overlapping
with p53R2 in response to DNA damage

RNR functions in supplying dNTPs for DNA synthesis and
DNA repair and organisms have developed complicated mecha-
nisms throughout evolution to control the differential expression of
RNR subunit genes. The single R2 in lower animals (Figure S2)
possesses two distinct functions: S phase-specific expression for
DNA replication and DNA damage-induced expression for DNA
repair. In vertebrates, it is likely that a subfunction partitioning has
occurred during the evolution of R2 genes, since R2 and p53R2
encoded by two different genes attribute to the functions of the
RNR small subunit. R2 is exclusively responsible for nuclear DNA
replication, whereas p53R2 functions in DNA repair and
mitochondrial DNA replication [66]. In association with this
subfunctionalization, R2 is expressed in an S phase-specific
manner and is degraded during mitosis through the N-terminal
KEN box [20], whereas expression of p5>3R2 is induced by DNA
damage signals in a p53-dependent manner [23]. p53R2 contains
no KEN box and it is stabilized after DNA damage [25]. We have
recently demonstrated that zebrafish p53R2 can be induced by
DNA damage reagents and plays conserved functions in genotoxic
stress [31]. In this study, we show that two p53R2-like R2 isoforms
are generated through alternative promoter usage and pre-mRNA
splicing in zebrafish. These observations are consistent with
previous studies showing that alternative promoter usage and
splicing of R2 genes in fission yeast and mosquito occur in
response to DNA damage [49,67]; however, there is no p53R2-
like gene in these species. Additionally, two N-truncated R2
isoforms in zebrafish are strongly associated with DNA damage
response, whereas truncated R2 isoforms have yet to be
characterized in mammals. Therefore, the R2 gene in zebrafish
appears to have a redundant, overlapping function with p53R2 in
response to DNA damage. Further studies are needed to address
whether p53R2 and R2 isoforms have differential functions under
genotoxic stress in zebrafish.
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Materials and Methods

Ethics statement
The animal protocol for this research was approved by the
Animal Care and Use Committee of Hubei Province in China and

by the Institutional Animal Care and Use Committee of Institute
of Hydrobiology (Approval ID: Keshuizhuan 0829).

Bioinformatic analysis

Putative promoters of R2 gene were analyzed using the
Promoter Scan (http://www-bimas.cit.nih.gov/molbio/proscan/),
transcription factor binding sites were predicated using the
Genomatix suite (http://www.genomatix.de/) and TFSEARCH
(http://www.cbrc jp/research/db/TFSEARCH.html). ¢cDNA/EST
sequences were obtained from the UniGene database. Intron/exon
structures were determined through a comparison of cDNA with
the corresponding genomic sequence using the Spidey software
(http://www.ncbi.nlm.nih.gov/spidey/). Transcriptional start sites
were predicted using the Eponine Transcriptional start Site Finder
(http:/ /servlet.sanger.ac.uk.8080/eponine/). Alignment of R2 pro-
teins from different species was performed using the ClustalW2
(http:/ /www.ebi.ac.uk/Tools/ clustalw2/index.html).

Zebrafish and chemical mutagens

AB inbred strain of zebrafish were raised and maintained under
standard conditions. Naturally fertilized zebrafish embryos were
incubated at 28°C, and staged by hours post-fertilization (hpf).

Camptothecin (CPT) and methylmethane sulfonate (MMS)
were purchased from Sigma-Aldrich. Stock solution of CPT or
MMS at 10 mM was prepared in dimethyl sulfoxide (DMSO),
stored at —20°Ci and diluted to desired concentrations immedi-
ately prior to usage.

Cell lines and transient transfection

HeLa, HepG2 and 293T cells (ATCC Numbers: CCL-2, HB-
8065, CRL-11268) were maintained in Dulbecco’s modified
Eagle’s Medium (DMEM) supplemented with 10% fetal calf
serum (FCS), 100 u/mL penicillin, 100 pg/mL streptomycin and
0.25 pg/mL fungizone from Invitrogen, at 37°C in 5% COy/air
atmosphere. Transfection was carried out using the FuGENE 6
reagent from Roche according to the manufacturer’s instructions.
The total DNA amount used for each transfection was kept
constant by adding the appropriate amount of parental empty
expression vector. Serum-starved cells were prepared from the
culture of HepG2 in medium with 0.5% FCS for 48 h and then
stimulated by adding fresh DMEM with 20% FBS [68].

RNA extraction, RT-PCR and quantitative PCR

Total RNA was extracted from about 35 developing embryos or
adult tissues from 2-3 individuals using the TRIZOL reagent
(Invitrogen). RNA samples were digested with RNase Free DNase
I (Promega). The RNA integrity and quality were then determined
by agarose electrophoresis and spectrophotometer. The ¢cDNAs
were transcribed from 2 pg of total RNA using the RevertAid™
First Strand cDNA Synthesis Kit (Fermentas) in a reaction volume
of 20 pl. The reaction conditions and thermal profile were set up
according to the instructions of the MyiQ Single-Color Real-Time
PCR Detection System from Bio-Rad.

For reverse transcription PCR (RT-PCR) analysis, mixture of
cDNAs (primed with oligo-dT'g) from testis and ovary were used
as template using specific primer pairs listed in Table S1. PCR
products were analyzed on 2% agarose gel and sequenced.

For real-time quantitative PCR (qPCR), random hexamers were
used for cDNA synthesis because the oligo-dT primers are not
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suitable for examination of splice variants and 18S ribosomal RNA
(rRNA). Six validated primer pairs (Table S1) were manually
designed to specifically target R2 splice variants. To avoid
amplifying genomic DNA, each primer pair contains at least one
primer spanning an ‘“‘exon-exon’ boundary. The primer pair
v1&2_{/v1&2_r was used to detect two transcripts R2_v1 and
R2_v2, due to a little difference in their exonl sequence that does
not allow the design of another primer pair to distinguish between
them. The four v3_{/v3_r primer pairs were used to amplify four
variants of R3_v3 subclass specifically. The primer pair total_f{/
total_r was designed to detect the total level of R2 transcripts. All
of the PCR products were sequenced. The 18S rRNA was used as
the reference to calculate the relative quantification of R2
transcripts in developing embryos and adult tissues. The B-actin
was used as the reference to detect the relative quantity of R2
expression upon DNA damage according to a previous study [69].

The qPCR assays were performed using the MyiQ Single-Color
Real-Time PCR Detection System from Bio-Rad in a reaction
volume of 20 ul containing 5 pl of diluted (1:10) cDNA, 100 nM
of each primer and 10 pl of the 2xSYBR Green I Master Mix
(Toyobo). Reaction conditions are as follows: 1 cycle at 95°C for
3 min; 40 cycles at 95°C for 10 s and 60°C for 30 s. All samples
were run in triplicate. No template controls (NTC) were included
in all of qPCR assays and did not show any amplification. After
amplification, melting curve analysis was performed to avoid the
existence of other nonspecific products including primer dimmers
and unintended amplification of genomic DNA. The specificity of
PCR products was further confirmed by electrophoresis and
sequencing. Amplification efficiency of each primer pair was
calculated using the corresponding standard curve, which was
obtained by plotting cycle threshold (Ct) values against log-
transformed serial ten-fold dilutions (Figure S3). No detectable Ct
values were obtained from N'TCs. Efficiencies of primer pairs for
18S rRNA, B-actin, total R2, R2_v1&2, R2_v3a, R2_v3b, R2_v3c
and R2_v3d are 100.94%, 100.96%, 97.32%, 97.83%, 98.95%,
100.49%, 97.92 and 101.16%, respectively. These data meet the
requirements for analysis of raw data with the 224" method [70]
in the application guide of manufacturer (Bio-Red, Catalog #
170-9799).

Generation of DNA constructs

To generate promoter deletion constructs, a primer pair -
4046_f/-1_r was designed to amplify a 4-kb DNA fragment from
the 5" control region of zebrafish R2 gene according to an
annotated sequence in GenBank (BX248136). This fragment was
inserted into the pGL-Basic vector from Promega. Promoter
deletion constructs for P1 (-3074/-1, -2223/-1,-1609/-1, -1357/-1,
-953/-1, -723/-1, -394/-1, -149/-1, -394/-150), P2(-2223/-724,
-1609/-724, -1357/-724, -953/-724) and P3(-5194/-954, -4046/
-954, -3074/-954, -2223/-954, -1609/-954, -1480/-954, -1357/
-954, -1609/-1358, -1609/-1481, -1480/-1358) were then generat-
ed with PCR primers listed in Table S1.

To generate promoter mutants, a megaprimer PCR approach
was used [71]. Primer pair -1357_f /-1_r was used as the flanking
primers. Three “megaprimers” were listed in Table S1. The E2F
binding site sequence TTTCCCGCG was changed to TTT-
CCTCAT [18] and the CCAAT box sequence was substituted
with the CTAGT [72].

To construct vectors for ectopic expression of R1 and R2, the
coding sequence of R1 gene was inserted into the vector pCGN-
HAM [73] and pDsRedl-N1 from Clontech, and coding
sequences for three putative R2 isoforms were inserted into the
pCMV-Tag2c and pAcGFP-N1 from Clontech, respectively. All
constructs were confirmed by sequencing.
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Luciferase assays

To analyze the activity of R2 promoter deletions, luciferase
reporter vector plus the reference pRL-TK were co-transfected or
co-microinjected into HelLa cells or developing embryos. At 48 h
after transfection or microinjection, samples were harvested for
luciferase assays.

To analyze the activity of promoter mutants, luciferase reporter
vectors containing one of promoter mutants were transfected into
HepG2 cells, which are more suitable for serum starvation arrests
than HeLa cells [74]. pRL-SV40 was used as the reference as
previously described [18]. Samples were collected at 48 h post-
transfection. To determine the effect of serum stimulation on R2
promoter, HepG2 cells were synchronized using the serum
starvation—stimulation protocol [36]. Once transfections were
completed, cells were maintained in DMEM containing 0.5% FBS
for 48 h. The medium was then changed to DMEM containing
20% FBS and cells were harvested at different time points.

To detect effects of DNA damage on the activity of R2
promoter, the normal or E2F-mutant promoter was microinjected
with pRL-SV40 into one-cell stage embryos. At 24 h after
injection, embryos were exposed to 0, 1000, 2000, or 3000 nM
CPT for another 24 h and then 30 developing embryos in each
group were collected for luciferase assays.

The luciferase activity was quantified in an analytical Lumi-
nometer from Berthold using the Dual-Luciferase Reporter Assay
System from Promega. Data were expressed as the ratio of firefly
to Renilla luciferase activity.

Immunofluorescence staining, co-immunoprecipitation
and Western blotting

HelLa cells were transfected with one of the constructs expressing
three putative isoforms of R2 tagged with Flag. At 24 h after
transfection, immunofluorescence staining assays were performed
following our previous protocol [75]. Subcellular co-localization of
RFP-tagged R1 and GFP-tagged R2 was directly visualized in
HelLa cells under a fluorescence microscope from Nikon. Physical
interaction of three R2 isoforms with R1 was detected in transfected
293T cells following our previous protocol [75].

Supporting Information

Figure S1 Alternative polyadenylation sites of R2 gene
in zebrafish. (A) Two functional polyadenylation sites (pAS) of
zebrafish R2 gene were found through bioinformatics analysis of
cDNA/ESTs with polyadenylation signals in the UniGene
database. Only non-normalized and non-subtracted EST libraries
were considered, so the numbers of ESTs given for each site
were taken as a measure of relative polyadenylation efficiency.
(B) Nucleotide sequence of the 3" untranslated region in R2 gene
of zebrafish. Consensus sequences of polyadenylation signals,
upstream sequence elements (USE) and AU-rich elements (ARE)
crucial for mRNA stability were indicated. The sequence of R2
gene is shown in upper case, while the 3’ flanking genomic
sequence is shown in lower case.

(TIF)

Figure $2 Phylogenetic analysis of class I a RNR small
subunits. The phylogenetic tree was inferred using the
Neighbor-Joining method and phylogenetic analysis were con-
ducted in MEGA4. Numbers at nodes represent percentage
bootstrap values obtained from 1,000 samplings. R2s which are
reported to be induced by DNA damage are indicated. Accession
numbers of these sequences were listed in Table S2.

(TIF)
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Figure 83 Standard curves and amplication efficiencies
of primer pairs used for qPCR. (A) 18S rRNA. (B) B-actin.
(C) Total R2. (D) R2_v1&2. (E) R2_v3a. (F) R2_v3b. (G) R2_v3c.
(H) R2_v3d.

(TTF)

Table S1 Primers used in this study.
(DOC)

Table 82 Accession numbers of sequences used in this study.

DOC)
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