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Abstract: In this manuscript, structural testing was conducted on high-strength concrete slab speci-
mens to investigate the behavior of such specimens when reinforced with a locally produced GFRP
reinforcement. Subsequently, a finite element model (FEM) was constructed and validated against
the experimental results. In the experimental phase, a total of eleven specimens (nine were reinforced
with GFRP, while two were reinforced with conventional steel) were constructed and tested. The slabs
dimensions are 700 mm × 1750 mm with variable thickness from 100 mm to 150 mm and different
reinforcement ratios using different diameters. The structural behavior of the tested slabs was inves-
tigated in terms of ultimate load, ultimate deflection, load–deflection relationship, and crack pattern.
Additionally, a nonlinear finite element model using the software ANSYS 2019-R1 was constructed
to simulate the structural behavior of slabs reinforced with GFRP bars. The results obtained from
the finite element analysis are compared with experimental results. The outcomes showed that the
contribution of GFRP rebars in concrete slabs improved slab ductility and exhibited higher deflection
when compared with traditional steel rebars. Good agreement between experimental and nonlinear
analysis was obtained.

Keywords: structural performance; exponential study; GFRP bars; high-strength concrete (HSC);
nonlinear analysis; ANSYS 2019-R1

1. Introduction

Corrosion of steel reinforcing bars is one of the major problems that shorten the
lifetime serviceability of reinforced concrete (RC) structures [1–4]. This has led to the
development of new concrete-reinforcing materials. With their high strength and good
corrosion resistance, fiber-reinforced polymers (FRPs) represent a good alternative. In
comparison to steel, the distinctive properties of FRP materials are high strength, relatively
low elastic modulus, and elastic response to failure. Given these different properties, the
behavior of concrete elements reinforced with FRP is likely to differ markedly from those
that employ conventional steel reinforcement. This difference is characterized not only by
a different load–deflection response but also by a change in the mode of failure. The failure
mechanism of FRP-reinforced concrete elements is due to them being relatively brittle,
even in flexure. This gives rise to major concerns by structural engineers who are more
familiar with the under-reinforced design philosophy developed for steel RC structures,
which ensures a ductile failure to give plenty of warning. However, Ospina and Nanni [5]
concluded that different deflections can be predicted for members reinforced with FRP
bars that have similar stiffness but different ultimate tensile strength. Because deflection
is a problem associated with the serviceability limit state, the procedure should not be
linked to ultimate limit state parameters [6–8]. Lately, the flexural performance of FRP-RC
elements has been widely studied. Benmokrane et al. [9] conducted an experimental and
theoretical evaluation of the flexural performance of RC beams reinforced with glass FRP
and steel. Masmoudi et al. [10] investigated the effects of reinforcement ratio on cracking
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patterns, deformation, flexural capabilities, and failure mechanisms of GFRP and steel-
reinforced concrete beams. They evaluated the impact of compression reinforcement when
calculating the final flexural capacity of the beams. Nonetheless, the impact was dismissed
as insignificant. FRP and steel-reinforced concrete parts react differently in terms of
serviceability. Alsayed et al. [11] found that GFRP beams could precisely anticipate flexural
capabilities using the ultimate theory of designs. Toutanji and Saafi [12] changed the factor
of the power in the equation of Branson to account for its experimental results with the
elasticity of the bar and the ratio of reinforcement. Toutanji and Deng [13] demonstrated
that ACI 440.1R-01 can successfully estimate deflections and crack width in one-layer
FRP-bar beams with crack width. However, ACI 440.1R-01 may be employed once some
parameters have been changed when FRP bars are arranged in two layers. Thiagarajan [14]
reported the findings of an experimental and analytical investigation comparing the flexural
performance of RC beams reinforced with sandblasted carbon basalt fiber rods composite
rods. He studied 12 beams comprising three control steel beams that were evaluated for
features of deformation and strength. Experimental results from pullout testing revealed
that bonding of sandblasted rods is not a serious problem. The effective inertia prediction
moment of the FRP-RC beam was investigated by Moussavi and Esfahani [15]. This
article presents new equations based on evolutionary algorithms and experimental data
to estimate the effective time of FRP-RC beams in inertia. The testing results were highly
associated with the expected values using the suggested equations, particularly with high
strengthening ratios and high load-levels. Rashid et al. [16] reported the flexural behavior
of 10 HSC beams reinforced with aramid-fiber-reinforced polymers (AFRPs). The study
recommended that ductility measurement for FRP beams is useful. The necessity to reduce
the maximum distances between the stirrups as defined in the existing code has also been
recognized, and recommendations have been given for sections with high shear forces
coupled with considerable bending moments. Ashour [17] presented the flexural and shear
capacity of 12 GFRP beams. Comparisons between the flexural capacity derived from
theoretical analysis and those determined experimentally indicate satisfactory consent.
Nayal and Rasheed [18] proposed a model investigating the tension stiffening of RC beams
reinforced with steel and FRP bars. The study’s findings give useful model parameters for
steel and FRP-RC beams. According to Kara and Ashour [19–21], the low elastic modulus
of FRP bar results in significant crack width and deflections when compared with steel bars.
Kassem et al. [22] investigated the serviceability of FRP beams reinforced with various
types and reinforcement ratios. To assess the accuracy of such prediction models according
to ACI Committee 440-H., the experimental results were compared with CSA 2002 and ACI
Committee 440 2006 accessible models. Al-Sunna et al. [23] showed high ultimate capacities
of moment compared obtained from nearly all codes. Barris et al. [24] evaluated the
deflections and cracking in 14 GFRP RC beams for typical predicted models. The impact of
the important factors was examined, and the appropriateness of various predicted models
and the empirical coefficient modification were explored. Mahroug et al. [25,26] examined
continuous concrete slabs strengthened with basalt and carbon FRP bars. The combined
flexure–shear collapse mechanism was seen in all slabs. Furthermore, they demonstrated
that increasing the bottom reinforcement of slabs is more successful than increasing the
top reinforcement in enhancing load-carrying capacity and reducing midspan deflections.
Dundar et al. [27] reported the load–displacement conduct of FRP and steel multispan
RC beams. The deflection of FRP or steel RC beams was determined using a numerical
technique. This study can offer a helpful method for calculating deflection for any type of
reinforcement. Wang et al. [28] assessed the polymer tendons under sea conditions in both
the prestressed basalt and hybrid fiber-reinforced tendons. The interior corrosive steel wires
caused basalt and steel wire to degrade considerably more quickly. Chenggao et al. [29]
investigated the distribution in a pultruded glass or carbon hybrid bar and absorption
of water under temperatures and hydraulic pressures. The increased temperatures and
hydraulic pressure accelerated the water diffusion in the hybrid bar. Demakos et al. [30]
provided a numerical and experimental study for a structured curved frame. The thin-
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arched ultimate load achieved values similar to those seen for the mortar compressive
strength employed. There was good agreement between experimental and numerical
results. In an optimal design of a steel building, Papavasileiou and Pnevmatikos [31]
submitted an investigation against an earthquake and the gradual cord collapse. This study
indicates that the gradual collapse can bring the whole structure to failure locally by a
structural component. The findings of this research show the promising cable potential as
a way of increasing the building’s progressive resistance to collapse.

This paper presents the flexural behavior of one-way concrete slabs reinforced with
locally manufactured GFRP bars. Currently, experimental data conducted for HSC slabs
reinforced with GFRP bars are scarce. So, an experimental study was done to study the
behavior of HSC slabs reinforced with GFRP bars with different reinforcement ratios
varying from 0.8 µb to 1.2 µb (balanced reinforcement ratio) using different bars diameters.
Eleven slabs 1750 mm in length, 700 mm in width, and 100 mm to 150 mm in depth were
loaded and tested until failure. Nonlinear finite element analysis was conducted using
ANSYS 2019-R1 to verify the obtained experimental results in terms of load–deflection
curves, deflection, and crack pattern for all tested slabs.

2. Experimental Program

The experimental study was investigated in the Housing and Building National
Research Center (HBNRC), Giza, Egypt. This study was performed to study the structural
performance of HSC slabs reinforced with GFRP bars under flexural load. The ultimate
load, ultimate deflection, concrete and GFRP bar strains, and crack pattern was obtained.

2.1. Experimental Study
2.1.1. Concrete Mix

The concrete mix of 60 MPa at 28 days compressive strength was used. Table 1 shows
the weights of materials used. Concrete cubes were poured during pouring of the concrete
slabs, as shown in Figure 1.

Table 1. Material weights.

Materials Per m3 of Concrete
(fcu = 60 MPa)

Cement 575 kg/m3

Coarse aggregate 1100 kg/m3

Fine aggregate 580 kg/m3

Water 138 kg/m3

Silica fume 50 kg/m3

Superplasticizer 18 kg/m3
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2.1.2. Compressive Strength Test

Concrete cubes of 150 × 150 × 150 mm dimensions were tested after 28 days under a
universal testing machine of 2000 kN capacity for compression, according to ECP’2018 [32],
as shown in Figure 2. Table 2 shows the compressive strength of the tested cubes.
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Table 2. Compressive strength test results.

Cubes
Compressive Strength (MPa)

28 Days

C−1 63.9
C−2 68.2
C−3 66.7

Average 66.3

2.1.3. GFRP Bars

The tensile strength of used GFRP bars varied between 490, 650, and 750 MPa for
diameters of 8 mm, 10 mm and 12 mm, respectively, as shown in Table 3. This tensile
strength for nominal diameters of 8 mm, 10 mm, and 12 mm was tested in the Housing
and Building National Research Center (HBNRC), as shown in Figure 3, according to
ECP’2018 [32].
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Table 3. GFRP bar tensile stresses.

Diameter (mm) Tensile Strength (MPa)

8 490
10 650
12 750
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and 12 mm.

2.1.4. Description of Tested Slabs

The experimental program consists of four groups of concrete slabs with dimensions
of 1750 mm in length and 700 mm in width and different heights from 100 mm to 150 mm.
All tested slabs have the same 60 MPa compressive strength. The first group (SP1 and
SP2) represents control slabs with balanced steel reinforcement ratios of 0.16 and 0.24,
respectively, and concrete height of 100 mm. The second group is “Group I” (SP3, SP4,
and SP5), with balanced fiber reinforcement ratios of 0.80, 1.00, and 1.20, respectively,
and concrete height of 100 mm. The third group is “Group II” (SP6, SP7, and SP8), with
balanced fiber reinforcement ratios of 1.20 and concrete height of 120 mm. The final group
is “Group III” (SP9, SP10, and SP11), with balanced fiber reinforcement ratios of 1.20 and
concrete height of 150 mm. Table 4 and Figure 4 showed the details for the tested slabs.
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Table 4. Specimen details.

Specimen Group Specimen
ID

Thickness
(mm)

Diameter
(mm)

Reinforcement
Ratio % RFT. Type

Control
SP1 100 Ø8 0.16 µb Steel
SP2 100 Ø10 0.24 µb Steel

Group I
SP3 100 Ø8 0.80 µfb GFRP
SP4 100 Ø8 1.00 µfb GFRP
SP5 100 Ø8 1.20 µfb GFRP

Group II
SP6 120 Ø8 1.20 µfb GFRP
SP7 120 Ø10 1.20 µfb GFRP
SP8 120 Ø12 1.20 µfb GFRP

Group III
SP9 150 Ø8 1.20 µfb GFRP

SP10 150 Ø10 1.20 µfb GFRP
SP11 150 Ø12 1.20 µfb GFRP
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2.2. Test Setup

Eleven HSC slabs were examined under two-point load with a 500 mm load distance,
as in Figure 5. The test was performed in the National Building Research Center under a
universal testing machine with a maximum capacity of 5000 KN. Outputs were recorded
using LVDTs and strain gauges.
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3. Experimental Results and Discussion

The results obtained from the experimental test were given in terms of ultimate load,
ultimate deflection, load–deflection curves, crack pattern, and load strains for concrete and
reinforcement rebars as follows.

3.1. Ultimate Load

Table 5 shows the ultimate load for all slabs. The ultimate load for the control group
(SP1 and SP2) was 148.00 kN and 139.00 kN, respectively. This is due to the decreased
diameter of bars and increased bonding between the concrete and steel bars, which agrees
with the results recorded by Janus et al. [33].

Table 5. Experimental results.

Specimen
Group Specimen ID First Crack

(kN)

Ultimate
Load
(kN)

Ultimate
Deflection ∆u

(mm)

Mode of
Failure

Control
SP1 75 148.00 6.75 FF
SP2 75 139.00 4.89 FF

Group I
SP3 50 87.85 2.74 GR
SP4 80 149.30 4.91 GR + TF
SP5 85 154.40 3.72 CCT

Group II
SP6 100 180.70 7.91 CCT
SP7 120 149.30 4.91 GR
SP8 125 129.30 4.79 GR

Group III
SP9 100 313.75 11.03 GR
SP10 150 256.02 6.55 CCT
SP11 200 212.10 7.80 CCT

Concrete cracking and tension (CCT) cracks, GFRP rupture (GR), flexural failure (FF).

For Group I (SP3, SP4, and SP5), Slab SP3 recorded the lowest ultimate load of 87.85 kN,
which was also lower than the control slabs by a decreasing ratio of 39.0%. This is due to
the small reinforcement ratio, which led to rupture of GFRP bars. However, for SP4 and
SP5, the ultimate loads were 149.30 kN and 154.40 kN, respectively.

For Group II (SP6, SP7, and SP8), Slab SP6 recorded the highest ultimate load of
180.70 kN, which was higher than Slabs SP7 and SP8, in which the ultimate loads were
149.30 kN and 154.40 kN, respectively. It was recorded that a smaller diameter indicated
high performance with concrete slabs as in SP6, which recorded an ultimate load of
180.70 kN, higher than that obtained from Slabs SP7 and SP8, which recorded 149.30 kN
and 129.3 kN, respectively.
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Slabs (SP9, SP10, and SP11) of Group III recorded a higher ultimate load compared to
the second group “Group II” because of increased concrete thickness. The ultimate loads
were 313.75 kN, 256.02 kN, and 212.10 kN for SP9, SP10, and SP11, respectively.

Slab SP9 recorded an enhanced ultimate load with respect to all other slabs due to the
concrete thickness and the small diameter Φ 8 of the GFRP reinforcement.

3.2. Ultimate Deflection

Table 5 shows the ultimate deflection for all slabs. For the control group, the ultimate
deflation recorded was 6.75 mm and 4.89 mm for SP1 and SP2, respectively. This shows the
effect of increasing the reinforcement ratio in decreasing deflection.

For Group I, Slab SP5 recorded the lowest deflection value of 3.72 mm compared to
SP3 and SP4 and control slabs. The slabs SP3 and SP4 recorded a deflection of 2.47 mm and
4.91 mm, respectively.

For Group II, Slab SP6 recorded a higher deflection of 7.91 mm with an ultimate
load-carrying capacity of 180.70 kN compared to Slabs SP7 and SP8, which recorded lower
deflection values of 4.91 mm and 4.79 mm and an ultimate load of 149.30 kN and 129.30 kN,
respectively, which agrees with Achillides and Pilakoutas [34].

For Group III, Slab SP9 recorded the highest deflection of 11.03 mm with the highest
ultimate load-carrying capacity of 313.75 kN compared to slabs of all groups. This indicated
that the GFRP bars enhanced the loading-carrying capacity, deflections. and ductility when
using small diameters, which increased the bond between concrete and bars, as shown in
Figure 6 through the load–deflection curves for all slabs.
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3.3. Crack Pattern and Mode of Failure

Figure 7 shows the crack propagation for all slabs. Additionally, Table 5 shows the
mode of failure for all slabs. Crack pattern for the control slabs SP1 and SP2 was propagated
in the tension zone, as shown in Figure 7a, and the mode of failure was tension failure (TF).
The behavior of Slabs SP3, SP6, and SP9 was the same. Although the concrete capacity
was still able to carry load, the GFRP bars could not, so rupture failure (RF) occurred in
the GFRP bars. For Slabs SP4, SP7, and SP10, the concrete and bars failed, together with
compression and rupture failure (CC and RF, respectively). However, for Slabs SP5, SP8,
and SP11, a decrease in crack number and propagation was noticed, as shown in Figure 8,
and the mode of failure occurred as tension cracks and GFRP rupture failure.
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4. Nonlinear Finite Element Analysis (NLFEA)

A finite element model was created to validate the experimental study using the
ANSYS 2019-R1 [35] program. The Solid-65 element was employed for the representation
of concrete, and the LINK-180 element was employed for steel and GFRP bar representation.
Figure 9 indicates the Solid-65 and LINK-180 elements’ geometry.
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4.1. Modeling

The NLFE model was used to investigate the structural performance of HSC slabs
reinforced with GFRP bars using ANSYS2019-R1 software, as indicated in Figure 10. in
terms of ultimate load, ultimate deflection, and crack pattern for the modeled slabs.
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4.2. NLFE Ultimate Load

Table 6 shows the ultimate loads obtained from NLFEA. For the control slabs SP1
and SP2, the ultimate load was 133.30 kN and 118.40 kN, respectively. For Slabs SP3,
SP4, and SP5, the ultimate load was 76.42 kN, 119.40 kN, and 138.92 kN, respectively.
For Slabs SP6, SP7, and SP8 the ultimate load was 153.60 kN, 134.40 kN, and 112.40 kN,
respectively. For Slabs SP9, SP10, and SP11, the ultimate load was 247.86 kN, 215.05 kN,
and 193.10 kN, respectively.

The enhancement in ultimate load for Slab SP9 compared with the control slabs led to
concrete compressive strength and concrete thickness. The enhanced ratio is slightly low
due to the small values of strain and the Young’s modulus of GFRP bars.
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Table 6. NLFEA results.

Specimen
Group Specimen ID First Crack (kN) Ultimate Load

(kN) ∆NLFA (mm)

Control
SP1 50 133.30 6.10
SP2 50 118.40 4.15

Group I
SP3 50 76.42 2.38
SP4 50 119.40 3.92
SP5 50 138.92 3.35

Group II
SP6 70 153.60 6.72
SP7 70 134.40 4.41
SP8 70 112.40 4.16

Group III
SP9 82 247.86 8.71

SP10 82 215.05 5.50
SP11 82 193.10 7.10

4.3. NLFE Deflection

The NLFE deflections obtained are indicated in Table 6. Generally, the recorded
deflection improved due to the use of GFRP bars with respect to control slabs. The
deflection of SP1 was 6.10 mm at failure load, but it recorded an enhancement that varied
between 60.0% and 45.0% for SP3, SP4, and SP5. For the second group, the deflections
recorded were 6.72 mm, 4.41 mm, and 4.16 mm for SP6, SP7, and SP8, respectively. The
enhancement was apparent in Slab SP8, which had the least compressive load with a ratio
of 1.2 µfb. This indicates the behavior of GFRP bars in enhancing the deflections, as shown
in Figure 11.
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4.4. Crack Pattern and Mode of Failure

The crack pattern of the control group featured crack propagation in the tension zone,
as shown in Figure 12a. Additionally, the mode of failure was tension failure (TF) due to
reinforcement failure. The behavior of SP3 and SP6 was the same, while the reinforcement
was less than 0.8 µb. So, the concrete capacity was still able to carry load, but the GFRP
bars could not. Rupture occurred in GFRP bars, which was sudden rupture due to the
brittle nature of GFRP bars, so there was RF in the bars. The mode of failure for the first
group is the same for the second group in crack propagation and mode of failure. For slabs
that had a reinforcement ratio of 1.2 µfb, the failure was a combination of concrete cracks in
the compression zone and rupture in the GFRP bars, as shown in Figure 12d.
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5. Comparisons between Experimental and NLFEA Results

There was good agreement between the experimental and ANSYS results. Compar-
isons were made between ultimate load, deflection, the first crack load, and crack pattern.

5.1. Comparison between Experimental and NLFE Ultimate Loads

Figure 13 shows good agreement between the experimental and analytical load–
deflection curves. Comparisons between the obtained results for the different groups are
shown in Table 7. Pu NLFEA/Pu exp. had an average ratio of 0.86. Group II of concrete
reinforced with GFRP of the same diameter but different reinforcement ratios for SP3,
SP4, and SP5, respectively, has an average of 0.86. Finally, for Group II and Group III, the
average ratio of agreement for all specimens is 0.87 and 0.84. The variance of 0.0015 and
standard deviation of 0.04 show the effect of using NLFEA in predicting the behavior of
the tested slabs, as shown in Table 7 and Figure 14.
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Table 7. Comparisons between experimental and NLFEA results.

Specimen
Group Spec. ID

Experimental Load
(kN) Analytical Load (kN) ∆ (mm) Pu (NLFE)

Pu (exp)
∆ (NLFE)

∆ (exp)First
Crack Ult. Load First

Crack Ult. Load ∆exp ∆NLFE
First

Crack Ult. Load

Control
SP1 75 148.00 50 133.30 6.75 6.10 0.67 0.90 0.90
SP2 75 139.00 50 118.40 4.89 4.15 0.67 0.85 0.84

Group I
SP3 50 87.85 50 76.42 2.74 2.38 1.0 0.87 0.87
SP4 80 149.30 50 119.40 4.91 3.92 0.62 0.80 0.79
SP5 85 154.40 50 138.92 3.72 3.35 0.59 0.90 0.90

Group II
SP6 100 180.70 70 153.60 7.91 6.72 0.70 0.85 0.85
SP7 120 149.30 70 134.40 4.91 4.41 0.58 0.90 0.89
SP8 125 129.30 70 112.40 4.79 4.16 0.56 0.87 0.87

Group III
SP9 100 313.75 82 247.86 11.03 8.71 0.82 0.79 0.79
SP10 150 256.02 82 215.05 6.55 5.50 0.55 0.83 0.84
SP11 200 212.10 82 193.10 7.80 7.10 0.41 0.91 0.91

Average 0.65 0.86 0.86

Variance 0.019 0.0015 0.0016

Standard Deviation 0.15 0.04 0.041
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5.2. Comparison between Experimental and NLFE Deflections

Figure 15 shows the obtained deflections for all groups for both experimental and
analytical studies. The load–deflection curves for the tested slabs and analytical results
show good agreement, with an average of agreement of 86.0%. Table 7 shows a deflection
ratio ∆u NLFEA/∆u exp. of the control group of 0.87, but for Group I, the ratios are 0.87, 0.79,
and 0.90 for SP3, SP4, and SP5, respectively, and the average ratio of agreement is 0.85. This
indicates that the analytical models provided an acceptable load–deflection response, as
shown in Table 7. For all groups, the average of ∆u NLFEA/∆u exp is equal to 0.86, with a
coefficient of variance and standard deviations of 0.0016 and 0.041, respectively.
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5.3. Comparison between Experimental and NLFE Crack Patterns and Mode of Failure

The crack pattern for the control slab with a steel reinforcement started with crack
propagation in the tension zone for the experimental and analytical slabs, as shown in
Figure 16a, showing tension failure (TF).
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Figure 16. Comparisons between experimental and NLFE crack patterns: (a) slabs reinforced using
steel bars; (b) slabs reinforced using GFRP.

However, for Slabs SP5 to SP11 reinforced with the same reinforcement ratio, a higher
ultimate load, lower deflection, and decreased cracks were obtained, showing tension
cracks with low propagation, as obtained from the experimental patterns. The crack
patterns show good agreement between the NLFEA and experimental results.

6. Conclusions

Based on the experimental and the analytical studies, the following conclusions can
be drawn:

1. Using reinforcement areas of the GFRP bars less than or equal to µb led to brittle
failure in GFRP bars and concrete crushing with rupture GFRP bars, respectively.

2. The behavior of the tested GFRP-reinforced slabs was bilinear elastic until failure.
3. There was an enhancement in deflections and crack patterns for slabs reinforced using

GFRP bars, especially for equal reinforcement areas.
4. The NLFEA obtained an acceptable agreement with the experimental study in terms

of the ultimate loads, ultimate deflection, and crack pattern.
5. The agreement between the experimental and analytical study was approximately

86.0% with a standard deviation of 0.04 and a coefficient of variance of 0.0015.
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