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Influenza A viruses (IAV) spread rapidly and can infect a broad range of avian or

mammalian species, having a tremendous impact in human and animal health

and the global economy. IAV have evolved to develop efficient mechanisms to

counteract innate immune responses, the first host mechanism that restricts

IAV infection and replication. One key player in this fight against host-induced

innate immune responses is the IAV non-structural 1 (NS1) protein that

modulates antiviral responses and virus pathogenicity during infection. In the

last decades, the implementation of reverse genetics approaches has allowed

to modify the viral genome to design recombinant IAV, providing researchers a

powerful platform to develop effective vaccine strategies. Among them,

different levels of truncation or deletion of the NS1 protein of multiple IAV

strains has resulted in attenuated viruses able to induce robust innate and

adaptive immune responses, and high levels of protection against wild-type

(WT) forms of IAV in multiple animal species and humans. Moreover, this

strategy allows the development of novel assays to distinguish between

vaccinated and/or infected animals, also known as Differentiating Infected

from Vaccinated Animals (DIVA) strategy. In this review, we briefly discuss the

potential of NS1 deficient or truncated IAV as safe, immunogenic and protective

live-attenuated influenza vaccines (LAIV) to prevent disease caused by this

important animal and human pathogen.
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Introduction

Influenza A virus

Influenza A viruses (IAV) belong to the Orthomyxoviridae

family, which contains a lipid envelope enclosing the viral

genome formed by eight negative sense, single-stranded, RNA

segments (Shaw, 2007). The viral RNA (vRNA) segments

contain a long central coding region flanked at 3′ and 5′
termini by non-coding regions (NCR), which work as

promoters for viral replication and transcription (Shaw, 2007).

In addition, the 3′ and 5′ end of the coding regions contain the

packaging signals (Y) for the efficient encapsidation of the viral

genome (Shaw, 2007; Boivin et al., 2010; Baker et al., 2014;

Gerber et al., 2014; Pohl et al., 2016; Martinez-Sobrido et al.,

2018; Fan et al., 2019) (Figure 1). The eight vRNAs encode for

the three components of the viral polymerase complex, the

polymerase basic 2 and 1 (PB2 and PB1, respectively) and

acidic (PA) proteins, the two surface glycoproteins

hemagglutinin and neuraminidase (HA and NA, respectively),

the nucleoprotein (NP), the matrix protein 1 (M1), the

membrane protein 2 (M2), the non-structural (NS1) protein,

and the nuclear export protein (NEP) (Figure 1). The IAV

genome also encodes for other viral proteins through multiple

mechanisms (Shaw, 2007; Gamblin and Skehel, 2010; Hai et al.,

2010; Bavagnoli et al., 2015; Nogales et al., 2018b). Each of the
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vRNAs are arranged as viral ribonucleoprotein complexes

(vRNPs), where vRNAs are coated with multiple subunits of

the viral NP and associated with one copy of the heterotrimeric

polymerase complex formed by one copy of the PB2, PB1, and

PA proteins (Shaw, 2007; Boivin et al., 2010; Pohl et al., 2016;

Martinez-Sobrido et al., 2018; Fan et al., 2019) (Figure 1). IAV

are subtyped based on the genetic and antigenic properties of the

viral HA and NA glycoproteins, which are also the main target of

neutralizing antibodies induced after vaccination and/or natural

viral infection (Shaw, 2007; Parrish et al., 2015). HA is

responsible for the attachment of IAV to target cells for viral

entry, while NA facilitates egress from virus-infected cells

(Gamblin and Skehel, 2010; McAuley et al., 2019; Wille and

Holmes, 2019; de Vries et al., 2020; Wu and Wilson, 2020;

Sempere Borau and Stertz, 2021).

IAV are among the most challenging pathogens, causing a

great impact in human and animal health (Cox et al., 2009;

Dorratoltaj et al., 2017; Mancera Gracia et al., 2020; Oladunni

et al., 2021; Salvesen and Whitelaw, 2021). IAV are able to infect

multiple animal species, including waterfowl, poultry, swine,

horses, dogs, cats, bats, multiple marine mammals as whales or

seals, and humans. Waterfowl of the orders Anseriformes

(ducks) and Charadriiformes (shorebirds, gulls) have been

considered the most important reservoir hosts reaching

prevalence levels of >20% in the migration season (Shaw,

2007; Latorre-Margalef et al., 2014; Parrish et al., 2015; Short
A B

FIGURE 1

IAV virion structure and genome organization. (A) Virion structure. IAV particles have a lipid envelope where the two major viral glycoproteins
HA and NA and the ion channel M2 are located. Below the viral lipid membrane is a layer composed of M1 protein and the NEP. Inside the viral
particle are the vRNP particles formed by the vRNA coated by the viral NP and linked to the heterotrimeric polymerase complex (PB2, PB1 and
PA). (B) Genome organization. IAV contains eight vRNA segments (PB2, PB1, PA, HA, NP, NA, M, and NS) made of a coding region (gray boxes)
flanked at the 3′ and 5′ terminal ends by untranslated non-coding regions (white boxes). At the end of the 3′ and 5′ coding regions are the
specific viral segment packaging signals (Y) required for efficient encapsidation of the vRNP particles into new viruses.
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et al., 2015; Sutton, 2018; Wille and Holmes, 2019). These

waterbirds harbor 16 HA and 9 NA genes subtypes, and

usually experience clinically asymptomatic infections.

Importantly, since more sequencing efforts have been

implemented during the last years, mammals, such as swine,

are emerging as key IAV reservoirs (Parrish et al., 2015; McLean

and Graham, 2022). Recently, the phylogenetic diversity of IAV

has increased with the identification of H17N10 and H18N11

subtypes of IAV in fruit bats (Zhu et al., 2012; Zhu et al., 2013;

Yang et al., 2021).

Given that the IAV genome contains eight vRNA segments,

and that several IAV strains can infect the same host, viral

genomic reassortment, or antigenic shift, occurs frequently

(Marshall et al., 2013; Steel and Lowen, 2014; Lowen, 2017;

Lowen, 2018; White et al., 2019). As a consequence of

reassortment, viral progeny can harbor new genomic

constellations from the different original viruses. In fact, this

process is highly important to understand IAV evolution,

ecology, and adaptation to new hosts, because new viruses can,

among others, obtain advantages in viral replication,

transmission, or the ability to evade host immune responses

(Parrish et al., 2015; Lowen, 2017; Lowen, 2018; Wille and

Holmes, 2019). In addition, antigenic drift has been described

to be responsible for the emergence of novel IAV variants, when

mutations in the viral genome are introduced and selected in the

viral population (Shaw, 2007; Parrish et al., 2015; Short et al.,

2015; Sutton, 2018; Wille and Holmes, 2019; McLean and

Graham, 2022).

The continuous adaptation of IAV to new host species

represents an important concern, and multiple studies focused

on understanding the evolutionary pressures that drive IAV host

adaptation and transmission are being carried out (Imai and

Kawaoka, 2012; Short et al., 2015; Johnson and Ghedin, 2019).

Moreover, IAV diversity and complexity highlight the relevance

of the one-health approach to study IAV infections and spread,

with the goal to reduce the impact of influenza disease on

healthcare systems, animal welfare or food production (e.g.,

poultry industry) (Cox et al., 2009; Dorratoltaj et al., 2017;

Mancera Gracia et al., 2020; Oladunni et al., 2021; Salvesen

and Whitelaw, 2021). In addition, due to IAV infections across

so many different animal species, there are continuous and

transient spillover infections, which occasionally can result in

sustained epidemic transmission (Short et al., 2015; Wille and

Holmes, 2019; Wang et al., 2021; McLean and Graham, 2022).

Stable transmission in new hosts depends on IAV and host

ecology as well as the acquisition of specific genetic changes in

the viral genome that allow productive infections. Because of

that, most of IAV host-jumping events are not successful (Shaw,

2007; Parrish et al., 2015; Short et al., 2015; Rajao et al., 2018;

Sutton, 2018; Wille and Holmes, 2019; Oladunni et al., 2021;

Verhagen et al., 2021; McLean and Graham, 2022; Murakami

et al., 2022).
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Reverse genetics techniques for the
development of IAV vaccines based on
modifications in the NS1 protein

Reverse genetics methods have provided researchers with a

powerful experimental approach to generate recombinant IAV

from cloned complementary (c)DNAs (Luytjes et al., 1989)

(Hoffmann et al., 2000; Nogales and Martinez-Sobrido, 2016;

Nogales et al., 2017d; Blanco-Lobo et al., 2019). These reverse

genetics techniques have allowed investigators to study basic

aspects of the biology of IAV, including, among others, the

identification of host factors that control viral cell entry, genome

viral replication and transcription, and viral assembly and

budding (Rossman and Lamb, 2011; Chua et al., 2013; Baker

et al., 2014; Khaperskyy et al., 2016). Moreover, these reverse

genetics systems have been used to rescue recombinant IAV with

predetermined mutations in their viral genomes to examine their

contribution to viral replication, pathogenesis, and transmission;

and to generate attenuated forms for their use as live-attenuated

influenza vaccines (LAIV) for the prevention of IAV infections

(Nogales et al., 2016b; Nogales and Martinez-Sobrido, 2016;

Clark et al., 2017; Nogales et al., 2017a; Nogales et al., 2017c;

Nogales et al., 2017f; Chauche et al., 2018; Nogales et al., 2018a;

Rodriguez et al., 2018a; Rodriguez et al., 2018b; Hilimire et al.,

2020). Notably, reverse genetics systems have leaded to the

implementation of replicating competent or deficient IAV

expressing one or two reporter genes (Nogales et al., 2015;

Breen et al., 2016a; Breen et al., 2016b; Nogales et al., 2016a;

Nogales et al., 2019a). These viruses have been an important

biotechnological tool to track viral infections using in vitro and

in vivo imaging systems (Nogales et al., 2015; Breen et al., 2016a;

Breen et al., 2016b; Nogales et al., 2016a; Nogales et al., 2019a).

Moreover, reporter-expressing IAV have been used to identify

antivirals or neutralizing antibodies using high throughput

screening (HTS) approaches (Nogales et al., 2015; Breen et al.,

2016a; Breen et al., 2016b; Nogales et al., 2016a; Nogales

et al., 2019a).

The most extended plasmid-based reverse genetics approach

for the rescue of recombinant IAV is based on the use of eight

ambisense plasmids, one per IAV viral segment, which allows for

the simultaneous expression of the viral proteins and the vRNAs

in susceptible cells (Figure 2). Recombinant viruses can be

recovered from the tissue culture supernatants of cells co-

transfected with the eight plasmids and the recovered virus

can be propagated in fresh cells or embryonated chicken eggs

(Figure 2) (Hoffmann et al., 2000; Martinez-Sobrido and Garcia-

Sastre, 2010; Nogales and Martinez-Sobrido, 2016; Nogales et al.,

2017d). Importantly, the use of eight-plasmid reverse genetics

systems have allowed the easy modifications of each viral gene

individually. This advantage has been broadly used to generate

LAIV by introducing specific amino acid substitutions, or

deletions, in the viral genome (Martinez-Sobrido et al., 2018;
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Rodriguez et al., 2018b; Blanco-Lobo et al., 2019; Hilimire et al.,

2020). For instance, IAV encoding truncated versions of NS1 or

where the NS1 sequence was completely removed (DNS1) have
been generated and used as potential LAIV candidates in

multiple animal species (Quinlivan et al., 2005; Solorzano

et al., 2005; Richt et al., 2006; Vincent et al., 2007; Wang et al.,

2008; Chambers et al., 2009; Steel et al., 2009; Kappes et al., 2012;
Frontiers in Cellular and Infection Microbiology 04
Choi et al., 2015; Jang et al., 2016; Na et al., 2016; Chen et al.,

2017; Nogales et al., 2017b; Jang et al., 2018; Nicolodi et al., 2019;

Lee et al., 2021; Vandoorn et al., 2022a), or to study IAV

infections (Nogales et al., 2021a), including the contribution of

NS1, and its domains, in viral pathogenesis (Nogales et al.,

2017a; Nogales et al., 2017c; Chauche et al., 2018; Nogales et al.,

2018a; Nogales et al., 2018b; Nogales et al., 2021b). Because NS1
FIGURE 2

Plasmid-based reverse genetics approach for the recovery of recombinant IAV. Schematic representation of the ambisense plasmid used to
generate recombinant IAV is shown in the top. IAV cDNAs are cloned into the plasmid flanked by the human polymerase I promoter (hPol-I,
gray arrow) and the mouse Pol-I terminator (TI, gray box) sequences to drive the synthesis of the vRNAs. In opposite orientation to the
polymerase I cassette is the polymerase II (Pol-II) cassette made of a Pol-II dependent cytomegalovirus promoter (pCMV, white arrow) and the
polyadenylation sequence of the bovine growth hormone (BGH, white box) to allow the expression of viral proteins from the same viral cDNAs.
Co-cultures of human 293T (gray) and canine MDCK (black) cells are co-transfected with the eight (PB2, PB1, PA, HA, NP, NA, M, and NS)
ambisense plasmids. Recovered virus is amplified in fresh cells or embryonated chicken eggs for vaccine production. Since NS1 truncated or
deficient IAV have a ts phenotype, virus rescue and amplification is carried out at 33°C.
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is the main countermeasure against cellular antiviral responses,

the recovery of NS1 truncated or deficient viruses can be

challenging, since these viruses have limited ability to inhibit

the cellular innate immune responses induced during viral

infection (Garcia-Sastre A et al., 1998; Kochs et al., 2007; Hale

et al., 2008; Nogales et al., 2018b; Nogales et al., 2019b).
NS1 protein structure and functions

The innate immune system is the first line of defense against

viral infections, and viruses have to develop efficient

countermeasures that allow them to replicate in infected cells

and to be propagated to other hosts (Garcia-Sastre A et al., 1998;

Kochs et al., 2007; Hale et al., 2008; Nogales et al., 2018b; Nogales

et al., 2019b). IAV NS1 is a multifunctional protein and

virulence factor, which main role is to counteract or modulate

host antiviral interferon (IFN) responses at multiple levels

(Figure 3) (Garcia-Sastre A et al., 1998; Talon et al., 2000b;

Kochs et al., 2007; Hale et al., 2008; Thulasi Raman and Zhou,

2016; Nogales et al., 2018b). Thus, IAV NS1 is required to evade

the host innate immune system and to replicate efficiently in

IFN-competent systems. NS1 is encoded by the viral segment 8

(or NS) as a primary mRNA transcript (Figure 3A). In addition,

through an alternative splicing mechanism, a less abundant
Frontiers in Cellular and Infection Microbiology 05
spliced product encodes for the viral NEP that is essential for

IAV replication (Lamb and Lai, 1980; Robb et al., 2010).

Depending on the IAV strain (and somehow the targeted

host) NS1 is a 219 to 237 amino acid long protein, and four

distinct domains have been identified (Figure 3B). The N-

terminal domain (the first 73 amino acids) contains an RNA-

binding domain (RBD) responsible for interacting with double-

stranded (ds)RNA, and a nuclear localization signal (NLS) that

overlaps with the RBD (Greenspan et al., 1988; Chien et al., 1997;

Liu et al., 1997; Wang et al., 1999; Melen et al., 2007; Marc,

2014). Next, a 10–15 amino acids flexible linker (L) domain

connects the RBD and effector domain (ED). The ED comprises

amino acids 88 to 202 and contains a nuclear export signal

(NES) that favors NS1 protein localization at both the nucleus

and the cytoplasm during viral infection (Li et al., 1998). The ED

is able to interact with multiple host factors, including cellular

proteins involved in antiviral responses (Hale et al., 2008;

Thulasi Raman and Zhou, 2016; Nogales et al., 2018b).

However, many of these interactions can be strain-dependent,

and host-adaptation processes could be important for this high

variability (Kochs et al., 2007; Steidle et al., 2010; Marc, 2014;

Clark et al., 2017; Nogales et al., 2017a; Nogales et al., 2017f;

Chauche et al., 2018; Nogales et al., 2018a; Nogales et al., 2021b).

The last domain is a C-terminal tail (CTT) of 11–33 amino acids,

containing a PDZ-binding motif that is associated with IAV
A

B

FIGURE 3

Schematic representation of NS segment and NS1 domains. (A) An IAV NS vRNA segment is shown by a gray box and non-coding regions (NCR)
are indicated with white boxes. Packaging signals (Y) at the end of the 3′ and 5′ coding regions are also indicated. IAV NS1 and NEP transcripts
are indicated with gray and black boxes, respectively. IAV NS1 and NEP ORFs share the first 10 amino acids in the N-terminus. (B) The NS1
protein is divided into four regions: The N-terminal RNA-binding domain (RBD; amino acids 1–73), the linker sequence (L; amino acids 74–88),
the effector domain (ED; amino acids 89–202), and the C-terminal tail (CTT; amino acids 203-219/230/237). Note that both the L and the CTT
can vary in length among different IAV strains, and, although a 237 amino-acids-length NS1 has been represented, IAV NS1 can be 219, 230, or
237 amino acids long. Nuclear localization and export signals (NLS and NES, respectively) are indicated with black boxes at the bottom,
including their amino acid locations in the NS1.
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pathogenesis and is not present in all IAV NS1 proteins (Jackson

et al., 2008; Hale, 2014). Most IAV strains also have another NLS

at the CTT of NS1 (Greenspan et al., 1988) (Figure 3B).

IAV NS1 inhibits the activation of innate antiviral responses

using several molecular mechanisms that have been extensively

revised in the literature (Figure 4) (Hale et al., 2008; Marc, 2014;

Khaperskyy and McCormick, 2015; Nogales et al., 2018b). These

include: 1) inhibition of IFN activation through the interaction

with retinoic acid-inducible gene I (RIG-I), an intracellular

sensor of virus infection (Guo et al., 2007; Mibayashi et al.,

2007; Opitz et al., 2007), by sequestering dsRNA during viral

infection (Wang et al., 1999), or by interaction with Tripartite

Motif Containing 25 (TRIM25) or Riplet, which results in the

suppressed ubiquitination and activation of RIG-I (Gack et al.,

2009; Rajsbaum et al., 2012; Koliopoulos et al., 2018); 2)

inhibition of IFN regulatory factor 3 (IRF3), activator protein

1 (AP-1) and nuclear factor kappa beta (NF-kB) transcription
Frontiers in Cellular and Infection Microbiology 06
factor activation, including induction of IFN-stimulated genes

(ISGs) (Talon et al., 2000a; Wang et al., 2000; Ludwig et al., 2002;

Gao et al., 2012); 3) inhibition of specific ISG products, including

protein kinase R (PKR) or 2’,5’-oligoadenylate (2-5A) synthetase

(OAS)-RNaseL (Hale et al., 2008; Nogales et al., 2018b); 4)

inhibition of inflammasome activation by interaction with the

NLR family pyrin domain containing 3 (NLRP3) (Chung et al.,

2015; Moriyama et al., 2016; Park et al., 2018); and 5) inhibition

of 3′ end processing and blocking the export of host mRNAs

from the nucleus, which leads to the inhibition of cellular gene

expression, including IFN, ISG and pro-inflammatory responses

by interaction with components of the cellular pre-mRNA

proce s s ing mach ine ry such as the c l e avage and

polyadenylation specificity factor 30 (CPSF30) and poly(A)-

binding protein II (PABPII) (Chen et al., 1999; Noah et al.,

2003) (Figure 4). IAV NS1 protein is also involved in viral RNA

synthesis and viral replication, translation, and NS1
FIGURE 4

Role of NS1 in counteracting IFN responses. 1) IAV NS1 decreases RIG-I activation, and therefore, IFN responses, through the sequestration of
dsRNA (represented with two parallel lines), or by interaction with RIG-I, TRIM25 or Riplet, resulting in the suppressed ubiquitination and
activation of RIG-I. 2) IAV NS1 inhibits the activation of IRF3, NF-kb, and AP-1 transcription factors, impairing type I IFN production, and,
therefore, the induction of ISGs. (3) IAV NS1 directly inhibits the antiviral activities of the ISGs PKR and OAS-RNaseL. NS1 protein binds dsRNA
and PKR, leading to decreased PKR activity and impaired host translation inhibition mediated by PKR. IAV NS1 protein also inhibits OAS activation
via the dsRNA-binding activity of its RBD, therefore, reducing RNA degradation mediated by RNAseL. 4) IAV NS1 impairs NLRP3 inflammasome
activation as well as decreases the cleavage of pro-interleukin (IL)-1b and pro-IL-18 into their mature forms. Upon infection, these cytokines are
released from the cell to stimulate inflammatory processes. 5) Depending on the IAV strain, NS1 proteins can bind to CPSF30. In addition, IAV
NS1 binds to PABPII. These interactions of IAV NS1 with CPSF30 and PABPII block the cleavage of immature mRNAs (pre-mRNAs) and the
recruitment of the poly(A) polymerase to add the poly(A) tail and function of PABPII to stimulate the synthesis of long poly(A) tails, respectively,
leading to host protein shutoff. IFN: interferon; dsRNA: double-stranded RNA; RIG-I: retinoic acid-inducible gene I; TRIM25: tripartite motif
containing 25; IRF3: interferon regulatory factor 3; NF-kb: nuclear factor kappa beta; AP-1: activator protein 1; ISGs: IFN-stimulated genes; PKR:
protein kinase R; OAS: 2’,5’-oligoadenylate synthetase; NLRP3: NLR family pyrin domain containing 3; CPSF30: cleavage and polyadenylation
specificity factor 30; PABPII: poly(A)-binding protein II.
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polymorphisms accumulated over time can be important for

host adaptation through multiple protein-protein interactions

(Thulasi Raman and Zhou, 2016; Clark et al., 2017; Nogales

et al., 2017f; Chauche et al., 2018; Nogales et al., 2018a; Evseev

and Magor, 2021). Because the high variability of IAV NS1

functions and interactions with other viral and host factors, the

effect of NS1 truncations, or deletion, could, therefore, be

different among IAV strains that infected different animal

host species.
NS1 truncated or deficient viruses
as LAIV

Vaccines are the most efficient strategy for preventing

influenza illness (Jin and Chen, 2014; Martinez-Sobrido et al.,

2018; Blanco-Lobo et al., 2019). In addition, because IAV is

circulating in multiple mammalian and avian species, vaccines

could reduce or prevent the impact of zoonotic events, including

potential pandemics, controlling the spread of IAV within these

animal reservoirs (Martinez-Sobrido et al., 2020). Moreover,

surveillance studies can be key to control the presence of IAV
Frontiers in Cellular and Infection Microbiology 07
in these host populations and anticipate the emergence of new

strains with pandemic potential to humans (Martinez-Sobrido

et al., 2020).

Because of IAV NS1’s ability to modulate cellular immune

responses and inhibit IFN production (Figure 4), multiple

vaccine approaches based on the use of modified NS1 proteins

as a means for virus attenuation have been developed and

assessed (Quinlivan et al., 2005; Solorzano et al., 2005; Richt

et al., 2006; Vincent et al., 2007; Wang et al., 2008; Chambers

et al., 2009; Steel et al., 2009; Kappes et al., 2012; Choi et al., 2015;

Sridhar et al., 2015; Jang et al., 2016; Na et al., 2016; Chen et al.,

2017; Hoft et al., 2017; Nogales et al., 2017b; Nogales et al.,

2017e; Jang et al., 2018; Nicolodi et al., 2019; Lee et al., 2021;

Vandoorn et al., 2022a). NS1 deficient or truncated IAV have

been considered as promising LAIV because they replicate

poorly in IFN-competent hosts (Figure 5), while they are able

to induce a strong and protective immune response against WT

forms of the virus (Quinlivan et al., 2005; Solorzano et al., 2005;

Richt et al., 2006; Vincent et al., 2007; Wang et al., 2008;

Chambers et al., 2009; Steel et al., 2009; Kappes et al., 2012;

Choi et al., 2015; Sridhar et al., 2015; Jang et al., 2016; Na et al.,

2016; Chen et al., 2017; Hoft et al., 2017; Nogales et al., 2017b;
A

B

C

FIGURE 5

IFN responses in LAIV based on NS1 truncations or complete deletion. Representation of WT (A), truncated (B), or deficient (C) NS1 recombinant
IAV. WT NS vRNA is represented in gray boxes and NCR located at the 3´and 5´ ends of the NS vRNA are indicated with white boxes. WT NS1 and
NEP ORFs are represented as gray and black boxes, respectively. Black lines in panel B represent stop codons. Expression of WT NS1 protein (A)
results in strong inhibition of IFN induction and, therefore, efficient viral replication. NS1 1–73 (top), 1–99 (middle), or 1–126 (bottom) truncations
in the NS1 ORF (B) or deletion of the entire NS1 ORF (C) result in less efficient inhibition of IFN induction and, thus, reduced viral replication.
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Nogales et al., 2017e; Jang et al., 2018; Nicolodi et al., 2019; Lee

et al., 2021; Vandoorn et al., 2022a). Importantly, NS1 deficient

and/or truncated viruses can grow in appropriated substrates

such as IFN-deficient cells (e.g., Vero cells) or systems with an

undeveloped IFN system (e.g., 5-6 day-old chicken embryonated

eggs) (Garcia-Sastre et al., 1998; Vlecken et al., 2013), required

for vaccine production (Bardiya and Bae, 2005; Barrett et al.,

2009; Hussain et al., 2010; Perdue et al., 2011; Jin and Chen,

2014). Another advantage of LAIV based on NS1 deficient or

truncated viruses is their ability to induct robust both humoral

and cellular immune responses (Quinlivan et al., 2005;

Solorzano et al., 2005; Richt et al., 2006; Vincent et al., 2007;

Wang et al., 2008; Chambers et al., 2009; Steel et al., 2009;

Kappes et al., 2012; Choi et al., 2015; Sridhar et al., 2015; Jang

et al., 2016; Na et al., 2016; Chen et al., 2017; Hoft et al., 2017;

Nogales et al., 2017b; Nogales et al., 2017e; Jang et al., 2018;

Nicolodi et al., 2019; Lee et al., 2021; Vandoorn et al., 2022a).

While humoral responses are highly important against

homologous IAV strains, cellular responses could provide

cross-protection against heterologous strains (Nogales et al.,

2017e; Korenkov et al., 2018; Rodriguez et al., 2018b;

Krammer, 2019; Rodriguez et al., 2019; Smith et al., 2019).

Therefore, as broadly protective vaccines are needed, LAIV

typically are a better option to protect against heterologous

strains than inactivated influenza vaccines (IIV) (Sridhar et al.,

2015; Hoft et al., 2017; Nogales et al., 2017e). Recombinant swine

(Solorzano et al., 2005; Richt et al., 2006; Vincent et al., 2007;

Kappes et al., 2012; Lee et al., 2021; Vandoorn et al., 2022a),

equine (Quinlivan et al., 2005; Chambers et al., 2009; Na et al.,

2016), canine (Nogales et al., 2017b), and avian (Wang et al.,

2008; Steel et al., 2009; Choi et al., 2015; Jang et al., 2016; Chen

et al., 2017; Jang et al., 2018; Nicolodi et al., 2019) IAV with

different partial truncations or deficient in NS1 have been

generated and proposed as potential LAIV in different animal

models of infection, including mice (Talon et al., 2000b;

Quinlivan et al., 2005; Steel et al., 2009; Pica et al., 2012; Choi

et al., 2015; Na et al., 2016; Nogales et al., 2017b), pigs (Richt

et al., 2006; Vincent et al., 2007; Kappes et al., 2012; Lee et al.,

2021; Vandoorn et al., 2022a), horses (Chambers et al., 2009),

and birds (Wang et al., 2008; Steel et al., 2009; Jang et al., 2016;

Chen et al., 2017; Jang et al., 2018) (Table 1).

Both B and T cells responses are important for immunity

against IAV infection and virus clearance (Blanco-Lobo et al.,

2019; Krammer, 2019; Smith et al., 2019; Topham et al., 2021).

Dendritic cells (DCs) and macrophages are antigen presenting

cells (APCs) playing a key role as mediators between innate and

the adaptive immune responses (Akira et al., 2006; Trinchieri

and Sher, 2007; Borderia et al., 2008; Monteagudo et al., 2019).

Moreover, APCs are able to activate adaptive immune responses

against the invading pathogens by triggering T cell

differentiation (Cuddapah et al., 2010; Topham et al., 2021;

Rattan et al., 2022). Importantly, these cells constantly inspect

the lungs for pathogens and they are essential to protect the host
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against invaders. Previous studies have shown that the induction

of a genetic program underlying DCs maturation, migration,

and T-cell stimulatory activity is specifically suppressed by IAV

NS1 (Fernandez-Sesma et al., 2006). Thus, the role of IAV NS1

in counteracting host responses is not limited to innate

immunity evasion but also to inhibition of adaptive immunity

via modulating the maturation and the capacity of DCs to

induce T cell responses. This finding is important because it

supports the implementation of LAIV encoding truncated

NS1 proteins.

Another advantage of using viruses expressing truncated

NS1 proteins is their temperature sensitive (ts) phenotype

(Falcon et al., 2004; Falcon et al., 2005; Nogales et al., 2017b;

Nogales et al., 2019b). It has been shown that NS1 truncated

viruses (NS1 1-81 and 1-110) replicated similarly to WT virus in

Madin–Darby canine kidney (MDCK) cells at 32°C (Falcon

et al., 2004). However, these NS1-truncated viruses showed a

ts phenotype when replication was evaluated at 39 °C. The

molecular basis of the ts phenotype of these NS1 mutant

viruses was evaluated. At the restrictive temperature, the ratio

of replication to transcription activities of vRNPs was altered,

showing that NS1 plays a role in virus RNA replication, most

likely at the cRNA-to-vRNA step, and that a defect in this

function may contribute to the ts phenotype observed (Falcon

et al., 2004). The in vitro results were further confirmed in vivo

since these NS1 mutant viruses were not detected in the lungs of

infected mice at day 3 post-infection, indicating that viruses were

also attenuated in vivo (Falcon et al., 2005). Notably, mice

inoculated with the NS1 truncated viruses were protected

against a lethal challenge with WT IAV and specific and

robust cellular and humoral immune responses were induced

after immunization, supporting the feasibility of using these NS1

truncated IAV as safe, immunogenic and protective LAIV to

prevent IAV infection (Falcon et al., 2005). In another study, the

variability of NS1 protein from seasonal IAV H3N2 isolated

from infected subjects during the 2010/2011 influenza season

was analyzed, and amino acid changes in positions 86, 189, and

194 were identified (Nogales et al., 2017c). Interestingly, NS1

mutations D189N and V194I impaired the ability of the NS1

protein to inhibit general gene expression (Nogales et al., 2017c).

Moreover, viruses encoding a V194I amino acid change in NS1

displayed a ts phenotype, and they were highly attenuated in vivo

(Nogales et al., 2017c).

An important characteristic to be considered during the

development of LAIV is the possibility of the virus in the vaccine

to revert to WT or to acquire a virulent phenotype (Zhou et al.,

2016). However, this possibility is highly unlikely in the case of

NS1 truncated or deficient viruses based on their reduced in vivo

replication, although additional work will be required to

completely discard this possibility. Likewise, the possibility of

NS1 truncated or deficient viruses to reassort with IAV strains in

the field is also improbable based on their limited in vivo

replication (Talon et al., 2000b; Quinlivan et al., 2005; Richt
frontiersin.org

https://doi.org/10.3389/fcimb.2022.954811
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Nogales et al. 10.3389/fcimb.2022.954811
et al., 2006; Vincent et al., 2007; Wang et al., 2008; Chambers

et al., 2009; Steel et al., 2009; Kappes et al., 2012; Pica et al., 2012;

Choi et al., 2015; Jang et al., 2016; Na et al., 2016; Chen et al.,

2017; Nogales et al., 2017b; Jang et al., 2018; Lee et al., 2021;

Vandoorn et al., 2022a). However, recent studies related with the

use of a LAIV encoding an NS1 truncated protein to prevent

swine influenza virus has shown that this risk cannot be

completely discarded (Mancera Gracia et al., 2020; Sharma

et al., 2020), highlighting the importance of IAV surveillance

to detect emerging IAV strains with LAIV genes after

vaccination campaigns to rule out the potential reassortment

between viruses in the vaccine and natural circulating isolates.
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Swine influenza virus (SIV)

SIV is an important pathogen for the swine industry

worldwide because pig production has been intensified in the

last decades (Salvesen and Whitelaw, 2021). Infection of pigs

with SIV can cause respiratory illness, fever, coughing and loss of

appetite, and these clinical symptoms contribute to weight loss

of animals and thus the reduction of pig industry productivity

(Janke, 2013; Salvesen and Whitelaw, 2021). Currently, there are

three major subtypes of SIV circulating worldwide in pigs:

H1N1, H1N2 and H3N2 (Lewis et al., 2016; Rajao et al.,

2018). However, SIV, as other IAV, can evolve rapidly by
TABLE 1 NS1 truncated or deficient viruses used as LAIV.

Host IAV strain NS1
modification

Other
changes

Animal
model

Safety, immunogenicity and protection
efficacy (homologous/heterologous

or heterosubtypic)

References

Pig A/Swine/Texas/4199-2/98 H3N2 NS1 1-73, NS1
1-99,

NS1 1-126.

NA Pig +, +, and (H3N2+/H1N1+). Immunogenicity
and protection was evaluated using NS1 1-126.

(Solorzano et al., 2005;
Richt et al., 2006; Vincent
et al., 2007; Kappes et al.,
2012; Vandoorn et al.,
2022a)

Pig 6 internal genes from bat/
Guatemala/164/2009 H17N10
(Bat09)
and the HA and NA from A/
Swine/Texas/4199-2/98 H3N2
with Bat09 respective gene
packaging signals

NS1 1-128 NS segment
+/-swine IL-
18.

Pig +, +, and (Not evaluated/H3N2 +). IL-18
expression did not impact in vaccine efficacy.

(Lee et al., 2021)

Horse A/equine/Kentucky/5/2002 H3N8 NS1 1-73,
NS1 1-99,
NS1 1-126.

NA Mouse
and horse

Mouse: Reduce viral replication was shown.
Horses: +, +, and (H3N2+/Not evaluated).
Protection was evaluated using only NS1 1-126.

(Quinlivan et al., 2005;
Chambers et al., 2009)

Dog A/canine/NY/dog23/2009 H3N8 NS1 1-73,
NS1 1-99, NS1
1-126 DNS1

NA Mouse +, +, and (+/Not evaluated) (Nogales et al., 2017b)

Poultry A/Viet Nam/1203/2004 H5N1 NS1 1-73,
NS1 1-99,
NS1 1-126.

Polybasic
cleavage site
removed in
HA.
PB2
containing
either K627
or E627
amino acid.

Mouse
and
chicken

Mouse: +, +, and (+/Not evaluated).
Chicken: +, +, and (+/+). Only the virus NS1-
99/PB2 E627 was tested in chickens.

(Steel et al., 2009)

Poultry 6 internal genes from PR8 H1N1
and HA and NA from A/WB/
Korea/ma81/06 H5N2 and A/CK/
Korea/116/03 H9N2, respectively.

NS1 1-73,
NS1 1-86,

NS1 1-101, NS1
1-122.

NA Mouse +, +, and (+/+). (Choi et al., 2015)

Poultry A/turkey/Oregon/71 H7N3 NS1 1-91/93
NS1 1-115/125

NA Chicken +, +, and (+/+). (Wang et al., 2008; Jang
et al., 2016)

Poultry A/chicken/Taixing/10/2010 H9N2 NS1 1-73,
NS1 1-100, NS1

1-128.

NA Chicken +, +, and (+/+). Protection was evaluated using
only NS1-128.

(Chen et al., 2017)

Human IVR-116 (A/New Caledonia/20/
1999-like H1N1) and the HA, NA
and M segments from A/Viet
Nam/1203/2004 H5N1

DNS1 NA Human +, +, and (Not evaluated). (Nicolodi et al., 2019)
NA, Not available.
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antigenic shift and antigenic drift (Parrish et al., 2015; Rajao

et al., 2018; Salvesen and Whitelaw, 2021), and thus multiple

antigenically distinct SIV strains may be co-circulating in the

field. In fact, the picture is further complicated with the existence

of different circulating lineages and clades of SIV between

countries or regions (Lewis et al., 2016; Henritzi et al., 2020).

Therefore, development of effective SIV vaccines is difficult,

mainly because the limited cross-protection efficacy against all

these SIV subtypes and strains (Brockwell-Staats et al., 2009;

Salvesen and Whitelaw, 2021).

Importantly, SIV are considered as potential “mixing vessel”

of IAV favoring reassortment between strains of human and

animal (mainly avian) origin, when more than one virus infects

the same cell (Brockwell-Staats et al., 2009; Garten et al., 2009;

Rajao et al., 2018). This characteristic may lead to the generation

of potentially zoonotic and/or pandemic influenza strains

(Brockwell-Staats et al., 2009; Garten et al., 2009; Rajao et al.,

2018; Henritzi et al., 2020). In fact, cross-species transmission of

IAV between humans and pigs has been reported (Rajao et al.,

2018). In addition, reverse zoonosis from humans to pigs also

occur at a high rate (Rajao et al., 2018; Henritzi et al., 2020). IIV

are the most widely used prophylactic measure to prevent SIV

infections in pigs, and usually they contain a combination of

antigenically distinct H1 and H3 subtypes of SIV (Salvesen and

Whitelaw, 2021). Although IIV for SIV induce neutralizing

antibodies against antigenically similar SIV strains, they offer

only partial protection against heterologous strains, similar to

the situation seeing in humans (Hoft et al., 2017). On the other

hand, LAIV provide a better cross-reactive immunity against

antigenically distinct SIV through inducing also robust cell-

mediated immune responses (Richt et al., 2006; Vincent et al.,

2007; Mancera Gracia et al., 2020; Salvesen and Whitelaw, 2021;

Vandoorn et al., 2022a). Moreover, LAIV also induce potent

local humoral and mucosal immune responses, contributing to a

better protection against IAV infection (Hoft et al., 2017;

Salvesen and Whitelaw, 2021). Because there is not universal

IAV vaccine technologies that can be used to control SIV

infections, it is highly necessary to develop novel and more

effective vaccine approaches against currently circulating diverse

SIV subtypes and strains, which is also important to reduce the

risk of zoonotic transmission to humans (Brockwell-Staats et al.,

2009; Rajao et al., 2018; Mancera Gracia et al., 2020). Although

several attempts have been developed to produce vaccines for the

prevention of SIV infections in pigs, in this review we focus on

the implementation of NS1 truncated or deficient viruses for

their use as LAIV for the prevention of SIV infections (Table 1).

Reverse genetics were used to generate recombinant viruses

with the goal to study the role of NS1 in the virulence of A/

Swine/Texas/4199-2/98 H3N2 (TX/98), an SIV isolate in pigs

(Solorzano et al., 2005). For that, authors generated recombinant

WT and C-terminally truncated forms of the NS1 protein

encoding the first 73, 99, or 126 amino acids, instead of the

219 amino acids of the WT NS1 protein (Figure 6A). Results
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indicated that NS1 mutant viruses displayed a decreased ability

to prevent IFN synthesis in pig cells after infection. Moreover,

the three NS1 mutant TX/98 viruses were also attenuated in pigs,

the natural host, showing reduced viral replication and

percentage of lesions in the lungs of infected animals. These

results suggest the feasibility of using these NS1 truncated TX/98

viruses as potential LAIV for the prevention of SIV infections in

pigs (Solorzano et al., 2005). In fact, in a follow up study, the SIV

TX/98 encoding a truncated NS1 protein of 126 amino acids

(TX/98 NS1 1-126) was used to vaccinate pigs (Richt et al.,

2006). After intranasal vaccination, animals were challenged

with WT homologous H3N2 TX/98 or heterosubtypic A/

swine/Minnesota/37866/99 H1N1 SIV and sacrificed 5 days

later. TX/98 NS1 1-126 completely protected vaccinated pigs

against the homologous challenge with H3N2 TX/98 WT.

Although macroscopic lung lesions similar to those of the

mock-vaccinated H1N1 control pigs were observed in animals

challenged with the heterosubtypic SIV H1N1, vaccinated pigs

had lower microscopic lung lesions (Richt et al., 2006).

Moreover, in this group of vaccinated animals less virus

shedding from the respiratory tract was observed, as compared

with unvaccinated, H1N1-challenged pigs. Importantly, robust

humoral responses against H3N2 TX/98 SIV were induced in

vaccinated animals (Richt et al., 2006). As expected, vaccinated

animals were seronegative for NS1, allowing the compatibility of

this LAIV as a promising DIVA strategy.

In another related later study, TX/98 NS1 1-126 mutant SIV

was used to evaluate different routes of vaccination in pigs, as the

intranasal immunization has several technical limitations to be

applied in the field (Vincent et al., 2007). Authors compared the

intramuscular and intranasal routes, showing that the intranasal

route induced a strong local (mucosal) immune response. TX/98

NS1 1-126 was shown to provide complete protection efficacy

against challenge with a homologous virus when 1 or 2 doses

were given intranasally and when 2 doses were given

intramuscularly (Vincent et al., 2007). However, only partial

protection was induced by intramuscular vaccination with a

single dose of TX/98 NS1 1-126. In addition, this LAIV was able

to protect against a heterologous homotypic A/SW/CO/23619/

99 H3N2 virus and provided partial protection against a

heterosubtypic A/SW/IA/00239/2004 rH1N1 virus when

administered via the intranasal route (2 doses) (Vincent et al.,

2007). More recently, the T-cell priming and cross-protective

efficacy in weanling piglets after intranasal inoculation with TX/

98 NS1 1-126 mutant versus WT TX/98 SIV was evaluated

(Kappes et al., 2012). Vaccine primed T cells were raised in

peripheral blood after inoculation with TX/98 NS1 1-126. As

expected, T-cell responses were superior in animals inoculated

with the WT virus in vitro re-stimulation assays. According to

the expression of activation marker CD25, peripheral T-cell

recall responses in TX/98 NS1 1-126 infected animals were

minimal. Nevertheless, intracellular IFN-g data at 28 days

post-inoculation showed that TX/98 NS1 1-126 was able to
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induct virus-specific CD4+CD8-, CD4+CD8+, CD4-CD8+, and

gd T cells. Moreover, immunization with TX/98 NS1 1-126 was

associated with significantly lower levels of Th1-associated

cytokines in infected lungs but still provided partial cross-

protection against a challenge with SIV H1N1 (Kappes et al.,

2012). These results indicate that NS1 truncated SIV, and

specifically TX/98 NS1 1-126, are able to elicit robust cell-

mediated cross-protection against antigenically divergent SIV

H1N1 strains. In this sense, the efficacy of this SIV LAIV (TX/98

NS1 1-126) against infection with the major North American

and European H3N2 SIV lineages was recently studied in

another report (Vandoorn et al., 2022a). Results suggest the

presence of partial cross-protection against heterologous North

American cluster II and IV H3N2 SIV strains (TX/98 NS1 1-126

is based on a cluster I H3N2) (Vandoorn et al., 2022a). TX/98

NS1 1-126 prevented substantial nasal shedding of a North

American novel human-like H3N2 SIV, and reduced

replication of a European H3N2 SIV. Although this LAIV

elicited neutralizing antibodies against homologous virus in

serum, no significant cross-reactive antibody titers against the

heterologous SIV were observed, suggesting that partial cross-

protection relies on cellular and mucosal immune responses

against conserved antigens or epitopes of the SIV proteins

(Vandoorn et al., 2022a). Since TX/98 NS1 1-126 can offer

only partial protection against a broad range of H3N2 SIV
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strains, it can be still a suitable option for its use in a

heterologous prime-boost vaccination strategy. Importantly, in

a related study it was examined the pathobiology, type I IFN

induction, of TX/98 NS1 1-126 in pigs and compared it with IFN

induction in pig kidney-15 (PK-15) cells (Vandoorn et al.,

2022b). In PK-15 cells, TX/98 NS1 1-126 induced higher levels

of type I IFN than WT TX/98, while virus replication kinetics

were similar, although this effect was observed only when cells

were infected at high multiplicity of infection. Moreover, nasal

excretion from animals intranasally inoculated with the virus

TX/98 NS1 1-126 reached titers of up to 4.3 log10 50% tissue

culture infective doses (TCID50)/mL, although this average titer

was 50 times lower than that for WT TX/98. Notably, viral titers

of the LAIV in the lower respiratory tract were significantly

reduced at 18 to 48 hours but similar to WT TX/98 titers at 72

hours, after intratracheal inoculation. TX/98 NS1 1-126 also

caused in general milder clinical signs than WT TX/98 but

induced comparable levels of macroscopic and microscopic lung

lesions, peak neutrophil infiltration, and peak type I IFN. Thus,

authors suggest that although TX/98 NS1 1-126 is partly

attenuated in pigs, this could not be linked with higher IFN

levels (Vandoorn et al., 2022b).

In 2017, TX/98 NS1 1-126 was the first LAIV licensed in the

United States (US) for the prevention of SIV in pigs from 1 day

of age. Ingelvac Provenza (Boehringer Ingelheim, St. Joseph,
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FIGURE 6

NS1 truncated or deficient IAV as LAIV for SIV (A and B), EIV (C), CIV (D), and AIV (E–I). Schematic representation of the WT and modified NS
segments for SIV (A, B), EIV (C), CIV (D), and AIV (E–I). NS vRNA is represented in gray boxes and the NCR located at the 3´and 5´ ends of the
NS vRNA are indicated with white boxes. NS1 and NEP ORFs are represented as gray and black boxes, respectively. Black lines represent stop
codons. In (B), truncated NS1 protein is expressed as a single polyprotein together with 2A autoproteolytic cleavage site and NEP. NEP protein is
released from NS1 protein during translation. IL-18 was incorporated between NS1 and NEP proteins via GSGG and GSG linkers (striped
rectangles), and the 2A autoproteolytic cleavage site. Splice acceptor site was mutated to inhibit splicing. In (F), the NS segments encoded
unmodified NEP and truncated NS1 protein products created by adding three serial stop codons comprising amino acids 1-73, 1-86, 1-101, and
1-122 without any nucleotide deletions. In (G), the internal deletion comprising nucleotides 370-426 (NS1-115-125) or 301-492 (NS1-91-93) in
NS1 are indicated. The CCT of these NS1 proteins contains the same 115 and 91, respectively, amino acid residues than the WT NS1 but
additional different residues (116 to 125 for NS1-115-125; and 92 to 93 in NS1-91/93, respectively) due to a frame shift in the ORF.
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MO, USA) is a bivalent LAIV containing one cluster I H3N2

virus based on TX/98 with the NS1 truncation and one virus

containing the same backbone but with the HA and NA derived

from a g2-b-likeH1N1 strain (A/swine/Minnesota/37866/1999),

that no longer circulated when the LAIV became available. This

vaccine was efficacious in reducing virus nasal shedding after

challenge with heterologous strains, either H1N1 or H3N2

(Genzow et al., 2018; Kaiser et al., 2019). However, a

phylogenetic analysis of whole genome sequences carried out

in the US using samples obtained in 2018 indicated that

reassortment strains containing LAIV genes in combination

with genes from endemic field strains circulating in US were

generated (Mancera Gracia et al., 2020; Sharma et al., 2020),

which suggests a substantial degree of LAIV replication.

Therefore, this data indicate that reassortment between this

SIV LAIV and field strains is possible, although the impact of

these reassortment viruses is still unclear and more studies are

required. Because the use of this LAIV interfered with routine

SIV surveillance in the US, the vaccine was withdrawn from the

market in 2020 (https://www.aphis.usda.gov/aphis/ourfocus/

animalhealth/veterinary-biologics/product-summaries/vet-

label-data/614d8792-aeb1-4837-b04e-50f8c181113f). Notably,

different approaches could be used to prevent the risk of

reassortment between viruses present in the LAIV and natural

circulating isolates (Gao and Palese, 2009; Chen et al., 2020).

Recently, an innovative approach to generate LAIV to

prevent SIV infections was reported (Lee et al., 2021). To

avoid potential reassortments between viruses present in the

LAIV and circulating field strains (Lee et al., 2021), the authors

engineered two recombinant chimeric IAV that contained the

HA and NA gene open reading frames (ORFs) of the TX/98 SIV

and six internal genes from a recently identified bat IAV bat/

Guatemala/164/2009 H17N10 (Lee et al., 2021). In addition, the

recombinant viruses encoded a C-terminally truncated form of

the NS1 protein expressing the first 128 amino acids with or

without the swine IL-18 (Bat09:mH3mN2-NS1-128 and Bat09:

mH3mN2-NS1-128-IL-18, respectively) (Figure 6B) using a 2A

autoproteolytic cleavage site strategy to express NS1 and NEP

from the same transcript, as was previously described (Nogales

et al., 2015; Nogales et al., 2019a). These two new LAIV and an

IIV control were tested in pigs against a heterologous KS-91088

H3N2 virus, a reassortant of A/swine/Kansas/10-91088/2010

H3N2 containing the NP, M, and NS genes from the

pandemic influenza A/California/04/2009 H1N1 (pH1N1).

Compared to the IIV, both LAIV were able to limit nasal virus

shedding and reduce lesions and virus replication in lungs.

Moreover, LAIV induced greater levels of mucosal IgA

responses in the lungs and increased numbers of antigen-

specific IFN-g secreting cells against the challenge virus.

Interestingly, authors did not observe differences between both

LAIV, suggesting that IL-18 expression did not significantly

impact vaccine efficacy, at least, under their experimental

conditions (Lee et al., 2021).
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Equine influenza virus (EIV)

EIV is the causative agent of equine influenza, which is an

upper respiratory disease characterized by the development of

pyrexia, coughing, dyspnea, and nasal discharge (Landolt, 2014;

Singh et al., 2018; Oladunni et al., 2021). EIV affects mainly

horses, but also other equids and has a severe impact on the

equine industry in most parts of the world (Landolt, 2014; Singh

et al., 2018; Oladunni et al., 2021). The first EIV isolated in

Europe in 1956 was an H7N7 subtype, which spread towards

many regions of the world by the early 1960s (Landolt, 2014;

Singh et al., 2018; Oladunni et al., 2021). However, this EIV

subtype is believed to have disappeared from the equine

population (Landolt, 2014; Oladunni et al., 2021). H3N8 EIV

was initially isolated in 1963 and rapidly spread causing major

outbreaks around the world, which persist today (Landolt, 2014;

Singh et al., 2018; Oladunni et al., 2021). The evolution of EIV

H3N8 subtype is driven by antigenic drift, and at the end of the

1980s, H3N8 EIV diverged into two antigenically distinct

Eurasian and American lineages (Landolt, 2014; Singh et al.,

2018; Oladunni et al., 2021). Around 2000, the American lineage

evolved into South-American, Kentucky, and Florida

sublineages. The Florida sublineage further evolved into two

antigenically distinct clades (clade 1 and clade 2) on the basis of

the HA sequence, which are presently co-circulating and co-

evolving worldwide (Landolt, 2014; Singh et al., 2018; Oladunni

et al., 2021). Currently, clade 1 EIV are predominantly found in

the US whereas clade 2 EIV are primarily circulating in Europe

and Asia (Landolt, 2014; Singh et al., 2018; Oladunni et al.,

2021). Prevention and control of H3N8 EIV in the equine

population rely on quarantine, hygiene, and vaccination

programs to reduce infection and spread between horses

(Major, 2011; Paillot et al., 2016). Due to the frequent

international transport of horses, the World Organization for

Animal Health (OIE, Office International des Epizooties)

recommends including representative viruses from both clades

in the composition of H3N8 EIV vaccines (Major, 2011; Paillot

et al., 2016).

In 2005, three NS1 mutant viruses containing C-terminally

truncated NS1 proteins (NS1 1–73, NS1 1–99, and NS1 1–126)

in the backbone of A/equine/Kentucky/5/2002 H3N8 were

generated using plasmid-based reverse genetics (Figure 6C)

(Quinlivan et al., 2005). As expected, authors showed that the

NS1 truncated EIV were impaired in their ability to inhibit type I

IFN production. Moreover, the NS1 truncated viruses replicated

at lower levels than a recombinant WT EIV counterpart in

embryonated eggs, MDCK cells, or mice, opening the feasibility

of using these NS1 truncated EIV as potential LAIV to prevent

influenza virus infection in horses. Disagreeing to other findings

with human, swine or, more recently, canine IAV (Talon et al.,

2000b; Quinlivan et al., 2005; Solorzano et al., 2005; Pica et al.,

2012; Nogales et al., 2017b), authors found that in the case of

EIV, the length of the NS1 protein did not correlate with the
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level of viral attenuation, with mutant EIV expressing the

shortest NS1 protein (e.g., NS1 1-73) being less attenuated

than viruses encoding larger NS1 proteins (e.g., NS1 1–99 and

NS1 1–126) (Quinlivan et al., 2005). Authors attributed these

unique findings to differences in protein stability and/or

degradation (Quinlivan et al., 2005).

In a follow up study in 2009, the authors demonstrated that

aerosol or intranasal immunization of horses with EIV NS1 1-

126 was safe and able to protect against developing fever and

other clinical signs of infection upon challenge with homologous

A/equine/Kentucky/5/2002 H3N8 (Chambers et al., 2009).

Moreover, horses vaccinated with EIV NS1 1-126 presented

reduced quantities of challenge A/equine/Kentucky/5/2002

H3N8 virus compared to mock-vaccinated controls (Chambers

et al., 2009), demonstrating the potential of implementing EIV

NS1 1-126 as a safe, immunogenic, and protective LAIV against

EIV in its natural host, the horse (Table 1).
Canine influenza virus (CIV)

CIV cause a contagious respiratory disease in dogs (2015;

Dalziel et al., 2014; Martinez-Sobrido et al., 2020). Currently,

three subtypes of CIV H3N8, H3N2, and H1N1 have been

identified in dogs. CIV H3N8, originated from the transfer of

H3N8 EIV to dogs around 1999 in the US (Crawford et al.,

2005). CIV H3N2 is an avian-origin virus identified around 2005

in China (Lee et al., 2016; Voorhees et al., 2017). CIV H1N1 was

recently identified in dogs in China (Wang et al., 2019). Whereas

CIV H3N8 affects mainly dogs, CIV H3N2 has also been isolated

from cats (2015; Crawford et al., 2005; Parrish et al., 2015;

Martinez-Sobrido et al., 2020). Dogs are the most popular

companion animal in the world and humans are closely

exposed to pathogens affecting dogs. Because that, and the

ability of IAV to infect multiple species and cause pandemics,

CIV could be an important health concern for humans or other

mammalians (Wille and Holmes, 2019; Martinez-Sobrido et al.,

2020). Moreover, natural and experimental infections of dogs

with human viruses have been reported (Dundon et al., 2010).

Thus, reassortant viruses between canine and human IAV could

result in the emergence of new viruses with novel properties,

including the ability to infect humans. The zoonotic risk

potential of CIV highlights the importance of monitoring and

controlling CIV infections and spread in dogs, not only for

canine health, but also for human well-being. Recently, members

of the National Institutes of Allergy and Infectious Diseases

(NIAID) Centers of Excellence for Influenza Research and

Surveillance (CEIRS) network collaborated to address the

public health risk of emerging IAV and their ability to

respond to a potential IAV pandemic, using CIV H3N2 as an

example (Martinez-Sobrido et al., 2020). The network

performed studies specifically addressing the criteria described

in the public health algorithms developed by the Centers for
Frontiers in Cellular and Infection Microbiology 13
Disease Control and Prevention (CDC) and the World Health

Organization (WHO) to estimate the potential risk to human

health and of pandemic emergence. Data indicated that CIV

H3N2 pose a low risk to humans, with younger people

representing the highest population at risk (Martinez-Sobrido

et al., 2020).

Currently, only IIV are commercially available to prevent

infections of dogs with H3N8 and H3N2 CIV subtypes. To date,

IIV or LAIV are not yet available for the prevention of CIV

H1N1. In addition, the efficacy of these CIV IIV to protect

against H3N8 and H3N2 subtypes is not optimal and improved

vaccines are needed (Nogales et al., 2017b; Nogales et al., 2017e;

Rodriguez et al., 2017a; Rodriguez et al., 2017b). Because usually

LAIV induce better immunogenicity and protection efficacy

than IIV, several attempts have been evaluated to generate

more efficient monovalent or bivalent LAIV for the prevention

of CIV infections (Nogales et al., 2017b; Nogales et al., 2017e;

Rodriguez et al., 2017a; Rodriguez et al., 2017b). Using plasmid-

based reverse genetics approaches, recombinant A/canine/NY/

dog23/2009 H3N8 viruses containing a full-length (WT),

truncations (NS1 1-73, NS1 1-99, and NS1 1-126) or a

deletion (DNS1) of the NS1 protein were generated and tested

as potential LAIV to prevent CIV infections (Figure 6D)

(Table 1) (Nogales et al., 2017b). Results demonstrate that all

NS1 mutant viruses, both NS1 truncated or deficient, were

attenuated in a mouse model of infection, but able to confer

complete protection against challenge with WT CIV H3N8 after

a single intranasal immunization. Importantly, immunogenicity

and protection efficacy was better than that of a commercial

H3N8 CIV IIV (Nogales et al., 2017b). The viruses containing

truncated versions of NS1 (CIV NS1 1-126, NS1 1-99, and NS1

1-73) displayed comparable replication kinetics in MDCK cells

than those of WT H3N8 CIV at both 37°C and 33°C. However,

DNS1 H3N8 CIV displayed a ts phenotype and viral replication

was affected at 37°C but not at 33°C (Nogales et al., 2017b), as

previously described for other NS1 deficient IAV (Falcon et al.,

2005). The fact that NS1 truncated H3N8 CIVs replicated

efficiently in MDCK cells addresses the concern of vaccine

production and commercialization for their implementation as

LAIV. Notable, authors also assessed viral replication ex vivo

using cultured canine tracheal explants and showed reduced

levels of viral replication of the NS1 truncated or deficient

viruses compared to WT CIV (Nogales et al., 2017b).
Avian influenza virus (AIV)

AIV infect a number of different avian host species and are

classified according to the OIE as low or highly pathogenic AIV

(LPAIV and HPAIV, respectively) based on its pathogenicity in

domestic chickens. Wild waterbirds are the natural reservoir of

LPAIV and from them LPAIV can be transmitted to domestic

birds, other wild or domestic animals, and humans (Parrish
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et al., 2015; Sutton, 2018; Wille and Holmes, 2019; Wang et al.,

2021). LPAIV strains can cause mild to severe disease in poultry,

and they are associated with mild clinical signs in broilers and

reduction in egg production in layers. In addition, LPAIV can

promote secondary infections causing an increase in mortality

(Mo et al., 1997; Alexander, 2000). LPAIV of the H5 and H7

subtype can evolve into HPAIV upon introduction into poultry,

causing systemic and fatal infections with high mortality rates in

poultry (Sutton, 2018; Verhagen et al., 2021). HPAIV strains are

highly contagious and can be transmitted from poultry to wild

birds, in which the viruses can circulate asymptomatically, or

cause severe disease and mortality (Mo et al., 1997; Alexander,

2000; Sutton, 2018; Verhagen et al., 2021). An important

component of IAV evolution and epidemiology occurs at the

wild–domestic interface (Parrish et al., 2015; Short et al., 2015;

Wille and Holmes, 2019). Both LPAIV and mainly HPAIV have

an enormous economic impact in the poultry industry that have

suffered colossal damages due to repeated outbreaks of AIV. In

addition, AIV also represent a risk to human health since avian-

origin IAV have been key in the last four IAV pandemics (1918,

1957, 1968, and 2009) and they have also been the source of

novel IAV strains in other mammalian hosts, including EIV, SIV

and CIV (Parrish et al., 2015; Sutton, 2018; Taubenberger and

Morens, 2019; Wille and Holmes, 2019; Wang et al., 2021).

Disturbingly, HPAIV outbreaks in poultry and wild birds are no

longer an occasional phenomenon in the world (Sutton, 2018;

Verhagen et al., 2021; Wang et al., 2021). In addition, outbreaks

of novel H6, H7, H9, and H10 AIV have been identified in

poultry, including zoonotic infections of humans (Arzey et al.,

2012; Wang et al., 2021). Fortunately, the absence of sustained

human-to-human transmission has limited the impact of AIV in

the human population.

The first HPAIV H5N1 was detected in 1996 in geese in

China and in 1997 the first human case of an H5N1 HPAIV

was reported in a three-year-old boy in Hong Kong, China (Xu

et al., 1999; Chan, 2002). Since then, H5 viruses continue to

spread, posing a major challenge to both animal and human

health. Due to the high mortality associated with HPAIV

H5N1 in poultry, more effective vaccines are urgently

needed. Using reverse genetics, several new LAIV based on

recombinant influenza A/Viet Nam/1203/2004 H5N1 were

generated (Steel et al., 2009). Each virus was attenuated

through expression of an HA protein in which the polybasic

cleavage site had been removed. In addition, viruses encoded a

full-length or C-terminally truncated 1-73, 1-99, or 1-126 NS1

protein (Figure 6E). Viruses were generated with PB2

containing either K627 or E627 because it was expected that

AIV containing E627 would be attenuated in mammalian

hosts, and therefore adding an increasing layer of safety for

the vaccine to be used in humans (Steel et al., 2009). Although

all recombinant H5N1 NS1 mutant viruses replicated at high

titers in embryonated chicken eggs, they grew poorly in human

A549 cells as compared to a recombinant virus expressing the
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entire NS1 protein, either in the backbone of K627 or E627 PB2

viral segment (Steel et al., 2009). As expected, high levels of

type I IFN were induced in A549 cells infected with NS1

truncated viruses compared to those expressing the full-

length WT NS1 protein. In vivo, H5N1 NS1 mutant viruses

were highly attenuated in mice and intranasal immunization

with a single dose of H5N1 NS1 truncated viruses conferred

complete protection against an otherwise lethal challenge with

a recombinant A/Puerto Rico/8/34 H1N1 (PR8) expressing

H5N1 HA and NA glycoproteins (Steel et al., 2009). Based on

these initial results, the authors selected the H5N1 NS1 1-99

containing PB2 E627 for further testing in chickens.

Interestingly, a single vaccination dose of this AIV LAIV

completely protected chickens against an homologous lethal

challenge with A/Viet Nam/1203/2004 H5N1 and provided a

high level of protection from a heterologous virus, A/egret/

Egypt/01/06 H5N1 (Steel et al., 2009). Altogether, these results

indicate that LAIV for the prevention of H5N1 AIV can be

generated through the introduction of mutations in the viral

HA, NS1, and PB2 proteins to prevent HPAIV infections. More

importantly, a similar approach could be used for the

development of LAIV for the prevention of other AIV,

including HPAIV.

In another study, a different strategy to develop a dual LAIV

against H5N1 and H9N2 AIV by modifying the NS1 gene was

used (Choi et al., 2015). Using the backbone of PR8 expressing

truncated NS1 proteins (NS1 1-73, NS1 1-86, NS1 1-101, and

NS1 1-122) authors generated viruses containing the HA from

A/WB/Korea/ma81/2006 H5N2 (WB/ma81/H5N2) and the NA

segment from A/CK/Korea/116/2003 H9N2 (CK/116/H9N2)

(Figure 6F). H5N2/NS1 1-86 and H5N2/NS1 1-101 were

highly attenuated compared to H5N2 expressing the full-

length or other remaining NS1 proteins in a mouse model.

Notably, intranasal immunization with a single dose of these

recombinant H5N2/NS1 1-86 and H5N2/NS1 1-101 viruses

completely protected mice from an otherwise lethal challenge

with the homologous A/WB/Korea/ma81/06 H5N2 or

hetero logous A/EM/Korea/W149/06 H5N1, and a

heterosubtypic mouse-adapted H9N2 AIV (Choi et al., 2015).

Therefore, these data suggest that H5N2/NS1 1-86 and H5N2/

NS1 1-101 mutant viruses could be used as LAIV candidates for

the preven t i on o f H5N1 influenza in f e c t i ons in

mammalian hosts.

In 2016 the association between type I IFN response and

protective efficacy of viruses encoding truncated NS1 proteins

was analyzed (Jang et al., 2016). This approach could represent

an excellent option for the development of vaccine candidates

for the prevention of AIV infections in chickens based on their

attenuated, immunogenic, and protective phenotype (Jang et al.,

2016). In this study, authors analyzed the relationship between

induction of type I IFN and ISGs responses in vivo and the

immunogenicity and protective efficacy of LAIV based on

truncations in the NS1, showing that antibody induction and
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protective efficacy correlates well with upregulation of ISGs.

Further, through oral administration of recombinant chicken

IFNa in drinking water, authors showed that IFNa can promote

rapid induction of adaptive immune responses and protective

efficacy of influenza vaccines in chickens (Jang et al., 2016). For

this study authors used two NS1 truncated viruses based on the

LPAIV A/turkey/Oregon/1971 H7N3, where one mutant

expressing the first 91 amino acids of NS1 (pc4-LAIV) was

more efficacious than the other expressing the first 115 amino

acids of NS1 (pc2-LAIV) in protecting chickens against

heterologous A/chicken/NJ/150383-7/02 H7N2 challenge virus

(Wang et al., 2008) (Figure 6G). In another related study using

the mutant NS1 virus pc4-LAIV (NS1 1-91/93) (Figure 6G),

authors compared the performance of this virus and an IIV in

young chickens vaccinated at 1 day of age (Jang et al., 2018). A

single dose of pc4-LAIV induced stronger innate and mucosal

responses, and protected young immunologically immature

chickens, than a single dose of the IIV. Moreover, when 1-day-

old animals were intranasally primed with the LAIV and

subcutaneously boosted with IIV three weeks later, they

showed a rapid, robust, and highly cross-reactive serum

antibody response and a high level of mucosal antibody

response. These experiments highlight the importance of

testing combinations of different vaccine approaches to

optimize the protection efficacy or to obtain cross-protection

against multiple AIV strains.

In another study, three NS1 truncated mutant viruses of a

LPAIV H9N2 virus A/chicken/Taixing/10/2010 (rTX-NS1 1-73,

rTX-NS1 1-100, and rTX-NS1 1-128) were rescued (Figure 6H)

(Chen et al., 2017). All viruses replicated efficiently in

embryonated chicken eggs and MDCK cells, which is an

important feature for vaccine production. Importantly, all

viruses were attenuated in chickens, although the mutant rTX-

NS1 1-128 exhibited the most attenuated phenotype and lost

transmissibility. The rTX-NS1 1-128 mutant virus also protected

vaccinated chickens against homologous (A/chicken/Taixing/

10/2010 H9N2) and heterologous (A/chicken/Shanghai/F/98

H9N2) AIV challenge and induced high levels of specific IgA

and IgG antibody responses, suggesting that rTX-NS1 1-128

represents an excellent LAIV candidate against H9N2 viruses

(Chen et al., 2017).

Although the goal of this review is to describe veterinary

LAIV based in NS1 truncated or deficient viruses, because the

zoonotic potential of AIV, vaccines against HPAIV could be

highly important also for humans if AIV acquires the ability to

efficiently transmit among humans (Verhagen et al., 2021; Wang

et al., 2021). In this regard, the safety and immunogenicity of a

H5N1 virus where the NS1 protein was deleted (H5N1 DNS1)
was assessed (Figure 6I) (Nicolodi et al., 2019). For that, authors

generated a recombinant virus containing the 5 internal genes

from IVR-116 (A/New Caledonia/20/1999-like H1N1),

including the NS1 deletion in the NS segment, and the HA,

NA, and M segments from HPAIV A/Viet Nam/1203/2004
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H5N1. Authors conducted a phase 1 study in healthy male

and female adult participants who received two intranasal

immunizations of the H5N1 DNS1 LAIV at 6.8 log10 TCID50/

subject, 7.5 log10 TCID50/subject, or placebo. Results indicated

that H5N1 DNS1 LAIV was safe and only symptoms associated

with mild influenza infections were observed in some vaccinated

subjects. Notably, H5N1 DNS1 LAIV was able to induce

significant specific serum antibody titers even after a single

immuniza t i on dose (C l in i ca lTr i a l s . gov iden t ifie r

NCT03745274). Importantly, the recombinant H5N1 DNS1
LAIV was not re-isolated in participants after one

immunization (Nicolodi et al., 2019), suggesting that the

generation of new reassortants containing genes from seasonal

viruses is unlikely.
NS1 and DIVA vaccines

One of the main concerns with the use of LAIV in animals

is to differentiate antibodies produced due to vaccination from

antibodies produced in response to natural virus infection

(Pasick, 2004; Hasan et al., 2016). In order to overcome this

issue and Differentiate Infected from Vaccinated Animals

(DIVA), several approaches have been implemented, such as

including sentinel non-vaccinated animals, the use of IIV or

subunit vaccines, heterologous neuraminidase vaccines,

chimeric HA epitope marked vaccines, and developing

serological tests against viral proteins which allow to

differentiate infected from vaccinated animals among others

(Ozaki et al., 2001; Tumpey et al., 2005; Avellaneda et al., 2010;

Brahmakshatriya et al., 2010; Wang et al., 2011; Hasan et al.,

2016; Sun et al., 2021). The DIVA strategy is not a new concept

since it has been previously used for other pathogens (Calvo-

Pinilla et al., 2020; Utrilla-Trigo et al., 2022), including the

eradication of an infectious disease from a region or country

(Pasick, 2004). In addition, DIVA strategies are useful for

global trade (e.g., import or export animals and animal

products free of a particular disease agent), reducing the risk

of introducing new disease to a naïve animal population.

NS1 is a highly expressed and one of the most abundant

proteins produced during IAV infection and, therefore, easily

detectable in infected cells (Ozaki et al., 2001), and it has been

suggested to be packaged into infective viral particles in small

amounts (Hutchinson et al., 2014). Moreover, antibodies

against NS1 have been observed in infected animals (Birch-

Machin et al., 1997; Ozaki et al., 2001; Tumpey et al., 2005;

Dundon et al., 2007; Avellaneda et al., 2010; Brahmakshatriya

et al., 2010; Wang et al., 2011; Hasan et al., 2016). These

characteristics allow the development of a diagnostic DIVA-

antigen approach based on the identification of antibodies

against NS1 to differentiate naturally infected animals from

those vaccinated with LAIV based on truncated or deficient

NS1 mutant viruses (Figure 7). Moreover, diagnostic DIVA-
frontiersin.org

https://doi.org/10.3389/fcimb.2022.954811
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Nogales et al. 10.3389/fcimb.2022.954811
NS1 approaches would be useful also for the implementation

of other immunization strategies, including IIV. Several

studies have showed that this DIVA-NS1 approaches could

be used in poultry and that vaccinated/not-infected or

vaccinated/infected animals can be differentiated based on

the NS1 antibody response (Birch-Machin et al., 1997; Ozaki

et al., 2001; Tumpey et al., 2005; Dundon et al., 2007;

Avellaneda et al., 2010; Brahmakshatriya et al., 2010; Wang

et al., 2011; Hasan et al., 2016). However, the NS1 DIVA

strategy has also some limitations including the inconsistent

antibody response to the NS1 protein after natural infection,

the sometimes poor immune response to NS1 protein in

vaccinated individuals, and NS1 protein variability, among

others (Birch-Machin et al., 1997; Ozaki et al., 2001; Tumpey

et al., 2005; Dundon et al., 2007; Avellaneda et al., 2010;

Brahmakshatriya et al., 2010; Wang et al., 2011; Hasan et al.,

2016; Evseev and Magor, 2021). Therefore, it will important to

develop improved tests to establish highly sensitive,

reproducible and effective NS1-based DIVA approaches

(Avellaneda et al., 2010; Hasan et al., 2016). Ideally, DIVA
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tools needs to be highly sensitive, effective in distinguish

vaccinate from infected animals, cost effective, and suitable

for mass screening. In this sense, ELISA–based diagnostic tests

(Figure 7) might be an interesting assay to develop, as this can

help in scoring a highly sensitive and specific DIVA test.

Importantly, novel DIVA assays could take advantage of

different strategies such as the combination of NS1-based

DIVA approaches with LAIV containing NS1 mutant genes

together with heterologous NA, or the identification of other

suitable DIVA antigens that could be included in next

generation DIVA assays.
LAIV based on codon-
deoptimization (CD) of NS1

Viruses need the translation machinery of infected cells to

synthesize their proteins for the formation of virus progeny

(Boivin et al., 2010; Thulasi Raman and Zhou, 2016; Rodriguez

et al., 2018a; Long et al., 2019). The degeneracy of the genetic
A

B

FIGURE 7

Principle of vaccination with NS1 truncated or deficient viruses as DIVA LAIV. (A) Specific antibodies (Abs) against IAV NS1 protein will be
produced in infected animals, but not in animals vaccinated with NS1 truncated or deficient IAV (DIVA vaccine). However, specific antibodies
against viral HA from circulating strains or the vaccine will be induced in infected and/or vaccinated animals, respectively. (B) Development of a
DIVA serological test. Abs against IAV NS1 induced by natural infection can be identified by proper serological tests. In the figure an ELISA is
used to differentiate sera from infected (containing antibodies against both NS1 and HA proteins) and not infected animals, before vaccination.
Wells are coated using recombinant NS1 or HA IAV proteins. Then, the same serological test is carried out after vaccination to differentiate
animals that has been infected from animals that have been not infected. Samples from infected animals will be positive for HA and NS1 in the
ELISA tests, while samples from vaccinated and not infected animals will be positive only for HA in the ELISA tests.
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code allows for most of the amino acids to be encoded by more

than one synonymous codon (Xu et al., 2004). However, most

viruses have evolved to modify their codon usage according to

the host they infect (Hershberg and Petrov, 2008; Wong et al.,

2010; Plotkin and Kudla, 2011; Baker et al., 2015). New

biotechnological advances have allowed the generation of

recombinant IAV containing genes with deoptimized codons

(Nogales et al., 2014; Baker et al., 2015), which could be used as

potential LAIV. In fact, we have demonstrated that recombinant

IAV containing a codon-deoptimized NS1 protein (NS1cd),

alone or in combination with a codon-deoptimized NEP

sequence (NEPcd), were attenuated in mice and able to

provide, upon a single immunization dose, protection against
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a lethal challenge with a homologous PR8 or heterologous X31 (a

recombinant virus containing the HA and NA segments of A/

Hong Kong/1/1968 H3N2 in the background of PR8) IAV,

demonstrating the feasibility of implementing this CD-based

approach for the development of safe, immunogenic, stable, and

protective LAIV for the prevention of IAV infections (Nogales

et al., 2014; Baker et al., 2015) (Figure 8). Furthermore, LAIV

based on CD viruses displayed similar viral replication kinetics

to WT virus in MDCK cells, important for vaccine

manufacturing and production. Moreover, these additional

studies demonstrate that IAV NS1 can be targeted using

different approaches for the development of LAIV to protect

and prevent IAV infections and spread.
A

B

FIGURE 8

Codon deoptimization of NS segment for the generation of LAIV. Schematic representation of WT (A) and codon deoptimized, cd (B) viral NS
segments. NS vRNA is represented in gray boxes and the NCR located at the 3´and 5´ ends of the NS vRNA are indicated with white boxes. WT
NS1 and NEP ORFs are represented as gray and black boxes, respectively. The cd region is represented with light gray boxes for viruses
encoding cd NS1 (NS1cd, top), NEP (NEPcd, middle) or both NS1 and NEP (NScd, bottom) proteins. After infection with an IAV encoding a WT
NS segment, expression of full-length NS1 results in inhibition of IFN induction, allowing efficient viral replication (A). Infection with IAV NS1cd
(top, (B) results in reduced NS1 protein expression and inefficient inhibition of IFN responses, resulting in reduced viral replication. Infection with
IAV NEPcd (middle, (B) results in lower expression of NEP, affecting viral replication. Infection with IAV NScd (bottom, (B) results in the virus
showing higher attenuation, correlating with the amount of codon changes introduced in both NS1 and NEP in the modified NS viral segment.
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Conclusions and future directions

Usually, LAIV are able to induce broader and longer-lasting

protection than IIV based on their ability to induce induction of

robust mucosal humoral immunity and cross-reactive cellular

immune responses (Sridhar et al., 2015; Hoft et al., 2017; Nogales

et al., 2017e; Korenkov et al., 2018; Rodriguez et al., 2018b;

Krammer, 2019; Rodriguez et al., 2019; Smith et al., 2019).

Therefore, several efforts have been pursued to generate safer

and more effective LAIV approaches. Among them, NS1 mutant

IAV have been shown to represent an excellent option for their

implementation as safe, immunogenic, stable, and protective

LAIV to prevent infection of multiple IAV in different animal

species (Talon et al., 2000b; Quinlivan et al., 2005; Solorzano

et al., 2005; Richt et al., 2006; Vincent et al., 2007; Wang et al.,

2008; Chambers et al., 2009; Steel et al., 2009; Kappes et al., 2012;

Pica et al., 2012; Choi et al., 2015; Jang et al., 2016; Na et al., 2016;

Chen et al., 2017; Nogales et al., 2017b; Jang et al., 2018; Nicolodi

et al., 2019; Lee et al., 2021; Vandoorn et al., 2022a), including

humans (Table 1). The implementation of reverse genetics

methods have been key for the development of novel LAIV

approaches to prevent and control IAV infections in different

species (Nogales et al., 2016a; Nogales and Martinez-Sobrido,

2016; Blanco-Lobo et al., 2019). Importantly, all the vaccination

strategies have advantages and disadvantages that need to be

considered carefully. Some of the aspects to be evaluated include

the safety, immunogenicity, protection efficacy against different

IAV strains, LAIV stability, and the cost of vaccine manufacture,

among others.

Attenuation of NS1 mutant truncated or deficient IAV is

mainly due to their limited capability to counteract host type I

IFN responses, which also increases their immunogenic

properties. However, it has been shown that NS1 truncated or

deficient IAV can also display a ts phenotype, which can further

contribute to their attenuation and their ability to induce strong

mucosal humoral immunity (Falcon et al., 2005; Nogales et al.,

2017b; Nogales et al., 2017c). Importantly, these LAIV have

demonstrated efficacy in several avian and mammalian hosts

against many IAV strains (Talon et al., 2000b; Quinlivan et al.,

2005; Solorzano et al., 2005; Richt et al., 2006; Vincent et al.,

2007; Wang et al., 2008; Chambers et al., 2009; Steel et al., 2009;

Kappes et al., 2012; Pica et al., 2012; Choi et al., 2015; Jang et al.,

2016; Na et al., 2016; Chen et al., 2017; Nogales et al., 2017b; Jang

et al., 2018; Nicolodi et al., 2019; Lee et al., 2021; Vandoorn

et al., 2022a).

Moreover, the safety and protective immunogenicity of these

LAIV can be modulated by introducing different truncations, or

deletions, in the viral NS1 protein (Falcon et al., 2005; Quinlivan

et al., 2005; Steel et al., 2009; Chen et al., 2017; Nogales et al.,

2017b). Nevertheless, more field trials will be required before

implementing some of these LAIV approaches, and to determine

the reduction of disease symptoms or viral shedding in a real
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scenario. Also, it will be important to evaluate the possibility of

reversion of these LAIV to a virulent phenotype through

mutation in other regions of the viral genome or reassortment

in the field with naturally circulating IAV strains, as recently

described for SIV (Mancera Gracia et al., 2020; Sharma et al.,

2020). Likewise, it is important to highlight that LAIV based on

NS1 mutants will not overcome the necessity to develop

universal vaccines to avoid the consequences of IAV

variability, although a better cross-protection will be obtained

by using LAIV, as compared to IIV vaccines, when there is an

antigenic mismatch between the viruses included in the vaccine

and circulating strains (Sridhar et al., 2015; Hoft et al., 2017;

Nogales et al., 2017e; Korenkov et al., 2018; Rodriguez et al.,

2018b; Krammer, 2019; Rodriguez et al., 2019; Smith et al.,

2019). Finally, IAV NS1 deficient or truncated based LAIV-

based approaches are compatible with DIVA strategy, which is

important for animal immunization to control the dissemination

of pathogens (Ozaki et al., 2001; Pasick, 2004; Tumpey et al.,

2005; Avellaneda et al., 2010; Brahmakshatriya et al., 2010;

Wang et al., 2011; Hasan et al., 2016; Calvo-Pinilla et al., 2020;

Utrilla-Trigo et al., 2022). In conclusion, although NS1 truncated

or deficient IAV represent an exceptional approach for their

implementation as safe, immunogenic, stable, and protective

LAIV, there is still a long way to go for their implementation for

the prevention of IAV infections. Moreover, LAIV based on NS1

mutant IAV could be combined with other vaccine approaches,

including the use of IIV, to optimize the level of cross-protection

against multiple IAV strains (Sridhar et al., 2015; Hoft et al.,

2017; Jang et al., 2018; Korenkov et al., 2018).
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