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Application of Whole-Genome Sequences and Machine
Learning in Source Attribution of Salmonella Typhimurium

Nanna Munck ,1,∗ Patrick Murigu Kamau Njage ,1 Pimlapas Leekitcharoenphon ,1

Eva Litrup ,2 and Tine Hald 1

Prevention of the emergence and spread of foodborne diseases is an important prerequisite
for the improvement of public health. Source attribution models link sporadic human cases
of a specific illness to food sources and animal reservoirs. With the next generation sequenc-
ing technology, it is possible to develop novel source attribution models. We investigated the
potential of machine learning to predict the animal reservoir from which a bacterial strain
isolated from a human salmonellosis case originated based on whole-genome sequencing.
Machine learning methods recognize patterns in large and complex data sets and use this
knowledge to build models. The model learns patterns associated with genetic variations in
bacteria isolated from the different animal reservoirs. We selected different machine learning
algorithms to predict sources of human salmonellosis cases and trained the model with Danish
Salmonella Typhimurium isolates sampled from broilers (n = 34), cattle (n = 2), ducks (n =
11), layers (n = 4), and pigs (n = 159). Using cgMLST as input features, the model yielded an
average accuracy of 0.783 (95% CI: 0.77–0.80) in the source prediction for the random forest
and 0.933 (95% CI: 0.92–0.94) for the logit boost algorithm. Logit boost algorithm was most
accurate (valid accuracy: 92%, CI: 0.8706–0.9579) and predicted the origin of 81% of the do-
mestic sporadic human salmonellosis cases. The most important source was Danish produced
pigs (53%) followed by imported pigs (16%), imported broilers (6%), imported ducks (2%),
Danish produced layers (2%), Danish produced cattle and imported cattle (<1%) while 18%
was not predicted. Machine learning has potential for improving source attribution modeling
based on sequence data. Results of such models can inform risk managers to identify and
prioritize food safety interventions.
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1. INTRODUCTION

Salmonella Typhimurium including its monopha-
sic variants is the second most prevalent human
Salmonella serotype in the European Union (EU)
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and most EU member states (EFSA, 2018). During
the last few years, monophasic variants of Salmonella
Typhimurium have also repeatedly been involved
in human foodborne outbreaks (Hazards, 2010).
Salmonella Typhimurium is a major serotype in pigs
but is also commonly found in a number of other
food-animal reservoirs (e.g., poultry and cattle)
and environmental samples. This is in contrast to
Salmonella serotypes primarily associated with a sin-
gle reservoir, e.g., Salmonella Dublin that is mainly
associated with the bovine reservoir (Uzzau et al.,
2000). It was, therefore, decided to focus on source
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attribution of human salmonellosis infections caused
by Salmonella Typhimurium and its monophasic
variants.

Being able to prevent the emergence and
spread of foodborne diseases is important and
improves public health. Source attribution models
link sporadic human cases of a specific illness to
food sources and animal reservoirs (Pires et al.,
2009). The result of a source attribution model is a
source account that sums up the number of sporadic
human salmonellosis cases attributed to the different
animal reservoirs thus providing information to
decision-makers about prevention and control of
human salmonellosis cases, eventually improving
public health. In Denmark, the Salmonella source
account is based on sporadic salmonellosis cases and
index cases (the first documented human case of
an outbreak) and positive Salmonella samples from
animal and food registered as part of the Danish na-
tional Salmonella surveillance programs for animals,
food, and humans. In Denmark, a Salmonella source
account has been published every year for the past
two decades in the annual report on zoonoses in
Denmark (https://www.food.dtu.dk/Publikationer/
Sygdomsfremkaldende-mikroorganismer/Zoonoser-
aarlige-rapporter) which has informed decision-
makers regarding prevention strategies.

The Danish source account has up until now
been based on a Bayesian modeling approach that
accounted for prevalence of the Salmonella types
in the different sources (Hald, Vose, Wegener, &
Koupeev, 2004). The types have over the years been
defined by serotyping, phage typing, MLVA typing,
and resistance profiling (de Knegt et al., 2016; Hald
et al., 2004) and the source attribution model has
been modified and applied in other countries such
as Australia (Fearnley et al., 2018; Glass et al., 2015)
and New Zealand (Mullner et al., 2009).

From January 2017, sero- and multiple locus
variable number tandem repeat analysis (MLVA)
typing of isolates, collected as part of the Danish
national Salmonella surveillance, was replaced by
whole genome sequencing. Consequently, new tools
for source attribution models based on sequencing
data had to be developed as MLVA types cannot
be derived from the sequence because it relies on
repeats that are very difficult to determine based
on the short-read sequences. A forest of different
bioinformatics analysis for analyzing sequences ex-
ists. One of these is the core genome multi locus se-
quence typing (cgMLST) that analyzes all core genes
and differentiate strains by their allelic variations.

With the Salmonella core genome consisting of 3,002
genes each having several allelic variations, highly
discriminatory data are obtained. Machine learning
algorithms are well suited for analyzing this type of
data sets (Libbrecht & Noble, 2015) and has been
mentioned as a potential approach for source attri-
bution models based on sequencing data (Mughini-
Gras, Franz, & Pelt, 2017) in a public health context
(Lupolova, Dallman, Holden, & Gally, 2017). Recent
studies by Zhang et al. (2019) and Lupolova et al.
(2017) agree on the potential of using machine learn-
ing and whole genome sequencing data to discrimi-
nate between different sources, while the aim of data
sets are different than the one presented here. Zhang
et al. (2019) found the approach useful when identi-
fying potential sources of foodborne Salmonella Ty-
phimurium outbreaks based on core genome muta-
tions and accessory genes. Lupolova et al. (2017)
focused on analyzing host restriction using a com-
bined machine learning and phylogenetic approach.
The study was based on data from a large time pe-
riod (1945–2016) covering almost all continents and
included three animal reservoirs.

These recent papers and a newly published guide
to machine learning for bacterial host attribution
using genome sequence data (Lupolova, Lycett, &
Gally, 2019) indicate a growing interest in machine
learning approaches to source attribution. We fo-
cus on the attribution of domestic sporadic human
cases and demonstrate the usefulness of a machine
learning analysis of core genomes of Salmonella Ty-
phimurium and its application for source attribution
in a public health context. Specifically, we investi-
gate the potential of machine learning to predict the
source from which a bacterial strain isolated from a
Danish human salmonellosis case originated on the
basis of input derived from whole-genome sequenc-
ing data. We hypothesize that cgMLST and allelic
variations are potentially useful to distinguish pat-
terns between sources in a source attribution context.

2. METHODS

2.1. Data Description and Collection

The data set included food, animal, and human
isolates collected specifically for this study. The
human, food, and animal isolates were collected as
part of integrated surveillance systems and were
thus representative of Salmonella Typhimurium
and its monophasic variants in human, domestic,
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and imported animals and food in 2013 and 2014.
A subset of the Salmonella Typhimurium isolated
from human, food, and animals was sequenced for
this project as described in detail elsewhere (Munck
et al., 2020). These isolates were previously used
for the Danish Salmonella source account published
in the annual reports on zoonoses in Denmark
in 2013 and 2014 (see, e.g., Anonymous, 2015).
Domestic and sporadic human cases were included
and information about travel was obtained.

In total, 65% of the 325 samples of Salmonella
Typhimurium and its monophasic variants isolated
from domestic and imported food and animals were
sequenced as part of the food data set for this study.
The human data set consisted of 18% of the 764 sam-
ples of Salmonella Typhimurium and its monophasic
variants. All isolates were sequenced using an Illu-
mina HiSeq, NextSeq, or MiSeq sequencing machine.

2.2. Phylogeny of the Data Set

The phylogeny of the data set was analyzed to
examine its applicability for source attribution. Max-
imum likelihood phylogenetic trees were constructed
from sequence variations in the genome shared be-
tween strains included in the analysis using FastTree
(Price, Dehal, & Arkin, 2009).

Sequence variations were defined as the sin-
gle nucleotide polymorphisms (SNPs) within the
genome shared between the strains included. Dis-
tances between isolates were equivalent to the
number of SNPs between them. The data set
was assumed applicable when human salmonel-
losis cases were intermixed with the food and
animal sources. SNPs were identified using the
Call SNPs and Infer Phylogeny (CSI) phylogeny
pipeline (Kaas, Leekitcharoenphon, Aarestrup, &
Lund, 2014; Leekitcharoenphon et al., 2012), freely
available from the center for genomic epidemiol-
ogy (www.genomicepidemiology.org). We briefly de-
scribe the pipeline here. Trimmed paired-end reads
of each isolate were aligned against the reference
genome, Salmonella enterica subsp. enterica serovar
Typhimurium str. LT2 (AE006468.2, 4,857,432 base
pairs) (McClelland et al., 2001) using Burrows–
Wheeler Aligner version 0.7.2 (Li & Durbin, 2009).
The SNPs were identified using ”mpileup” module in
SAMTools version 0.1.18 (Li et al., 2009). SNPs ful-
filling the following criteria were selected: (i) a min-
imum distance of 15 bps between each SNP (prun-
ing), (ii) a minimum of 10% of the average depth, (iii)
mapping quality above 30, (iv) the SNP quality was

more than 20, and (v) all indels were excluded. The
selected SNPs from each genome were concatenated
into a single pseudoalignment corresponding to the
position of the reference genome. The phylogenetic
tree was annotated and visualized using Itol (Letu-
nic & Bork, 2016) and the distances between isolates
equivalent to the amount of SNPs between them.

2.3. Bioinformatics Analysis

Core genome multilocus sequence typing
(cgMLST) of all sequences included in the data
set was used to generate input data to the source
attribution model. cgMLST was obtained using the
Enterobase scheme (Alikhan, Zhou, Sergeant, &
Achtman, 2018) in BioNumerics version 7.6 (Ap-
plied Maths, Sint Martens Latem, Belgium). The
core genome of Salmonella consists of 3,002 loci
with one single locus having several allele variations
(Alikhan, Zhou, Sergeant, & Achtman, 2018).
cgMLST allele calls were accepted for strains with a
core genome coverage higher than 95% (2,852) of
3,002 core genomes alleles and a detection of mixed
sequence alleles lower than 50 alleles. BioNumerics
sometimes omit calling an allele due to, e.g., stop
codens, indels or the like leading to missing values
in the cgMLST profile. These values were imputed
using missForest function in the missForest pack-
age in R version 3.4.3. missForest is applicable to
high-dimensional data sets for which the number of
features exceeds the number of observations and
can also handle mixed data types (Stekhoven &
Buhlmann, 2012).

2.4. Source Attribution Modeling

We applied machine learning algorithms trained
on allelic variations in the core genes of the
Salmonella Typhimurium isolated from food and an-
imal to predict the source from which a given bacte-
rial strain isolated from a human salmonellosis case
originated. We hypothesized that patterns in the al-
lelic variations of the Salmonella core genome were
associated with the animal reservoir.

We applied supervised machine learning clas-
sification models. The classification was supervised,
because it has class labels and the algorithm thus
learns from which of the different animal reservoirs
(classes) each of the specific isolates from food and
animal originates. The model is then used to identify
loci that are able to differentiate between the sources
based on their allelic variation, obtained through



1696 Munck et al.

Fig 1. Conceptual model of the machine learning method devel-
opment.

cgMLST analysis of the sequences. The modeling
steps are visualized in Fig. 1 and elaborated in the
sections below. Analysis was performed in R version
3.5.2 (2018-12-20). The R script is included in Sup-
porting Information.

2.4.1. Feature Reduction

The Salmonella core genome, and hence the
number of features (loci) consists of 3,002 loci
(Alikhan et al., 2018). The number of features (loci)
was reduced in order to decrease computing time
and complexity and to avoid correlated features.
Zero variance within each variable was detected
using the NearZeroVariance function in the caret R
package (Kuhn, 2008, 2018). Boruta function in the
Boruta R package was used to iteratively reduce less
relevant features by statistically comparing them to
randomly generated features (Kursa & Rudnicki,
2010). Irrelevant features with no useful information
for distinguishing between the different sources were
excluded.

2.4.2. Class Imbalance

Salmonella Typhimurium mainly inhabit the pig
reservoir in Denmark and to a much lower extent
other animal reservoirs such as broilers, layers, and
cattle (Anonymous, 2014, 2015). Unequal sample
sizes among the sources occurred that could influ-
ence the model fitting (Kuhn & Johnson, 2013). A
variety of sampling approaches have been developed
to mitigate this issue (Kuhn & Johnson, 2013). Up-
sampling was performed using the upsample function
in the caret package in R, which randomly samples
(with replacement) cases from the minority classes
to be the same size as the majority class (Kuhn &
Johnson, 2013). The upsampled data set was ap-
plied to the model selection and model construction
step (Fig. 1) while the final predictive model was
developed from the original (and not upsampled)
data set.

2.4.3. Machine Learning

The machine learning model was developed us-
ing the food and animal data. Model selection and
model construction were based on training sets while
the final model was developed from the entire data
set.

Model selection. Two machine learning
algorithms, logit boost and random forest, were eval-
uated. These algorithms have been successfully ap-
plied in studies analyzing sequence data (Machado,
Mendoza, & Corbellini, 2015; Njage et al., 2018;
Njage, Leekitcharoenphon, & Hald, 2019; Ogutu,
Piepho, & Schulz-Streeck, 2011). The models were
trained on the randomly generated training data set
(70%) and performance was estimated using the
testing data set (30%) with cross-validation. Ten it-
erations were performed. Cross-validation randomly
partitioned the training data set into seven subsets:
one held-out-subset and six equal sized subsets (also
termed “folds”). Average accuracies were reported
from the prediction of the held-out-subsets by the
model build on the six remaining subsets. The held-
out-subset was returned to the training set and the
procedure was repeated until all subsets had been
held out and predicted (Kuhn & Johnson, 2013).
Ten iterations were performed and the algorithm
with the highest average accuracy was selected as
the best algorithm to proceed with in the model
construction.
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Model construction and evaluation. After
selection of the best performing model, a new model
was constructed following identical modeling pro-
cedure described in model selection. Performance
of the constructed model was evaluated from its
valid accuracy, kappa value, and confusion matrix.
Valid accuracy was determined from the models’
ability to predict the labels of the animal and food
isolates testing data set. Results of the valid accuracy
were also expressed in a confusion matrix that
cross-tabulates observed and predicted cases. The
kappa value is calculated from the row and column
sums in the confusion matrix and takes and reflects
the agreement between the predicted and observed
sources (Kuhn & Johnson, 2013).

Final model. The final model was constructed
by applying the algorithm from the model construc-
tion to the complete and not-upsampled food and an-
imal data set. The model learned as much as possible
about the variability in the data when all available
data were used. Thus, this was the best take-off for a
predictive model. Accuracy and confusion matrix ob-
tained from the final model would be misleading and
artificially precise and were not reported.

2.5. Prediction of Human Cases

The probability that each human case originated
from a specific source was predicted from the final
model. For each source, the sum of the probabili-
ties equaled the number of human cases attributed
to that source. Human cases for which a source
could not be predicted were referred to an unknown
source category. Sporadic domestic and outbreak in-
dex cases, if available, were predicted. Human cases
with travel history were not predicted and per defini-
tion attributed to travel.

2.6. Validation

We attempted to validate the machine learning
model by comparing the results with those obtained
by applying the Bayesian source attribution model
(or the Hald model) (Hald et al., 2004) to the same
data set. The Hald model relies on a Bayesian frame-
work using Markov Chain Monte Carlo simulations
and estimates the number of human salmonellosis
cases to each source (j) per Salmonella subtype
(i): λi j = mj ∗ pi j · ∗ qi · ∗ a j , where λ is the number
of human salmonellosis cases, m is amount of the

food sources available for consumption, p is the
prevalence, and q and a are Salmonella subtype
and source-specific factors estimated by the model,
respectively. Salmonella subtype was discriminated
by serotype, the MLVA profile and phenotypic
resistance profile. The MLVA profile was defined by
the number of repetitions observed in loci STTR3,
STTR10, and STTR9 and the resistance profile
compiling phenotypic resistance towards ampicillin,
chloramphenicol, sulphamethoxazole, tetracyclin,
trimethoprim, ciprofloxacin, gentamicin, nalidixan,
and ceftiofur. The prevalence of each specific
Salmonella subtype by source was calculated as the
number of positive Salmonella isolates divided by
the total number of samples collected from that
source in 2013 and 2014 combined. The q-value
was calculated for Salmonella types occurring only
in a single source (de Knegt et al., 2016). The
remaining q-factors and all a-factors were included
as noninformative priors. The model attributed
sporadic domestic human salmonellosis cases to
animal reservoirs whereas the sporadic travel cases
were attributed directly to travel. A subset of the
human salmonellosis cases with unknown travel
history were allocated to travel cases using prior
information about the distribution of travelers and
nontravelers. Consequently, unknown travel cases
allocated to travel cases were attributed to animal
sources whereas known travel cases were attributed
to travel. Results were reported as the mean percent
cases of human salmonellosis cases attributed to
the different sources with 95% credible intervals
(CrI). The unknown source category reflected any
over- and underestimation by the model. Data
management was performed in Microsoft Excel
and the source attribution model was set up and
run with WinBugs version 3.2.3. Five independent
Markov Chain Monte Carlo simulations were run for
50,000 iterations with random defined starting values
between 0 and 100. The burn-in period was 10,000
iterations with a thinning value of 1. Convergence
was monitored using the Gelman–Rubin diagnostics
(Toft, Innocent, Gettinby, & Reid, 2007).

3. RESULTS

3.1. Data Sets

The applicability of the data set to develop and
apply a new source attribution model was assessed
by examining the population structure obtained from
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Fig 2. Phylogenetic tree of the Danish data set. Branch length to outgroup ST36 reduced by 30 from 0.71421 to 0.023807. Isolates are
annotated by source (inner ring). Whether the source of the human cases was predicted is indicated in the outer ring. Source: light red:
domestically produced pigs, Pigs (DK), light pink: imported pigs, Pigs (import), yellow: imported ducks, Ducks (import), blue: domestically
produced broilers, Broilers (DK), turquoise: domestically produced eggs, Layers (DK), light green: domestically produced cattle, Cattle
(DK), dark green: imported cattle, Cattle (Import), and dark grey: Danish human salmonellosis cases, Humans (DK).

the phylogenetic analysis (Fig. 2). The phylogenetic
profiles of the human isolates were intermixed with
those from potential food and animal sources indi-
cating that the strains from humans were more likely
to have originated from one or more of the included
sources than from an unobserved source. The phy-
logeny also confirms that the human salmonellosis
cases did not cluster separately from the included an-
imal sources. The data set was thus assessed as appro-
priate for development of a new source attribution
model based on sequencing data.

3.2. Predictive Model

We developed a supervised machine learning
model from 210 food and animal isolates collected

through the Danish national Salmonella surveillance
program in 2013 and 2014 (Table I). The model was
based on Salmonella core genes and associated allelic
variations. In total, 520 (0.08%) allelic values from
the food and animal isolates and 15,176 (3.6%) of the
allelic values from the human isolates were imputed
with a good performance reflected in the proportion
of falsely classified entries of 0.002861816 (Stekhoven
& Buhlmann, 2012). Of the 3,002 Salmonella core
genes, 17 were found important after feature reduc-
tion (Subsection 2.4.1) and therefore selected for fur-
ther modeling. The importance of the 17 core genes
across the sources are listed in Table II. The impor-
tance is based on the accuracies of the prediction of
the sources by each feature (loci). The values are in
fact area under the ROC curve (AUC) derived from



WGS and Machine Learning in Source Attribution 1699

Table I. Number of Salmonella Typhimurium and its
Monophasic Variants Included in the Danish Data Set

DK Data Set,
2013–2014
Source 2013 2014

Number of
Isolates

Pigs (DK) 84 41 125
Pigs (import) 20 14 34
Broilers (DK) 13 21 34
Ducks (import) 0 11 11
Layers (DK) 3 1 4
Cattle (DK) 1 0 1
Cattle (import) 0 1 1
Total animal 121 89 210
Human 29 112 141

Note: DK, Denmark.

the source specific sensitivities and specificities val-
ues (Table III).

3.3. Model Selection

We compared the performance of the random
forest and logit boost algorithm by the average accu-
racies obtained from 10 iterations each applying sev-
enfold cross-validation. Average accuracy for all 10
iterations was 0.783 (95% CI: 0.77–0.80) for random
forest and 0.933 (95% CI: 0.92–0.94) for logit boost.
Valid accuracy and confusion matrix (Table IV) were
therefore reported from the model constructed using

the logit boost algorithm (model construction step of
Fig. 1).

3.4. Logit Boost Model

Valid accuracy obtained from the confusion ma-
trix (Table IV) for the constructed model was 0.92
(95% CI: 0.87–0.96). The kappa value was 0.9033,
which is almost perfect according to criteria by (Lan-
dis & Koch, 1977) and excellent according to Fleiss
et al. (2003). In comparison, valid accuracy was 0.74
(95% CI: 0.68–0.79) and kappa value was 0.6982 for
the random forest model. Sensitivity and specificity
were 0.9 for most sources except domestically pro-
duced and imported pig (0.6 and 0.7 respectively).
The balanced accuracies, defined by Brodersen, Soon
Ong, Stephan, and Buhmann (2010), as the average
accuracy obtained on either class, were greater than
0.8 for all sources except domestically produced cat-
tle for which the sensitivity and balanced accuracy
were inestimable (Table III). For comparison, similar
values were obtained from the random forest model
(Supporting Information Table A1). Domestically
produced broilers, imported cattle, imported ducks,
and domestically produced layers were correctly pre-
dicted while 38% of the domestically produced pigs
and 27% of the imported pigs were wrongly pre-
dicted as domestically produced broilers. The final

Table II. Seventeen Loci Sorted by Maximum Importance across the Sources

Broilers Cattle Cattle Ducks Layers Pigs Pigs
Loci (DK) (DK) (Import) (Import) (DK) (DK) (Import)

SALM01217 0.9677 0.9677 0.5161 0.5269 0.6819 1.0000 0.9677
SALM02906 1.0000 1.0000 0.5000 0.5238 0.6802 1.0000 1.0000
SALM01562 1.0000 1.0000 0.7796 0.7204 0.7204 1.0000 1.0000
SALM01921 0.7796 0.7796 0.7796 0.7238 0.7204 1.0000 0.7796
SALM01860 1.0000 0.8647 0.7796 0.7204 0.7204 1.0000 1.0000
SALM02626 0.7796 0.7796 0.7796 0.7238 0.7204 1.0000 0.7796
SALM02334 1.0000 0.7204 0.7204 0.7204 0.7204 1.0000 1.0000
SALM00032 0.9409 0.9409 0.9409 0.7737 0.7881 1.0000 0.9409
SALM01381 0.5000 0.9432 0.5000 0.5238 0.6802 0.5000 0.9432
SALM01938 0.8172 0.8172 0.9367 0.8172 0.8172 0.8172 0.8172
SALM00628 0.8172 0.8172 0.8172 0.8172 0.8172 0.8172 0.8172
SALM00010 0.7204 0.7204 0.7204 0.7204 0.7204 0.7204 0.7204
SALM02003 0.7204 0.7204 0.7204 0.7204 0.7204 0.7204 0.7204
SALM01572 0.5000 0.5000 0.5000 0.5417 0.6977 0.5000 0.5000
SALM02871 0.5269 0.5269 0.5269 0.5875 0.6689 0.5269 0.5269
SALM01670 0.5269 0.5269 0.6019 0.5269 0.6602 0.5269 0.5269
SALM00643 0.5753 0.5753 0.5753 0.5753 0.5753 0.5753 0.5753

Note: The numbers represent importance based on accuracies of the prediction of the sources by each feature (loci). The values are in fact
area under the ROC curve (AUC) derived from the source specific sensitivities and specificities values (Table III).



1700 Munck et al.

predictive model was trained on the entire food and
animal data set.

3.5. Source Attribution of Human Salmonellosis
Cases

The machine learning model predicted 95 (81%)
of the human salmonellosis cases. The main source
was Danish produced pigs (53% human cases at-
tributed) followed by imported pigs (16% human
cases attributed), imported broilers (6% human cases
attributed), imported ducks (2% human cases at-
tributed), Danish produced layers (2% human cases
attributed), Danish produced cattle, and imported
cattle (<1% human cases attributed) while 18% was
not predicted (Fig. 3 and Table V). Predicted human
cases are shown in the phylogenetic tree (Fig. 2). The
uncertainty of the results is reflected in Fig. 3 illus-
trating the probability of each human case to orig-
inate from one of the seven sources. Travel related
cases (23 cases) were not predicted by the machine
learning model and attributed to travel. Domestic
sporadic human cases that were not predicted (21
cases, 17.8%) by the model were either infected from
a source not represented in the model or infected
from a variety of one of the sources not captured by
the model.

The Bayesian model had a fit value of 0.9
(95% CI: 0.7–1.2) and attributed 69 (49%) human
salmonellosis cases. As for the machine learning
model the three main sources were domestically pro-
duced pigs followed by imported pigs and domesti-
cally produced broilers. Human salmonellosis cases
attributed to the different sources by the machine
learning model were within the 95% CI of the mean
number of human cases attributed by the Bayesian
model for all sources except for domestically pro-
duced pigs, where the machine learning model pre-
dicted more cases (Table V). More cases were at-
tributed to travel by the Bayesian model than by the
machine learning model.

4. DISCUSSION

We developed a source attribution method based
on loci derived from the core genome analysis of 210
food and animal Salmonella Typhimurium isolates.
The source attribution model predicted the source of
80% of the 118 human salmonellosis cases.

By analysing the food and animal data set with
a logit boost machine learning algorithm, we found
allelic variations in 17 different loci to be sufficient

for recognition of patterns distinguishing between
sources. Application of machine learning for micro-
bial source prediction and host specificity have re-
cently been studied by others (Lupolova et al., 2017;
Zhang et al., 2019).

Zhang et al. (2019) identified 10 core genome
mutations and 40 accessory genes as relevant for
source prediction in Salmonella Typhimurium when
applying a random forest machine learning algorithm
and verified the approach by predicting sources of
foodborne outbreaks with known sources of origin.
This study was, compared to our study, based on
a much larger data set (n = 1,473) consisting of
sequenced isolates from a range of years and dif-
ferent countries. Zhang et al. (2019) describe their
study as a large-scale phylogeny study used to pre-
dict major livestock sources over a period of many
years. In contrast, our study is restricted to a shorter
time frame (two years), but has more details in the
“source panel.” In addition, all included animal and
food isolates were collected as part of an integrated
Salmonella surveillance program ensuring represen-
tativeness of the animal reservoirs and a close relat-
edness in time and space. Combined with the genetic
relatedness, our results are considered useful as deci-
sion support for authorities to evaluate the need for
new or the effect of established interventions in the
different food sectors, particularly when it is updated
on an annual basis as it is in Denmark.

The Danish National Salmonella surveillance
program is designed to thoroughly monitor all ma-
jor food animals and food of animal origin for
Salmonella. Results from centrally coordinated stud-
ies furthermore supplement the surveillance pro-
grams, particularly regarding data on imported
food of animal origin. Elaborate description of the
Salmonella surveillance and monitoring programs,
from which the reported data originates, are found in
the annual report on zoonoses in Denmark (Anony-
mous, 2014, 2015). Despite the relative low sample
size compared to other studies, we believe that this
data set is better suited for development of source at-
tribution methods as it contains a sample representa-
tive of the domestically produced and imported food
available for consumption in Denmark. Our data set
is furthermore unique as the isolates were previously
used for the Danish Salmonella source account based
on the Bayesian approach which facilitated a com-
parison of results obtained using the different meth-
ods and the same data set.

Lupolova et al. (2017) assessed the ability of a
support vector machine analysis of protein variants
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Table III. Sensitivity, Specificity and Balanced Accuracy for the Prediction of Sources by the Logit Boost Machine Learning Model

Broilers (DK) Cattle (DK) Cattle (import) Ducks (Import) Layers (DK) Pigs (DK) Pigs (Import)

Sensitivity 1 NA 1 0.8919 1 0.61538 0.73333
Specificity 0.9353 1 0.9688 1 1 1 1
Balanced accuracy 0.9676 NA 0.98 0.95 1 0.81 0.87

Note: Balanced accuracies defined by Brodersen et al. (2010) as the average accuracy obtained on either class. DK, Denmark.

Table IV. Confusion Matrix of the Constructed Model

% of Total Predicted Broilers (DK) Cattle (DK) Cattle (Import) Ducks (Import) Layers (DK) Pigs (DK) Pigs (Import)

Broilers (DK) 100 0 0 0 0 38 27
Cattle (DK) 0 0 0 0 0 0 0
Cattle (import) 0 0 100 0 0 0 0
Ducks (import) 0 0 0 100 0 0 0
Layers (DK) 0 0 0 0 100 0 0
Pigs (DK) 0 0 0 0 0 62 0
Pigs (import) 0 0 0 0 0 0 73
% of isolates in testing data
Total predicted 87.5 0 100 89.2 100.0 31.7 38.5
Not predicted 12.5 100 0 10.8 0.0 68.3 61.5

Note: Rows: Predicted Source. Column: Observed Source. DK, Denmark.

to predict the isolation host of isolates. This included
human isolates together with isolates from main an-
imal reservoirs which were split into both training
and testing data sets to test the ability of their model
to predict the host group. A large proportion of the
human isolates were predicted to originate from hu-
man. Furthermore, Lupolova et al. (2017) acknowl-
edged machine learning as a valuable asset for source
attribution in a public health context.

The vast majority of the Salmonella Ty-
phimurium samples were isolated from the pig
reservoir and only few isolates were sampled from
the other sources, reflecting low Salmonella Ty-
phimurium prevalence in these sources. The unbal-
anced data set, however, challenged the modeling
process and made upsampling necessary. Upsam-
pling adjusted samples in each source category to
equal the number of domestically produced pigs in
the data set. The upsampling procedure was applied
after feature reduction but before model selection
and identical isolates might have been included in
both training and testing data sets. Therefore, accu-
racy may have been overestimated for both of the
machine learning algorithms tested in the model se-
lection step. Since the source attribution results ob-
tained from the logit boost model were in line with
those obtained from the Bayesian model (Table V),
we do not find that this hampered the model selec-

tion and decision about which algorithm to construct
the final model from.

The model should ideally have been validated by
predicting an unseen validating data set. Due to the
low sample size (n = 210) we decided to use all avail-
able data for model development. Results obtained
from our machine learning model were in line with
those obtained from the Bayesian model suggesting
the machine learning model as a new standard for
source attribution when sequences are available.

Our data set was limited to include only
Salmonella Typhimurium and the monophasic vari-
ants. A similar machine learning model was applied
to prepare the Danish Salmonella source account
for 2017 data, which includes other serovars besides
Salmonella Typhimurium, and is published in the an-
nual report on zoonoses in Denmark 2017 (Anony-
mous, 2018). Because Salmonella strains from 2017
were not MLVA typed, it was not possible to ap-
ply the Bayesian model and compare the two mod-
els using this data set. However, the results obtained
with the machine learning model were in line with the
attribution results obtained by the Bayesian model
applying 2016 data (Anonymous, 2018), which gives
credibility to both modeling approaches, as the re-
sults from one year to next usually do not fluctu-
ate considerably. This also suggests that the machine
learning model is applicable for source attribution
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Fig 3. Result of the predictive machine learning model. All the 95 predicted human salmonellosis cases are lined up along the x-axis and
the source specific probabilities for each of the human cases are stacked along the y-axis. Human cases attributed to unknown sources are
not shown.

when Salmonella Typhimurium and other Salmonella
serotypes are included in the data set.

In addition to the use of different input
(serotype, MLVA, and resistance profile for the
Bayesian model and cgMLST loci for the ma-
chine learning model), other differences between
the Bayesian source attribution model and the ma-
chine learning model should be mentioned. First,
the Bayesian model uses prior information about
the distribution of variables in the model enabling
allocation of, e.g., a subset of cases with unknown
travel history to travel cases. The machine learning
model allocates all cases with unknown travel his-
tory as cases with no travel history and seeks to
predict the animal reservoir. This explains the dif-
ferences in travel cases from the two models (Ta-
ble V). Second, the Bayesian model includes preva-
lence of the given Salmonella subtypes in the given
source whereas the machine learning model is inde-

pendent of prevalence and assumes that the training
data set represents the epidemiology of Salmonella
in the sources included. Third, only Salmonella types
isolated from both humans and at least one animal
source was included in the Bayesian model whereas
the machine learning model was trained on all avail-
able Salmonella types independent on their pres-
ence in humans. This enables the machine learning
to timely predict future human salmonellosis cases.
Fourth, input data for the Bayesian model was sim-
pler and could be stored and easily shared via Mi-
crosoft Excel files for example, while thorough un-
derstanding and correct handling of input data for
the machine learning model required bioinformatics
expertise and an understanding of the bioinformatics
discipline.

Our model was developed and validated using
Danish data only. We believe that the machine learn-
ing model can be applied to predict the animal origin
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Table V. Source Attribution Results Obtained by Applying the Machine Learning Model and the Bayesian Model to the Same Data Set

Machine Learning
Model

Bayesian Model

DK data 17 loci Serotype, MLVA profile, resistance profile
Performance measure Valid accuracy:

0.922 (CI
0.8706–0.9579)
Kappa value:

0.9033

Fit 0.9 (0.7–1.2)

Prediction Human cases
attributed,

n (% of 118 domestic
sporadic human cases)

Human cases
attributed,

n mean (% of 141
domestic and travel

sporadic human cases)

95%CI of n mean

Number of human cases
predicted (%)

95 (81) 69 (49) NA

Broilers (DK) 7.5 (6.4) 8 (5.7) 0.2–24.7
Cattle (DK) 0.4 (0.3) 4 (2.8) 0.4–13.2
Cattle (Import) 0.3 (0.2) 3 (2.1) 0.3–7
Ducks (Import) 2.7 (2.3) 2 (1.4) 0.2–5.6
Layers (DK) 2 (1.7) 2 (1.4) 0.2–5.6
Pigs (DK) 62.9 (53.3) 31 (22.0) 13.6–53.5
Pigs (Import) 19.3 (16.4) 19 (13.5) 3.2–42.6
Not predicted 21 (17.8) 31 (22.0) 11–49.2
Travel cases 23* 41 (29.1) 36.7–45.4

Note: MLVA profile: Allelic number in loci STTR3, STTR10, and STTR9. Resistance profile: Phenotypic resistance Towards ampicillin,
chloramphenicol, sulphamethoxazole, tetracyclin, trimethoprim, ciprofloxacin, gentamicin, nalidixan, and ceftiofur. *No percentage as these
were attributed directly to travel and thus not predicted. CI: 95% Confidence Interval, DK, Denmark.

of human salmonellosis cases from other European
countries. Two data sets from Germany and United
Kingdom were collected for this purpose and de-
scribed elsewhere (Munck et al., 2020). Furthermore,
we speculate that this machine learning model can
also be used to investigate Salmonella contamination
of fresh produce and a French data set was collected
for this purpose (Munck et al., 2020). This has re-
cently been accomplished by attributing Salmonella
contamination of Australian macadamia nuts to Aus-
tralian animal and environmental reservoirs using
a Bayesian source attribution model (Munck et al.,
2019).

The machine learning model is limited by only
being able to predict the origin of a human salmonel-
losis case if it has “learned” about the strain.
Timely update of the model is therefore recom-
mended if applied to an outbreak investigation set-
ting. Campylobacter causes more human cases than
Salmonella and we therefore suggest developing a
similar source attribution model based on campy-
lobacter sequences.

With sequences as new input data to source
attribution models combined with new source at-
tribution methods, collaboration and more impor-

tantly communication between laboratory techni-
cians, data managers, epidemiologist, microbiolo-
gists, and bioinformaticians has become essential
for correct data management, sequence processing,
modeling, understanding, and for reporting and com-
municating results to decision-makers. This has also
recently been acknowledged as a key requirement
for an effective switch to whole genome sequencing
in public health surveillance (Ford et al., 2018). This
study is a result of such a collaboration and a suc-
cessful example of the continuous collaboration be-
tween the mentioned disciplines when working with
genomic epidemiology.
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