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Simple Summary: Desmoid fibromatoses (DFs) are locally aggressive tumors composed of mon-
oclonal fibroblasts within an abundant extracellular matrix. Systemic treatment with doxorubicin
is effective, but associated with significant toxicity. We investigated arterial doxorubicin eluting
embolization (DEE), an approach that delivers high doxorubicin concentrations to the tumor with
limited systemic drug exposure, in 24 patients (median age, 24 years; interquartile range, 16–34).
Most patients (71%) had one or more than one prior DFs treatment (surgery, systemic therapy, or
both). Patients underwent a median of two (range, 1–4) DEE treatments, with a median of 49 mg
(range, 8–75) doxorubicin per treatment. Efficacy outcomes were available for 23 patients. With a
median follow-up of 8 months (interquartile range, 3–13), median tumor volumes decreased by 59%
(interquartile range, 40–71%). Of 23 patients, 9 (39%), 12 (52%), and 2 (9%) had a partial response,
stable disease, and progressive disease, respectively. The procedure was safe and well tolerated.

Abstract: Desmoid fibromatoses (DFs) are locally aggressive tumors composed of monoclonal fi-
broblasts within an abundant extracellular matrix. Systemic doxorubicin treatment is effective, but
toxic. We investigated arterial doxorubicin eluting embolization (DEE), an approach characterized
by high drug concentrations in the tumor alongside limited systemic drug exposure. The primary
and secondary endpoints were radiological response using MRI and RECIST 1.1, respectively. The
study included 24 patients (median age, 24; interquartile range, 16–34 years). Data were collected
prospectively for 9 patients and retrospectively for 15 patients. The most frequent tumor locations
were chest/abdomen wall and neck/shoulder/axilla (29% each). Of 24 patients, 7 (24%) were treat-
ment naïve, and 17 (71%) had received one or two prior treatments. Patients underwent a median of
two treatments (range, 1–4), with a median of 49 mg (range, 8–75) doxorubicin/treatment. Efficacy
outcomes were available for 23 patients. With a median follow-up of 8 months (interquartile range,
3–13), median tumor volumes decreased by 59% (interquartile range, 40–71%) and T2 signal intensity
decreased by 36% (interquartile range, 19–55%). Of 23 patients, 9 (39%), 12 (52%), and 2 (9%) had
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a partial response, stable disease, and progressive disease, respectively. DEE was safe and well
tolerated, with one reported grade 3–4 adverse event (cord injury). In conclusion, DEE was safe and
achieved rapid clinical/volumetric responses in DFs.

Keywords: angiography; desmoid fibromatoses; doxorubicin eluting embolization (DEE); chemoem-
bolization

1. Introduction

Desmoid fibromatoses (DFs) are rare (1–2 cases/million yearly), locally aggressive
mesenchymal tumors, characterized histologically by monoclonal myofibroblasts within
abundant stromal tissue. Most DFs cases (>85%) arise sporadically and the rest (5–15%) are
associated with familial adenomatous polyposis (FAP) [1,2]. Nearly a quarter of asymp-
tomatic DFs regress spontaneously, whereas the remainder progress along a variable course
of growth and invasion into adjacent neurovascular structures and viscera [3]. Patients
commonly experience chronic pain, impaired physical function, and insomnia as well as re-
stricted social and professional engagement [4]. Up to 24% of patients with intra-abdominal
DFs die of the disease [5].

Contemporary management has moved away from primary resection [6–10], as recur-
rences after resection are frequent and their phenotype is often more infiltrative [11–17].
Non-surgical approaches remain sub-optimal. For asymptomatic disease, contemporary
guidelines recommend an initial interval of active surveillance [18]. Using this approach,
up to half of all patients do not require treatment, with a median follow-up of 5 years [19].
For progressive or symptomatic disease, the benefit derived from systemic therapies must
be weighed against their toxicity profiles. Doxorubicin is routinely used to treat soft-tissue
sarcomas and other mesenchymal malignancies and is efficacious in DFs [20–22]; however,
its use is associated with hematological, gastrointestinal, and cardiac toxicities [23–25].
Therefore, doxorubicin is generally reserved for non-responsive, symptomatic, rapidly
growing and/or life-threatening DFs [20,22,26].

We hypothesized that the intrinsic hypervascularity of DFs tissue could be leveraged
as a conduit to achieve local delivery of doxorubicin via endovascular catheter navigation.
Doxorubicin contains a protonated amine group which can be ionically bound to sulfonate-
coated hydrogel microbeads [27], allowing for microbead-loaded doxorubicin eluting
embolization (DEE). DEE achieves sustained, high doxorubicin concentrations in the target
tissue [28,29] with low systemic plasma concentrations [30,31].

We previously reported regarding a proof-of-concept study investigating DEE for
extra-abdominal DFs in four children [32,33]. Here, we report regarding the efficacy and
safety of DEE for intra- and extra-abdominal DFs in 24 patients treated with 52 DEE sessions
in six tertiary medical centers.

2. Materials and Methods
2.1. Study Design and Patients

This report combines data collected prospectively and retrospectively. For both,
eligible patients had to have histological confirmation of DFs with a long diameter ≥ 30 mm
in an anatomical location accessible for endovascular treatment, and magnetic resonance
imaging (MRI) evidence of T2 hyperintensity. Exclusion criteria included concurrent
participation in another interventional study, uncontrolled intercurrent illness such as an
active infection or symptomatic congestive heart failure (New York Heart Association Class
III or IV), treatment with anthracyclines at cumulative doses ≥ 360 mg/m2, or a history of
allergic reaction attributed to doxorubicin.

Institutional review board (IRB) approval for the prospective trial (ClinicalTrials.gov
number: NCT03966742) was obtained at Rabin Medical Center (RMC) and approval for
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retrospective data analysis was obtained from each additional participating institution. All
patients provided written informed consent prior to treatment.

2.2. Treatment

All patients underwent super-selective arterial catheterization using 4 Fr or 5 Fr
guiding catheters and 2.7 Fr–1.6 Fr coaxial micro-catheters. Diagnostic angiography was
performed immediately prior to each treatment. Tumor vessels were identified based on
anatomic origin, morphologic features (hypertrophy and/or abnormal tortuosity), and
flow into the angiographic “tumor blush” of the DFs.

DEE was performed using doxorubicin eluting microparticles. One vial containing
2 mL of 75–150 µM DC Beads (Boston Scientific, Ltd Marlborough, MA, USA.) or 2 mL
100 µM LifePearls (Terumo, Ltd, Shibuya City, Tokyo, Japan.) was loaded with 75 mg
doxorubicin per treatment. Each vial was then diluted to 10 mL using 4 mL saline and
4 mL Omnipaque iodinated contrast material. The embolization endpoint was delivery
of the doxorubicin dose using the minimal amount of embolic material, stopping short
of arterial stasis if the vascular distribution was insufficiently large to receive the entire
dose. Consolidation of blood flow toward the tumor and away from non-target tissue was
achieved using standard angiographic techniques such as micro-coil embolization of small
arteries (e.g., intercostal, internal mammary, and inferior epigastric) and temporary balloon
occlusion of large ones (e.g., brachial) distal to the tumor. Intra-procedural cone beam
computed tomography (CT) was used as needed to confirm tumor coverage and ensure
the exclusion of flow to non-target tissue.

2.3. Endpoints and Assessments

The primary endpoint was radiological response. MRI scans were obtained at baseline,
2–4 months after each treatment, at 6-month intervals following completion of treatment
for the first 2 years, and annually thereafter. Characteristic MRI features of DFs include
a heterogeneously hyperintense T2 or a short TI inversion recovery (STIR) signal among
interspersed hypo-intense bands [34]. Histologically, the ratio between a T2 signal versus
hypo-intense bands correlates to the degree of cellularity versus fibrotic matrix within
DFs [35–37]. Decreased tumor volume and loss of T2 intensity are reliable markers of
DFs responses to systemic treatment [38,39] and served as primary imaging metrics in
the current study. Semi-quantitative T2 signal intensity was calculated by comparing the
quantitative MRI signal within the tumor to that of an adjacent muscle, which served as an
internal control. In addition to tumor volume and loss of T2 intensity, the greatest diameter
of the tumor was also evaluated at each follow-up MRI.

In addition to the MRI response, the revised Response Evaluation Criteria in Solid
Tumors (RECIST 1.1) [40] was used as another primary imaging endpoint.

2.4. Statistical Analysis

Descriptive statistics were used to summarize the results. Statistical analysis was
performed using R version 4.0 (www.r-project.org, accessed on 24 May 2021) [41].

3. Results
3.1. Study Patients and Treatments Received

The analysis included 24 patients treated in 52 sessions between March 2014 and
August 2021. Nine patients participated in the prospective study at RMC (Israel) in
2019–2020. The remaining 15 patients included in the retrospective multicenter study
were treated in Schneider Children’s Medical Center (Israel, 2014–2018; n = 7), Memorial
Sloan Kettering Cancer Center (US, 2020; n = 4), Ludwig Maximilian University Hospital
(Germany, 2020; n = 1), Hong Kong Children’s Hospital (China, 2020; n = 1), and Sydney
Children’s Hospital (Australia, 2020; n = 1).

Patient demographics, tumor locations, prior treatments, and DEE treatments are
summarized in Table 1. The median age at time of treatment was 24 years (interquartile

www.r-project.org
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range (IQR), 16–34). The most frequent tumor locations were chest/abdomen wall and
neck/shoulder/axilla (29% each), and extremities (25%). Twenty tumors (83%) were extra-
abdominal and superficial and 4 (17%) were deep, including two intra mesenteric tumors,
one pelvic tumor and one posterior mediastinal tumor. The median tumor volume at
baseline was 310 mL (IQR, 108-686) and the median largest dimension was 10.5 cm (IQR,
9.35–13.925). Of 24 patients, 7 (24%) were treatment naïve (refused prior treatments), 9
(38%) received one prior treatment modality (typically surgery or systemic therapy), and 8
(33%) received two treatment modalities (e.g., surgery and systemic therapy). All patients
had progressive or symptomatic disease at the time of DEE.

Table 1. Patient/tumor characteristics and treatment summary.

Characteristic Patients
n = 24

Age, median (IQR), years 24 (16–34)

Sex, n (%)
Female 15 (62%)
Male 9 (38%)

Tumor location, n (%)
Chest/abdomen wall 7 (29%)
Neck/shoulder/axilla 7 (29%)

Mesenteric 3 (13%)
Mediastinum 1 (4%)

Extremity 6 (25%)

Tumor volume at baseline, median (IQR), mL 310 (108–686)

Tumor largest dimension at baseline, median (IQR), cm 10.5 (9.35–13.925)

Prior treatments, n (% of patients) 1

None 7 (24%)
Surgery 8 (33%)
Systemic 16 (67%)

Other (cryoablation/isolated limb perfusion) 2 (8%)

Time from diagnosis to treatment, median (IQR), years 2.5 (2.0–3.6)

Number of DEE treatments, median (range) 2 (1–4)

Interval between treatments, median (range), months 2.3 (2–4)

Doxorubicin delivered per treatment, median (range) mg 49 (8–75)

Total doxorubicin delivered, median (range), mg 75 (8–269)

Abbreviations: DEE, doxorubicin eluting embolization; IQR, interquartile range. 1 A patient could have received
more than one treatment.

The median time from diagnosis to DEE was 2.5 years (IQR, 2.0–3.6). Each patient
underwent a median of two treatments (range, 1–4), interspersed 2–4 months apart. The
median total delivered doxorubicin dose was 75 mg (range, 8–269) (median per treatment,
49 mg (range, 8–75)).

3.2. Efficacy

Efficacy outcomes were available for 23 patients (one experienced an intraprocedural
vascular injury and did not complete treatment). With a median follow-up of eight months
(IQR, 3–13), median tumor volumes decreased by 59% (IQR, 40–71%) and T2 signal intensity
decreased by 36% (IQR, 19–55%). Of 23 patients, 9 (39%), 12 (52%) and 2 (9%) experienced
a partial response (PR), stable disease (SD), and progressive disease (PD), respectively
(Table 2). A representative image showing decreased T2 signal intensity is presented in
Figure 1. Efficacy analysis was also stratified by duration of follow-up, as 7 patients (30%)
had follow-up of at least a year, whereas 16 patients (70%) had a shorter follow-up (Table 2
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and Figure 2). Patients in the longer follow-up group, who also had more DEE procedures,
had better clinical outcomes compared to patients in the shorter follow-up group (Table 2).

Table 2. Efficacy results overall and by duration of follow-up.

Median (IQR)
Follow-up,

Months

Median (IQR)
Number of
Procedures

Median (IQR)
Reduction in
the Longest
Dimension

Median (IQR)
Reduction in

Tumor Volume

Median (IQR)
Reduction in

T2 Signal

Response
(RECIST 1.1)

All patients
(n = 23) 8 (4–14) 2 (1–3) 16% (7–36%) 59% (40–71%) 36% (19–55%)

PR: n = 9 (39%)
SD: n = 12 (52%)
PD: n = 2 (9%)

Patients with
follow-up

≥12 months
(n = 7)

33.2 (22.7–53.9) 2 (2–3) 37% (25–45%) 76.4%
(66.2–86.3%)

56.7%
(32.6–66.8%)

PR: n = 5 (71%)
SD: n = 2 (29%)

PD: n = 0

Patients with
follow-up

<12 months
(n = 16)

5.2 (3.4–8.1) 2 (1–3) 10.5% (6–27%) 44% (31–62%) 33% (15–45%)
PR: n = 4 (25%)
SD: n = 10 (63%)
PD: n = 2 (13%)

Abbreviations: IQR, interquartile range; PD, progressive disease; PR, partial response; SD, stable disease.
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Figure 1. Representative images demonstrating T2 intensity reduction in a patient with a 
right base of neck tumor, after two DEE treatments. Semi-quantitative T2 intensity was 
determined by measuring the signal intensity within a representative area in the DFs 
relative to the signal of normal muscle on the same slice. The T2 intensity at baseline (a) 
was 585 and that in the contralateral trapezius muscle was 9.1 (i.e., intensity ratio of 6.4). 
The respective T2 intensities 2 months after two DEE treatments (b) were 399 and 132 
(i.e., intensity ratio of 3.0). Thus, the overall reduction in T2 signal intensity was 47%. 
Corresponding coronal short tau inversion recovery (STIR) images from before (c) and 
after (d) therapy. The hypervascular tumor was supplied by a branch of the right as-
cending cervical artery (e). 

  
(a) (b) 

Figure 2. (a) Change in tumor volume per patient, where red and blue represent patients who were 
followed up for <12 months and ≥12 months, respectively; (b) change in the diameter of the tumor 
(longest dimension) per patient with corresponding RECIST 1.1 results (red, partial response; blue, 
stable disease; green, progressive disease). 

Figure 1. Representative images demonstrating T2 intensity reduction in a patient with a right base of
neck tumor, after two DEE treatments. Semi-quantitative T2 intensity was determined by measuring
the signal intensity within a representative area in the DFs relative to the signal of normal muscle on
the same slice. The T2 intensity at baseline (a) was 585 and that in the contralateral trapezius muscle
was 9.1 (i.e., intensity ratio of 6.4). The respective T2 intensities 2 months after two DEE treatments
(b) were 399 and 132 (i.e., intensity ratio of 3.0). Thus, the overall reduction in T2 signal intensity
was 47%. Corresponding coronal short tau inversion recovery (STIR) images from before (c) and
after (d) therapy. The hypervascular tumor was supplied by a branch of the right ascending cervical
artery (e).
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Figure 2. (a) Change in tumor volume per patient, where red and blue represent patients who were
followed up for <12 months and ≥12 months, respectively; (b) change in the diameter of the tumor
(longest dimension) per patient with corresponding RECIST 1.1 results (red, partial response; blue,
stable disease; green, progressive disease).

3.3. Safety

Mean inpatient stay following the procedure was 1.2 days (range, 0–7). Of 52 proce-
dures, 44 (85%) were performed as either outpatients or with a single night observation.
During observation, three patients experienced transient leukocytosis. Two patients had
elevated creatine phosphokinase (CPK; up to 642 and 1507 mcg/L) and elevated lactate
dehydrogenase (LDH; up to 538 and 1261 IU/L); neither had myoglobinuria or evidence
of renal compromise. No other post procedural laboratory abnormalities were observed.
Adverse events are summarized in Table 3.

Table 3. Safety summary (out of 52 DEE sessions).

Adverse Event Any Grade, n (%) Grade 3–4, n (%)

Post-embolization pain (per treatment) 28 (54%) 0
Skin injury 10 (42%) 0

Post-embolization pain/
fatigue > 1 week (per treatment) 5 (21%) 0

Neuropathic pain 4 (17%) 0
Reopening of wounds 3 (13%) 0

Local alopecia 2 (8%) 0
Neurovascular injury 1 (4%) 1 (4%)

Post-procedural pain, occurring in 54% of DEE sessions, was managed with oral
analgesics and usually resolved within two weeks. Skin toxicity, occurring in 42% of
DEE sessions overall, was managed with topical treatment. No patient required surgical
debridement or grafting for treatment-related skin injury.

Three cases (13%) in three different patients involved re-opening of previously healed
wounds from biopsies, surgery, or in one case, a cryoablation procedure. This resolved
with topical treatment and without infection in all cases. Transient regional alopecia was
noted where the treatment zone included hairy skin.

No patient exhibited signs or symptoms associated with systemic doxorubicin toxicity,
such as alopecia, myelosuppression, or nausea. One patient with a flank mass experienced
a vascular spinal cord injury during cannulation of the 10th intercostal artery, from which
the anterior spinal artery arose—neurologic symptoms improved from American Spinal
Cord Injury Association (ASIA) stage B to D over three months.
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4. Discussion

This report provides a combination of prospective and retrospective data regarding
DEE in 24 patients. In this population of mainly treatment-refractory patients, DEE achieved
PR or SD in most patients (87.5%) and substantial tumor volume reduction (by a median of
59%) accompanied by a loss of T2 MRI intensity (by a median of 36%). The procedure was
safe and well tolerated.

Notably, DEE achieved response results (using RECIST 1.1) similar to those recently
described for tyrosine kinase inhibitors [42,43]. Response using RECIST provides a useful
comparison metric; however, its utility in DFs is limited, as DFs assessment is not well suited
for two-dimensional measurements. DFs tumors are often large and almost always solitary;
therefore, changes in volumetric measurements can be used as a more accurate assessment
of response. The correlation between two-dimensional and volume measurements is even
more complex when assessing non-spherical tumors; such was the case for one of the
patients in this study, for whom a 65% decrease in volume corresponded to 10% decrease
in RECIST-based greatest length (Figure S1).

The observed adverse events limited completion of therapy for 1 (4%) patient, which
compares favorably with recent data regarding the use of systemic sorafenib or pazopanib
to treat DFs, in which drug-related toxicities led to treatment discontinuation in 20% and
23% of patients, respectively [42,43]. Elevations in CPK and LDH associated with treatment
of two large DFs were noted and likely reflect immediate tumor necrosis. Rhabdomyolysis
has been described in a DFs patient upon initiating therapy with sorafenib [44] and as a
more common complication of DFs cryoablation [45]. Our experience suggests that most
patients could undergo complete treatment in 2–3 procedures, and that most extremity DFs
can be treated in an outpatient setting. Patients undergoing DEE for large, intra-mesenteric,
thoracic, or mediastinal tumors should be observed overnight.

The procedural risks of DEE, including the potential for neurovascular and visceral
injury, warrants further discussion. It may be useful in this context to consider the difference
between arterial targeting of DFs versus the more commonly performed trans-arterial
treatment of liver malignancies. Intra-hepatic tumor embolization is facilitated by the
intrinsic difference between tumors, which are entirely dependent upon arterial blood,
versus hepatocytes, which are largely dependent on portal venous flow. The physiologic
consequences of modest intra-hepatic non-target embolization are generally well tolerated
and often inconsequential. In contrast, DFs and their adjacent viscera are equally dependent
upon the same perfusing arteries. Consequentially, tumor targeting demands more vessel
selectivity and often requires pre-treatment arterial consolidation with permanent (coils,
micro-plugs, or glue) or temporary occlusive material and techniques. Often, DFs-adjacent
anatomy is unforgiving of even minor non-target embolization. This is certainly the reality
in treating DFs within the mesentery, mediastinum, pelvis, or near the CNS. The case-
specific risks of non-target embolization must be considered for every patient, and in fact
for every procedure, as arterial anatomy changes for a given patient after each DEE session.

Doxorubicin is a topoisomerase inhibitor, but this is unlikely to account for its efficacy
in treating DFs, a disease of active, well-differentiated fibroblasts with a low mitotic
index. Doxorubicin may affect DFs fibroblasts via iron-dependent free radical generation
and p53 mediated apoptosis [46–49], as these have been implicated in the mechanism of
doxorubicin-induced cardiomyopathy [23,47,50]. Coagulative necrosis and ischemia due
to arterial embolization [29] could also contribute to DEE toxicity, although DEE delivers
maximal dose using fewest particles, and no angiographic evidence of arterial stasis was
observed. Future studies will explore such mechanistic and pharmacokinetic dynamics
of DEE.

The study was limited by its prospective–retrospective design, which was necessary to
obtain a large enough number of patients/sessions in such a rare disease. In addition, the
study was limited by the lack of pharmacokinetic experiments to validate the hypothesis
that doxorubicin concentrations are low in plasma and high in target tissues. Although
this hypothesis was supported by prior studies [29], no pharmacokinetic data exist for
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DEE delivered outside the liver, where up to half of the non-metabolized drug may be
excreted. Nevertheless, in the current study the bead-loaded doses were well below
the recommended limits, and none of the systemic toxicities commonly associated with
doxorubicin were reported.

Finally, we believe our results warrant consideration of selective arterial DEE in
other soft tissue malignancies, especially those commonly treated with systemic doxoru-
bicin. Pre-operative DEE may achieve faster and more robust target tumor responses than
systemic neo-adjuvant treatment, while potentially facilitating resection by decreasing
arterial perfusion.

5. Conclusions

Although limited by the small sample size and the combination of prospective and
retrospective data, our findings suggest that DEE treatment is safe and achieves rapid
clinical and volumetric responses in DFs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14205045/s1, Figure S1: Baseline coronal (a) and axial
(b) images of a posterior mediastinal DFs causing obliteration of the esophageal lumen and airway
compression in a 13-year-old girl. Cone beam CT demonstrates contrast opacifying the tumor from
a selective injection at the right bronchial artery (c). Six-month follow-up coronal (d) and axial
(e) imaging demonstrate decreased mass effect upon the airways following DEE. The DFs volume
decrease was 65%, whereas the longest axis decrease (cranial–caudal) was only 10%. The patient had
stable disease by RECIST criteria.
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