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Abstract

Laboratory assays for identifying recent HIV-1 infections are widely used for estimating inci-

dence in cross-sectional population-level surveys in global HIV-1surveillance. Adequate

assay and laboratory performance are required to ensure accurate incidence estimates.

The NIAID-supported External Quality Assurance Program Oversight Laboratory (EQA-

POL) established a proficiency testing program for the most widely-used incidence assay,

the HIV-1 Limiting Antigen Avidity EIA (LAg), with US Centers for Disease Control and Pre-

vention (CDC)-approved kits manufactured by Sedia Biosciences Corporation and Maxim

Biomedical. The objective of this program is to monitor the performance of participating lab-

oratories. Four rounds of blinded external proficiency (EP) panels were distributed to up to

twenty testing sites (7 North American, 5 African, 4 Asian, 2 South American and 2 Euro-

pean). These panels consisted of ten plasma samples: three blinded well-characterized

HIV-1-seropositive samples that were included as replicates and an HIV-negative control.

The seropositive samples spanned the dynamic range of the assay and are categorized as

either recent or long-term infection. Participating sites performed the assay according to

manufacturers’ instructions and completed an online survey to gather information on kit

manufacturer, lot of kit used, laboratory procedures and the experience of technicians. On

average, fifteen sites participated in each round of testing, with an average of four sites test-

ing with only the Maxim assay, seven testing with only the Sedia assay and five sites utilizing

both assays. Overall, the Sedia and Maxim assays yielded similar infection status categori-

zation across the laboratories; however, for most of the nine HIV+ samples tested, there

were significant differences in the optical density readouts, ODn (N = 8) and OD (N = 7),

between LAg kit manufacturers (p < 0.05 based on mixed effects models. The EQAPOL

LAg program is important for monitoring laboratory performance as well as detecting varia-

tions between manufacturers of HIV-1incidence assays.
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Introduction

Assays to identify recent HIV infection have revolutionized the science of incidence calcula-

tion and surveillance[1–3]. HIV prevention programs rely on accurate and precise estimates of

incidence to measure an intervention program’s impact on HIV transmission and to guide

resource allocation to optimize and improve HIV prevention [4]. While HIV incidence can be

calculated from longitudinal HIV surveillance studies, they are expensive to support and

prone to bias [2,5,6]. Cross-sectional incidence testing enables identification of recent infec-

tions in individuals who receive an HIV positive test result and is a more efficient way to calcu-

late incidence in the surveillance population. In 1999, the STARHS algorithm was established,

using a sensitive HIV antibody test to identify infection, followed by a less sensitive (LS) HIV

antibody test to identify early HIV infection due to increasing antibody concentration during

seroconversion [1,7–9]. Several additional incidence tests were developed and used in the US

and at US-funded international sites, but it quickly became evident that assays were overesti-

mating incidence calculations due to assay bias [10] in field studies [9], for reasons such as

cohorts with treatment or natural control of HIV infection. New assays were introduced, using

calibrators to control variability and avidity-modifications to minimize the impact of changes

in antibody maturation due to treatment, natural control of viral replication (elite controllers)

or low CD4 counts [11,12]. To monitor variability across sites, a CDC-directed proficiency

program was initially rolled out to monitor assay performance and variability of the laboratory

processes, but this program was later discontinued [13]. Harmonization of techniques to mea-

sure recent HIV infection, and to calculate incidence in populations, is essential for producing

reliable and consistent results[3].

During the 2000s, the poor performance of the then front-line incidence assays BED and

Vironostika led to the development of new assays such as the AxSYM and ACRHITECT Avid-

ity, LS-VITROS and the HIV-1 Limiting Antigen Avidity EIA (LAg) for monitoring HIV inci-

dence [14–18]. It was noted that a panel of reference samples was not available to assess

within-assay and across-assay performance and to validate new assays prior to global distribu-

tion. In fact, there were no metrics developed to assess the performance or precision of the

assay compared to known standards. In response to this, the Consortium for the Evaluation

and Performance of HIV Incidence Assays (CEPHIA) was established and global specimens

were curated and centrally located by the CEPHIA study group at Vitalant Research Institute

(VRI, formerly Blood Systems Research Institute) to create panels of specimens to validate

newly developed assays [19]. In addition, these same specimens could be used to validate new

biomarkers or new technologies for more accurate incidence estimation [20]. To further refine

the quality of results, systematic assessments of assay performance across US-funded testing

labs was required to determine and enhance the consistency and accuracy of the surveillance

results. In order to do this, the LAg Incidence Assay External Quality Assurance (EQA) pro-

gram was established in 2015 within the EQAPOL program.

The goals of the EQAPOL LAg Incidence Assay EQA program are to assess the proficiency

of NIAID/DAIDS- and CDC supported laboratories at performing an HIV-1 LAg incidence

assay used in HIV incidence surveillance, to measure site performance consistency over time,

and to monitor assay performance between manufacturers in order to identify variables that

significantly impact assay outcomes. A scientific steering committee (SC) consisting of leaders

in the field of HIV incidence was established for program guidance and oversight. One pilot

round and four send-outs have been performed to date: January 2016 (EP1), January 2017

(EP2), January 2018 (EP3) and August 2018 (EP4). The primary objectives of EP1 and EP2

were to optimize logistics and assess the feasibility of a LAg EQA program and to develop

grading criteria to evaluate the performance of participating sites. After EP2, the grading
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criteria were established and a detailed document outlining the criteria was distributed to the

sites for reference prior to the EP3 send-out. Once EP3 was completed, the EQAPOL team,

along with the LAg program’s steering committee, evaluated the effectiveness of the criteria at

measuring site performance and identifying sites requiring feedback or remediation discus-

sions. We found areas that were not identified by the EP3 grading scheme and therefore

updated the criteria prior to EP4.

EQAPOL provided sites with blinded panels of plasma specimens from HIV-positive and

HIV-negative subjects to be assayed using the commercially available Sedia and/or Maxim

LAg kits. Depending on site requirements in the future, the program could be extended to

other HIV incidence surveillance or individual patient infection staging methods. The Sedia

and Maxim LAg assays generated an Optical Density (OD) reading that was normalized to

ODn by dividing the OD values by the reactivity of a kit-provided calibrator sample. As part of

the testing algorithm, ODn values that fell below 2.0 required additional replicate confirmatory

testing with the LAg assay. For ODn values less than 0.4, additional diagnostic serology testing

was required to confirm anti-HIV positivity using the site-specific serology testing assay. The

sites were not required to perform viral load testing. The EQAPOL LAg EQA specimen panel

was sent to testing laboratories and measurements were collected through the EQAPOL web

portal with assay-specific metadata captured through online surveys. These data were analyzed

across four evaluations to determine the laboratory assay performance in sample classification,

assay precision and other metrics such as protocol adherence or result reporting timeliness.

The data presented in this article are available publicly from the Duke Digital Repository

(doi:10.7924/r4ff3r13q).

Materials and methods

The LAg EQA program

The EQAPOL team worked closely with the CDC to re-establish a quality assurance program

that had previously been employed by CDC-funded HIV surveillance sites. This new program,

under EQAPOL, would facilitate unbiased (i.e., independent of CDC which developed and

promulgated the BED and LAg assays) monitoring for the sites performing HIV incidence sur-

veillance. An interactive web-based system was created for integrating data from the testing

sites to allow cross-site analysis by the central laboratory and EQAPOL statistical team. Each

EP concept is developed into a comprehensive study plan, which is reviewed and approved by

EQAPOL leadership and the EQAPOL quality assurance team. The Study Plan contains an

overview of EP organization and management, list of participating sites, proficiency panel

design, assay details, data submission process, confidentiality protections, statistical analysis

plan, and results reporting process. Attachments to the study plan include a list of selected

samples from the repository, a confidential data key for the web-application to link coded

assay results to sample identifiers in the database, a detailed kit-specific assay protocol, data

submission templates, and EP orientation and training materials. Samples are pre-tested in the

EQAPOL LAg Oversite Laboratory (EOL) using kits from both manufacturers to confirm pro-

tocol validity and sample homogeneity.

Laboratories that routinely perform the LAg incidence assay and that participated in the

original CDC EQA program received an invitation to participate in the EQAPOL LAg Pro-

gram including, by the time of the fourth evaluation panel (EP4), twenty active sites consisting

of 7 North American, 5 African, 4 Asian, 2 South American and 2 European laboratories. Sites

involved in the EQAPOL LAg program included the EOL at Duke, VRI, and the other sites

listed in S1 Table. Sites using the Sedia and/or Maxim kits were invited to participate and were

instructed to run the samples according to their kit-specific protocols and testing algorithm
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for initial/confirmatory testing. In addition, sites performed serology testing (but not viral

load testing) when applicable using their site-specific testing procedures for HIV serology.

Other assays or kit types have not yet been incorporated into this QA program, but the pro-

gram may be expanded to include new incidence assays in future EPs.

The LAg assay

Sites were required to perform the LAg assays according to manufacturer’s instructions. In

brief, assay controls and HIV-positive specimens were diluted 1:100 in specimen diluent and

100 μL of calibrator, controls or specimens were added to appropriate wells of antigen-coated

plates and incubated for 60 min at 37˚C. Plates were washed 4 times with 1x wash buffer to

remove unbound antibodies. A pH 3.0 buffer was added to each well and incubated for 15 min

at 37˚C to dissociate low avidity antibodies. Washed plates were incubated with anti-human

IgG peroxidase (30 min at 37˚C), then washed and incubated with tetramethyl benzidine sub-

strate (15 min at 25˚C). Color development was stopped by addition of 100 μL/well of 1N

H2SO4. The optical density (OD) was read at 450 nm with 650 nm as a reference using a spec-

trophotometer. Raw OD for each specimen was normalized using the calibrator (CAL) OD on

each plate as a ratio, such that normalized OD (ODn) = (OD of specimen/median OD of

CAL). Negative and positive controls are tested on every plate and determined to be within

range to confirm the validity of the plate.

The LAg EQA evaluation panels

Through routine blood screening, blood collections that were identified as HIV viral load and

antibody positive units were quarantined from transfusion and used as part of this and other

research studies. The large volume plasma units were tested across available incidence assays

and found to span the dynamic range of the assays and were categorized as derived from

donors with recent to long-term HIV infections. The units were sub-aliquoted, blinded, and

incorporated into external proficiency panels (EPs). In EP1 and EP2, the sample kits include

three blinded HIV-positive samples (each represented in separately coded triplicates) for a

total of nine samples plus one HIV-negative control sample. The samples included in the EPs

were well-characterized in terms of the repeatability of results from multiple testing rounds

using both manufacturers LAg assays and many other incidence assays and determined to be

consensus recent, long-term or negative based testing from multiple laboratories. The catego-

rizations are as follows: 0.1–0.5 ODn (recent low), 0.5–1.5 ODn (recent high), and 1.5 ODn or

higher is long-term. The ranges selected were based on a recommendation from the EQAPOL

Scientific Advisory Board (SAB) to include samples that would not be too close to the 1.5 ODn

cutoff value for recent and long-term. New samples were selected for EP3 by screening eighty

additional HIV+ donors for potential sample candidates. After down selection, twelve candi-

date samples were tested eight times on different assay runs and on two different kit platforms

to generate sixteen data points for each sample. These data were used to confirm the character-

ization of the sample in terms of status of infection (recent, long-term or negative) and the

expected ODn value, as well as to measure the variability of the sample ODn values. Three

samples that displayed the least amount of variability, and that did not change infection status

in any of the sixteen assay runs from each category, were selected. In EP4, sites received three

samples that were near the 1.5 ODn cutoff value for recent and long-term. These samples were

not used for grading but were used to further investigate potential differences between the

Sedia and Maxim kits. All samples were collected according to protocols approved by the

Duke University Medical Center Institutional Review Board and UCSF Committee for

Human Research.
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Shipping of materials to participating laboratories. For each EP, the EQAPOL and VRI

teams provided the sites with a proficiency testing kit consisting of: 1) 100μL aliquots of

blinded samples to be stored at -80˚C upon receipt; 2) assay instructions, assay questionnaire,

and assay data reporting sheet (XLS) provided on the EQAPOL web-based system; 3) a data

logger (Delta-TRAK) to monitor the temperature of the shipment while in transit and instruc-

tions on how to send it back; 4) timeline for completion of the testing and submission of data

via the web-based application. No other reagents were provided to the sites in the send-out;

sites procured and used their own assay kits/reagents for the LAg and serology assays. Sites

were given the option to receive one or two sets of samples based on whether they normally

perform testing with only Sedia or Maxim LAg or both and volume was sufficient for confir-

matory serological testing.

Data reporting and grading criteria. Data was reported to the EQAPOL EOL via the

web-based application using the Excel template provided by the EQAPOL team. The requested

information includes calibrator OD values, sample ODn values, sample classifications, and

serology status where required by the algorithm. The kit type (Sedia and/or Maxim) was also

recorded.

Sites were graded according to five sets of criteria as outlined in Table 1 and described

briefly below.

Timeliness. Sites were given four weeks from kit receipt to complete the assay and return

the data reporting excel files and post-assay questionnaire. Failure to upload valid data and

survey responses by the due date resulted in a site’s loss of all proficiency points for timeliness

(10 points).

Protocol adherence. Sites were assessed for their ability to follow the protocol and Excel

Macro provided by EQAPOL. Sites received a four-point deduction for each deviation from

the protocol and Excel Macro algorithm. During EP3 this category was worth ten points and

was updated for EP4 to be worth twenty-four points. Deviations include but are not limited to:

neglecting to perform serology or confirmatory testing when prompted by the protocol and

Excel algorithm and incorrectly performing one of the four incubations defined by the

protocol.

Table 1. Proficiency criteria and average scores.

Grading Criteria and Points Allocation Average Scores

EP2

retrospectively graded
EP3 EP4

Criterion Points in EP3 Points in EP4 Sedia

(N = 11)

Maxim

(N = 8)

Sedia

(N = 13)

Maxim

(N = 8)

Sedia

(N = 12)

Maxim

(N = 9)

Timeliness 10

10 points received for on-time
submission

10

10 points received for on-time
submission

9.1 7.5 10 10 10 10

Protocol

Adherence

10

4 points lost per protocol
deviation

24

4 points lost per protocol
deviation

8.2 10 10 10 24 23.6

Classification 60

15 points lost per incorrect
call

48

12 points lost per incorrect
call

50.5 54.4 60 60 45 46.7

Precision 20

3 points lost per
sample type deviation

18

3 points lost per
sample type
deviation

15.1 13.3 14.9 14 12.3 12.7

Accuracy to

Consensus

Total: 82.8 85.1 95 94 91.3 92.9

https://doi.org/10.1371/journal.pone.0222290.t001
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Recency status classifications. The primary objective of the LAg program send outs were

to assess a site’s ability to properly classify a sample as HIV-negative, recent infection, or long-

term infection. During EP3, each misclassification resulted in a fifteen-point deduction per

sample with a total of sixty points allotted to this category. The point allotment was updated

prior to EP4 for each misclassification resulting in a twelve-point deduction with a total of

forty-eight points in this category.

Precision of results. Precision describes the amount of variability between repeated mea-

sures under unchanged conditions (i.e., the same operator, same instrument). As the field has

begun to use the LAg Incidence Assay in a more quantitative manner, it has become important

to assess the reliability of ODn values reported by sites. Precision was assessed by looking at

the variability of ODn values between replicate samples for a given sample. The site variance

was compared to the overall variance of all sites for that kit type and sample. Results that were

significantly different from the model-based variance estimates incurred a three-point deduc-

tion with a maximum reduction of eighteen points. During EP3 this category was worth

twenty points.

Accuracy of quantitative results (compared to consensus). Accuracy is defined as the

closeness of an estimate to either a true (known) value or an accepted reference standard.

While there is a true classification for a sample for the Incidence Assay, there is not a true

ODn value, so EQAPOL uses the consensus average as the accepted reference. Accuracy was

assessed for each sample based on a comparison of the site’s average of the replicate sample’s

ODn values to the consensus average for all sites reporting data for that kit type and sample.

Results that were significantly different from the model-based consensus average incurred a

three-point deduction with a maximum reduction of eighteen points. During EP3 this cate-

gory was worth twenty points.

Statistical analyses

The data collected in the EQAPOL LAg Program are analyzed according to statistical

approaches currently in use for other EQAPOL programs [21]. The primary statistical

approach is the use of mixed effects models and specific analyses are described. The compari-

sons, made for kit type means and variances, were performed in SAS 9.4 using Proc Mixed to

calculate estimates from mixed effects models. The models for the mean comparisons had the

OD or ODn values as the outcome variable with fixed effects for kit type and an interaction of

kit type with the sample ID. These models also had a random intercept for each site by sample

ID interaction with a grouping on EP. The models for the variance comparisons had the OD

or ODn values as the outcome variable with a fixed effect for EP. These models also had a ran-

dom intercept for each site while grouping on kit type by sample ID interaction. The model

for the calibrator mean comparison had the calibrator OD value as the outcome variable with

fixed effects for EP, kit type, and testing ‘mode’ with a random intercept for each site. The

model for the calibrator variance comparison had the calibrator OD value as the outcome vari-

able with fixed effects for EP and testing mode with a random intercept for each site grouping

on kit type. For these descriptive comparisons we set the alpha level at 0.05 with no adjust-

ments for multiple comparisons.

Results

Site performance

For each EP, summary results were calculated from the reported classifications (recent or

long-term HIV+ infection or negative), calibrator OD and test sample OD/ODn. EP1 and EP2

results were initially graded using pass/fail criteria. The grading criteria for evaluating
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participating sites were developed based on observed performance in EP1 and EP2 and then

implemented for EP3 and EP4, with EP2 also being retrospectively graded (see Table 1). There

was an improvement in the overall average points between EP2 and EP3. After EP3, the grad-

ing criteria were modified to better identify sites with assay performance issues and sites that

could benefit from remediation efforts. We discovered site performance issues that were not

identified based on the EP3 grading criteria. Therefore, we modified the grading criteria in

order to better capture some of the issues observed in EP3. The EP3 criteria and the changes

implemented in EP4 as well as average results for each criterion and overall average scores are

outlined in Table 1. Since the grading criteria were adjusted in EP4, there is no clear way to

directly compare the scoring over time.

Stability of results over time

Recall that in EPs 1 and 2 the same three samples (LA_0001, LA_0006 and LA_0009) were sent

to the sites for testing. Similarly, in EPs 3 and 4 a new set of three samples were sent to the sites

for testing including samples LA_0002, LA_0003 and LA_0004. In EP4 three additional sam-

ples near the standard ODn cutoof value of 1.5 were included in the panel (LA_0005, LA_0007

and LA_0008). These samples were not utilized for grading but were included in order to have

a sample set spanning the range of OD and ODn values for more refined data analysis with

particular interest in between-manufacturer performance comparisons, after differences were

noticed in EPs 1–3. We evaluated the OD and ODn values obtained on the same samples over

the EPs to see if there were shifts in reactivity over time. On the whole, results were very stable,

with only one of the six samples (LA_0003), not near the cutoff showing a significant differ-

ence between EPs 3 and 4, based on mixed effects models for OD and ODn (see S2 and S3

Tables).

Performance across kit manufacturers

It is important to compare sample OD and ODn values obtained using kits from the two man-

ufacturers since field laboratories could change manufactures over time. For both the Maxim

and Sedia kits the recency classification of a sample is obtained by comparing the ODn value

to a common ODn cutoff value of 1.5. The sample OD values are divided by the calibrator OD

value to calculate the normalized ODn values. Calibrator specimens are supplied by the manu-

facturers with the kits. Fig 1A shows the raw OD values for the two kit types on the same speci-

mens, and Fig 1B the normalized ODn values. A linear regression line in blue for the sample

values obtained, and a slope of 1 (red line) that would be obtained if the two kits had produced

identical results. These graphs indicate that the OD values are more similar than the ODn val-

ues when comparing results from Sedia and Maxim kits (regression slope is closer to unity).

This result led us to consider whether the calibrator values for the two kits were different, since

the ODn value is calculated using the calibrator. The difference in calibrator values for EPs 1–4

across all kits was compared using a mixed effects model and the mean Maxim value was

0.7225 and the mean Sedia value was 0.6859, with a 95% confidence interval of the difference

(0.0096, 0.0637), which is significant (p = 0.0080). A separate mixed effects model was used to

estimate the within and between site variance for OD and ODn values for each sample tested

(S4 and S5 Tables). The within and between site variance estimates for the two kit calibrator

values were also compared (Table 2), and there is evidence that the Maxim within-site kit cali-

brator variance is higher based on non-overlapping 95% confidence intervals. Given the fact

that the overall mean Maxim calibrator value is higher than the Sedia calibrator value, a higher

within site variance estimate is expected.
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Given the theoretical role of the calibrators is to control for differences in assay perfor-

mance across sites and technicians and as kit lots age, there was further interest in evaluating

the effect of the calibrators on the within and between site values. A mixed effects model was

run using all data from EPs 1–4 to estimate the between and within variance estimates for

Maxim and Sedia kits for OD and ODn values. This model adjusted for site, sample, and kit

type and the intraclass correlation (ICC) was calculated. ODn variances are higher than the

OD variances (Table 3), but given that the ODn values are higher on average, this is expected.

However, to compare overall variance and evaluate whether the use of calibrators reduces vari-

ability, the ICC was calculated. The ICC is the ratio of the between-site variability to the total

variability [ICC = σb / σb + σw (σb = between site variance; σw = within site variance]. The

results of this model provided nearly identical ICC estimates for both OD and ODn values, on

both kit types: Sedia OD ICC = 0.962 and the ODn ICC = 0.959, Maxim OD ICC = 0.949 and

the ODn ICC = 0.967. We therefore found no evidence of a reduction in the between-site vari-

ance through the use of calibrators to normalize results (see Table 3).

Another important assessment of these LAg EP data is the comparison of the Maxim and

Sedia average OD and ODn values. Mixed effects models were run using all data from EPs 1–4

to estimate the Maxim and Sedia mean OD values or ODn values to compare these values

Fig 1. Comparison of Maxim and Sedia OD and ODn values. Panel A shows OD readings and Panel B shows ODn readings. The blue line is the linear regression line

and the red line shows the slope if the two kits had produced equivalent results.

https://doi.org/10.1371/journal.pone.0222290.g001

Table 2. Between-site and within-site variances for kit calibrators, EPs 1–4 (mixed effects model estimates).

Model-Based Variance Mean (95% CI)

Variance Type Maxim Kit Sedia Kit Result

Between Site 0.00473 (0.00205, 0.02014) 0.00247 (0.00118, 0.00806) Variances Equal

Within Site 0.01425 (0.01166, 0.01781) 0.00940 (0.00791, 0.01135) Maxim Var Higher

https://doi.org/10.1371/journal.pone.0222290.t002
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between kits for each sample. For OD values there were seven of the nine samples where the

Sedia values were significantly higher than Maxim values (See Table 4). Similarly, for ODn val-

ues there were eight of the nine samples where the Sedia values were significantly higher than

Maxim values (See Table 5). These mean shifts can be seen visually via the box and whisker

plots for the ODn values (Fig 2) and OD values (S1 Fig). Note that the ratios of Sedia to Maxim

results are similar for OD and ODn values. See Table 6 for a breakdown of the data provided

by each lab.

Discussion

The EQAPOL LAg EQA program, which is jointly managed by Duke University and Vitalant

Research Institute and is supported by the NIH/NIAID, has successfully launched an interna-

tional EQA/proficiency testing program for the HIV-1 LAg assay. The assays utilized in this

program are CDC-approved and widely employed globally to classify HIV infections as

recently acquired or longstanding for the purposes of cross-sectionally estimating incidence in

population-level studies [22–25]. Increasingly, expanded use-cases for individual-level infec-

tion staging and improved estimation of individual time of infection (in combination of diag-

nostic test results) are being contemplated and piloted. These new, currently unregulated, uses

have potential clinical applications–individuals treated early in infection have improved clini-

cal outcomes [26] and establish smaller latent HIV reservoirs [27]–and can inform public

health interventions such as enhanced contact tracing [28]. Both the incidence surveillance

and individual-level applications require highly consistent results between laboratories, manu-

facturers and over time.

Table 3. Comparison of between-site and within-site variances of OD and ODn values for EPs 1–4 (mixed effects models estimates).

Model-Based Variance Mean (95% CI) Intraclass Correlation

Kit Type Variance Type OD Values ODn Value Result OD ICC ODn ICC

Maxim Between Site 0.4610 (0.3452, 0.6470) 0.9471 (0.7098, 1.3280) ODn Var Higher . .

Maxim Within Site 0.0246 (0.0221, 0.0274) 0.0321 (0.0290, 0.0358) ODn Var Higher 0.949 0.967

Sedia Between Site 0.6359 (0.4924, 0.8532) 1.5598 (1.2073, 2.0937) ODn Var Higher . .

Sedia Within Site 0.0249 (0.0227, 0.0275) 0.0666 (0.0608, 0.0734) ODn Var Higher 0.962 0.959

Both Between Site 0.5769 (0.4747, 0.7163) 1.3503 (1.1110, 1.6767) ODn Var Higher . .

Both Within Site 0.0248 (0.0231, 0.0266) 0.0514 (0.0479, 0.0552) ODn Var Higher 0.959 0.963

Variances adjusted for site, kit type, and sample.

https://doi.org/10.1371/journal.pone.0222290.t003

Table 4. Comparison of average OD values by kit type for EPs 1–4 (mixed effects model estimates).

Model-Based Mean (95% CI)

ID Sedia Mean Maxim Mean Ratio Sedia—Maxim: Mean (95% CI) p-value

LA_0001 0.0570 0.0247 2.3 0.0323 (-0.0003, 0.0649) 0.0518

LA_0002 0.1744 0.1049 1.7 0.0694 (0.0258, 0.1131) 0.0019

LA_0003 2.5326 2.2283 1.1 0.3043 (0.2518, 0.3568) < .0001

LA_0004 0.5061 0.2556 2.0 0.2505 (0.2143, 0.2867) < .0001

LA_0005 0.7898 0.5420 1.5 0.2478 (0.1431, 0.3524) < .0001

LA_0006 1.9825 1.6519 1.2 0.3306 (0.2836, 0.3776) < .0001

LA_0007 1.0806 0.7015 1.5 0.3792 (0.2744, 0.4839) < .0001

LA_0008 0.9355 0.5408 1.7 0.3947 (0.2900, 0.4993) < .0001

LA_0009 0.6608 0.6470 1.0 0.0138 (-0.0188, 0.0464) 0.4067

https://doi.org/10.1371/journal.pone.0222290.t004
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The program is a result of collaborative efforts between EQAPOL, NIAID and the CDC

and it currently monitors twenty domestic and international sites with two scored EP panels

per year. The goal for the EQA testing program is to promote consistent and appropriate assay

procedures and improve assay proficiency within participating laboratories. The comprehen-

sive scoring allows for identification of sites who could benefit from additional training and

remediation. Overall, the program promotes improvement through a combination of profi-

ciency testing, questionnaires, remediation and training.

An important program goal is to develop and use proficiency testing to identify factors

affecting LAg assay outcomes globally. Analysis of the four proficiency testing rounds showed

differences between optical densities (OD) and normalized optical densities (ODn) from LAg

kits from the two manufacturers, with Maxim-produced kits producing lower OD and ODn

measurements than Sedia-manufactured kits, on average. Differences in ODn values were

larger than those in OD values in absolute terms, but not in relative terms, since ODn are

inflated relative to OD values by the normalization procedure and ratios of Sedia to Maxim

OD readings and ODn readings were similar. However, the calibrators did appear to exacer-

bate differences to some extent, as evidenced by the lower correlation between ODn values

than OD values produced using the two kit types, as shown in the regression analysis.

The purpose of the calibrators is to control for variability in laboratory procedures (such as

incubation times and temperatures, input volumes, etc.) between sites, lot-to-lot variations

and potential changes over time as kits age. We demonstrate significant differences in ODn

results between the two kit types, a finding that is consistent with previous studies comparing

the performance of the two manufacturers’ kits on the same specimens in a single laboratory,

including the CEPHIA analysis of comparative performance reported in this journal [29,30]

We further demonstrated significant differences in raw ODs measured by the two kits, which

are not resolved by normalization with the kit-supplied calibrators. Pervious studies were not

able to assess the impact of normalization on lot-to-lot and site-to-site variability. Our analysis

of the impact of calibrators on between-site variance of ODn values failed to demonstrate an

impact (positive or negative) compared to raw OD measurements. Further work is needed to

investigate whether calibration successfully controls for kit and reagent degradation over time.

While these results do not show that the normalization procedure is harming performance,

given the evidence that there are differences in the calibrators supplied by the two kit manufac-

turers, the benefit of the normalization procedure is called into question. While current

instructions for use remain in place, users should be aware of the differences in OD results and

in the calibrators when selecting kits, choosing a recency discrimination threshold, and when

planning or analyzing survey data and reporting results. Users should avoid switching kit

Table 5. Comparison of average ODn values by kit type for EPs 1–4 (mixed effects model estimates).

Model-Based Mean (95% CI)

ID Sedia Mean Maxim Mean Ratio Sedia—Maxim: Mean (95% CI) p-value

LA_0001 0.0847 0.0356 2.4 0.0490 (0.0045, 0.0936) 0.0309

LA_0002 0.2561 0.1369 1.9 0.1192 (0.0536, 0.1848) 0.0004

LA_0003 3.8752 3.2450 1.2 0.6302 (0.5507, 0.7097) < .0001

LA_0004 0.7476 0.3238 2.3 0.4238 (0.3699, 0.4777) < .0001

LA_0005 1.2574 0.7784 1.6 0.4790 (0.3235, 0.6345) < .0001

LA_0006 2.7661 2.1959 1.3 0.5702 (0.5045, 0.6359) < .0001

LA_0007 1.7778 1.0426 1.7 0.7352 (0.5796, 0.8908) < .0001

LA_0008 1.5042 0.7928 1.9 0.7114 (0.5558, 0.8669) < .0001

LA_0009 0.9561 0.9630 1.0 -0.0069 (-0.0515, 0.0376) 0.7604

https://doi.org/10.1371/journal.pone.0222290.t005
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manufacturers during studies. To our knowledge, the LAg EQAPOL program provided the

first evidence that the performance of the Sedia and Maxim assays differed. We demonstrated

and communicated our findings after the pilot studies and early EPs, which led to studies by

Fig 2. Mean ODn values for each sample by site and kit type. Maxim kits are shown in green and Sedia kits are in purple. Eight out of nine samples had significantly

higher Sedia means than Maxim means.

https://doi.org/10.1371/journal.pone.0222290.g002
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CEPHIA, CDC and John Hopkins University that confirmed the differences. It should be

noted that changing assay procedures to remove calibrators would at best only partially

address the differences, and would require recalibration of both assays (i.e., deriving new

MDRI and FRR estimates). We therefore do not recommend a change in procedures at this

stage.

The primary objective of the EQAPOL LAg EQA program is to support laboratories that

provide patient screening and identify recent HIV infections. As we continue to develop the

program and look to future needs in this field, we will work to incorporate EQA support for

other incidence assays/testing platforms and sample types (e.g., Dried Blood Spots). As an

example, we plan to integrate rapid point-of-care recency assays into the program as these

assays provide a valuable option for obtaining faster results, which may support clinical and

public health decision-making. We aim to help facilitate improvements in HIV screening,

including ascertainment of recency, which will support advancements in universal testing,

treatment, viral suppression of HIV and incidence reduction worldwide.
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S1 Table. Active sites in the EQAPOL LAg EQA program.

(DOCX)

S2 Table. Comparison of mean OD shifts in EPs 1–4 (mixed effects model estimates).

(DOCX)

S3 Table. Comparisons of mean ODn shifts in EPs 1–4 (mixed effects model estimates).

(DOCX)

Table 6. Data summary of laboratories by kit type for EPs 1–4.

Site Maxim EPs Sedia EPs Maxim Calibrators Sedia Calibrators Total Calibrators Maxim

OD Values

Sedia

OD Values

Total

OD

059 4 4 24 24 48 95 89 184

060 4 4 24 24 48 99 89 188

061 1 4 6 24 30 21 89 110

065 4 24 24 89 89

066 3 18 18 77 77

067 2 12 12 47 47

069 1 6 6 21 21

071 2 12 12 47 47

072 4 24 24 83 83

073 1 6 6 21 21

074 1 6 6 28 28

075 4 24 24 87 87

076 1 6 6 21 21

077 3 18 18 74 74

078 4 24 24 95 95

086 2 12 12 53 53

090 2 12 12 47 47

106 4 4 24 24 48 95 89 184

107 4 4 24 24 48 95 91 186

216 4 24 24 89 89

Total 32 43 192 258 450 765 966 1731

https://doi.org/10.1371/journal.pone.0222290.t006
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