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SUMMARY

Predicting themicroRNA-disease associations by using computational methods is
conductive to the efficiency of costly and laborious traditional bio-experiments.
In this study, we propose a computational machine learning-based method
(DANE-MDA) that preserves integrated structure and attribute features via
deep attributed network embedding to predict potential miRNA-disease associ-
ations. Specifically, the integrated features are extracted by using deep stacked
auto-encoder on the diverse orders ofmatrixes containing structure and attribute
information and are then trained by using random forest classifier. Under 5-fold
cross-validation experiments, DANE-MDA yielded average accuracy, sensitivity,
and AUC at 85.59%, 84.23%, and 0.9264 in term of HMDD v3.0 dataset, and
83.21%, 80.39%, and 0.9113 in term of HMDD v2.0 dataset, respectively. Addi-
tionally, case studies on breast, colon, and lung neoplasms related disease
show that 47, 47, and 46 of the top 50 miRNAs can be predicted and retrieved
in the other database.

INTRODUCTION

The human genomes have various endogenous ‘‘non-messenger’’ or ‘‘non-coding’’ RNAs, including a large

number of single-stranded microRNAs (miRNAs) containing about 22 nucleotides (Ambros, 2001, 2004).

miRNAs play a significant function in various human life processes, including virus defense, tissue develop-

ment, cell metabolism, and organ formation, and participate in the regulation of post-transcriptional gene

expression (Cui et al., 2006; Karp and Ambros, 2005; Lu et al., 2005; Rupaimoole and Slack, 2017; Xu et al.,

2004). Furthermore, miRNAs also have a particular therapeutic impact as a regulator for several genes (Ling

et al., 2013; Matsui and Corey, 2017). A cascade of studies have shown that miRNAs can become drug tar-

gets for human disease treatments (Mishra et al., 2020), hence it is not surprising that predicting and iden-

tifying potential miRNAs related to corresponding diseases have been the focus of researchers. For

example, Jeong et al. (Jeong et al., 2011) stated that let-7a is under-expressed in the tissues and cells of

patients with NSCLC (non-small cell lung cancer) compared with the normal control group. Bang et al.

(2012) found that the miR-23/27/24 cluster is related to retinal vascular development and endothelial cell

apoptosis and angiogenesis in cardiac ischemia. In recent years, massive miRNA-disease associations

have been acquired through traditional biological experiments and stored in public databases. These bio-

logical experimental methods usually have high prediction accuracy; nevertheless, their processes are

complex, expensive, and time-consuming (Liang et al., 2019). To this end, to accelerate the verification pro-

cess, and reduce the time consumption and blindness of biological experiments, it is significant to establish

computational methods for quickly and effectively predicting possible miRNA-disease associations (Wong

et al., 2020; Yi et al., 2020).

Taking advantage of the hypothesis that functionally related miRNAs are more likely to be related to dis-

eases with similar phenotypes, some score function-based computational models have been proposed for

predicting miRNA-disease associations, which commonly leverage methods such as random walk to calcu-

late the likelihood of potential associations on the constructed miRNA-disease association network. For

example, Chen et al. (2012) first incorporated known miRNA-disease associations and large-scale

miRNA-miRNA functional similarity information and then utilized the random walk and global network sim-

ilarity measure methods to obtain superior performance than previous models. Luo et al. (2017) assessed

the similarity between diseases or miRNAs by incorporating several relevant heterogeneous information.
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Then, a semi-supervised mechanics of Kronecker regularized least squares was employed to predict

possible miRNAs related to diseases. Wang et al. (2019) utilized the logical trees classifier and fused the

known miRNA-disease association, miRNA functional similarity and sequence information, and disease se-

mantic similarity to predict miRNA-disease associations. Empirical results of cross-validation experiments

and case studies both demonstrated the reliability and effectiveness of their model. Alaimo et al. (2014)

adopted a recommendation algorithm to predict novel associations between miRNAs and diseases based

on a tripartite network composed of miRNAs, targets, and diseases, where the targets act as intermediate

nodes between miRNAs and diseases. On this basis, a multi-level resource transfer method was employed

to compute the correlation degree between each miRNA-disease pair.

Recently, machine learning and deep learning also have been utilized for predicting possible associations

betweenmiRNAs and diseases with the growth of knownmiRNA-disease association data. For example, Xu

et al. (2011) calculated four topological features of miRNAs and then trained the gold-standard miRNA da-

taset using the support vector machine (SVM) for predicting possible miRNA-disease associations. To

Figure 1. Illustration of the overall framework of DANE-MDA (DAG: directed acyclic graph; DSS: disease semantic similarity)
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break the restriction of previous models that cannot be applied for diseases without any known associated

miRNAs, Chen and Yan (2014) exploited the least-squares regularization and semi-supervised learning

method to reveal the miRNA-disease associations and obtain reliable performance. These existing models

almost utilizedmiRNA functional similarity, miRNA-family associations, disease semantic similarity, miRNA-

target associations, and known miRNA-disease associations. However, the known miRNA-disease associ-

ations are not well mined. These known miRNA-disease associations can be constructed as a graph or

network, but the node features in the graph are rarely calculated. Therefore, some of the recent techniques

in graph embedding are used for predicting miRNA-disease associations, such as graph convolutional net-

works (Kipf and Welling, 2016), matrix factorization (He et al., 2018, 2019), and Bayesian learning (Hu et al.,

2019). For example, Xuan et al. (2019) utilized convolutional neural networks and network representation

learning to design a computational model to predict miRNA-disease associations. Zheng et al. (2020a) ex-

ploited the graph embedding method and random forest classifier to reveal novel miRNA and disease as-

sociations. Their method gained good performance by combining the behavior and attribute features of

diseases and miRNAs.

In this study, wepropose a computationalmachine learning-basedmethod (DANE-MDA) that attempts to pre-

serve both the diverse degrees of network structure and attribute feature of miRNAs and diseases via deep

attributed network embedding to predict potential miRNA-disease associations. DANE-MDA includes four

steps. First, we constructed an attributed network by connecting the known miRNA-disease associations in

theHumanMicroRNADiseaseDatabase (HMDD) and, respectively, calculated the attribute and network struc-

ture feature of miRNAs and diseases, where the attribute feature includes miRNA sequence similarity and dis-

ease semantic similarity and the network structure feature includes the probability of direct transition between

each miRNA-disease association pair. Second, we captured the interactions between network structure and

attribute information of miRNAs and diseases from diverse degrees of proximity by utilizing a personalized

randomwalk-basedmethod. Third, we fused the various degrees of proximity to build an enhancedmatrix rep-

resentation, which contains both the attribute feature, as well as the local and global network structure feature

ofmiRNAsanddiseases and thenexploited thedeepstackedauto-encoder to learn thecomplex andnonlinear

information in the enhanced matrix to represent miRNAs and diseases. Finally, the Random Forest classifier is

selected to construct the prediction model. The illustration of the DANE-MDA overall framework is shown in

Figure 1. As a result, the 5-fold cross-validation experiment was applied to examine the performance of

DANE-MDA, which obtained an average 85.59% accuracy, 84.23% sensitivity, and 0.9264 area under the

Table 1. The results of DANE-MDA under 5-fold cross-validation based on the HMDD v3.0 dataset

Fold ACC.(%) AUC(%) Sen.(%) Prec.(%) Spec.(%) MCC(%)

0 85.10 92.56 83.32 86.40 86.88 70.25

1 85.94 92.89 84.57 86.95 87.31 71.91

2 85.38 92.32 83.48 86.78 87.28 70.81

3 85.59 92.80 84.88 86.11 86.31 71.19

4 85.96 92.66 84.89 86.74 87.02 71.93

Average 85.59 G 0.37 92.64 G 0.22 84.23 G 0.77 86.60 G 0.34 86.96 G 0.41 71.22 G 0.72

The last line represents the average and standard deviation of each indicator.

Table 2. The results of DANE-MDA under 5-fold cross-validation based on the HMDD v2.0 dataset

Fold ACC.(%) AUC(%) Sen.(%) Prec.(%) Spec.(%) MCC(%)

0 84.53 92.22 79.65 88.27 89.41 69.39

1 81.86 90.17 79.56 83.40 84.16 63.79

2 83.89 91.48 80.02 86.73 87.75 67.98

3 83.93 91.17 81.49 85.67 86.37 67.94

4 81.86 90.61 81.22 82.28 82.50 63.73

Average 83.21 G 1.26 91.13 G 0.79 80.39 G 0.90 85.27 G 2.44 86.04 G 2.76 66.57 G 2.63

The last line represents the average and standard deviation of each indicator.
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receiver operating characteristic (ROC) curve (AUC) on the HMDD v3.0 dataset, and an average 83.21% accu-

racy, 80.39% sensitivity, and 0.9113 AUC on the HMDD v2.0 dataset. What’s more, we also conducted case

studies on three common human diseases, including breast, colon, and lung neoplasms, to verify the perfor-

mance of DANE-MDA in practical applications. Additionally, we also compared the influence ofmodel param-

eters and classifiers on prediction results. In summary, the proposed DANE-MDA model has a promising

performance for predictingnovelmiRNA-disease associations and is anticipated tobean effective supplement

tool in the field of bioinformatics research.

Figure 2. The ROC curves of DANE-MDA under 5-fold cross validation based on HMDD v3.0 dataset

Figure 3. The ROC curves of DANE-MDA under 5-fold cross validation based on HMDD v2.0 dataset
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RESULTS

The results of DANE-MDA under 5-fold cross-validation experiment

Cross-validation is a common method for building models and verifying model parameters in machine

learning (Cooil et al., 1987). In this study, the 5-fold cross-validation experiment is implemented to evaluate

the ability of DANE-MDA for predicting novel miRNA-disease associations. Specifically, the positive and

negative samples are, respectively, separated into five folds, one fold is the test dataset and the rest

Figure 4. The PR curves of DANE-MDA under 5-fold cross validation based on HMDD v3.0 dataset

Figure 5. The PR curves of DANE-MDA under 5-fold cross validation based on HMDD v2.0 dataset
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four folds are the training dataset. On this basis, five experiments are respectively performed in sequence.

In the results, six evaluation indicators in each fold experiment including Accuracy (Acc.), Precision (Prec.),

Matthews Correlation Coefficient (MCC), Specificity (Spec.), Sensitivity (Sen.), and the AUC based on the

HMDD v3.0 and v2.0 dataset are, respectively, recorded in Tables 1 and 2. Furthermore, the ROC and pre-

cision-recall (PR) curve is further selected to verify the prediction ability of DANE-MDA. Figures 2, 3, 4, and 5

respectively show the 5-fold cross-validation ROC and PR curves of DANE-MDA based on the HMDD v3.0

and v2.0, which, respectively, draws the sensitivity (true positive rate) against the specificity (false positive

rate) and the precision against the recall under various score thresholds.

The impact of model parameters on prediction results

In this part, we quantitatively analyzed the influence of the parameters in DANE-MDA on the prediction

performance, including a, b, and t. Respectively, to fuse the network structure feature and attribute infor-

mation of miRNAs and diseases, we introduced the weight parameter a to represent the preference ratio

between attribute and structural information, with a value between 0 and 1. When a = 1, the predictive abil-

ity of DANE-MDA entirely depends on the structure information, and when a = 0, the predictive ability of

DANE-MDA entirely depends on the attribute information. Moreover, the parameter t is introduced to cap-

ture global network structure information. Intuitively, the larger the value of t, the more global structure

information will be obtained. However, when t gradually increases, the global information obtained grad-

ually becomes weaker, and excess noise information will cause the prediction results to decrease. Last,

because the low-order network structure feature is more influential than the high-order ones, we intro-

duced the parameter b to control the downtrend of higher-order information, with a value between

0 and 1. On this basis, we, respectively, selected the following parameters to perform 5-fold cross-vali-

dation:a˛{1, 0.95, 0.90, 0.85, 0.80, 0.75, 0}, b˛{0.98, 0.96, 0.94, 0.92, 0.90},t˛{1, 3, 5, 7, 9} and used the

AUC value as the evaluation indicator. For each parameter, other parameters and the experimental envi-

ronment are controlled to be consistent. Tables 3, 4, and 5, respectively, show the distribution of the AUC

values for each cross-validation. Additionally, the line curve of the mean AUC value was shown in Figures 6,

7, and 8. In the results, for parameter a, when a = 0.85 (fusion of 85% network structure and 15% attribute

feature), DANE-MDA obtains the best performance. For parameter b, when b = 0.94, DANE-MDA has the

best control over the downward trend of high-order features. For parameter t, when t = 5, DANE-MDA ob-

tains the optimal global structural features.

Furthermore, to further describe the effectiveness of our feature fusion strategy, we displayed the perfor-

mance of DANE-MDA with three different feature combinations under the 5-fold cross-validation: only

Table 3. The AUC values of parameter a under each fold cross-validation (b = 0.94, t = 5)

Fold

a 0 1 2 3 4 Average

1 0.9169 0.9224 0.9149 0.9223 0.9171 0.9187 G 0.34

0.95 0.9242 0.9263 0.9206 0.9269 0.9252 0.9246 G 0.25

0.90 0.9211 0.9272 0.9230 0.9286 0.9215 0.9243 G 0.34

0.85 0.9256 0.9289 0.9232 0.9280 0.9266 0.9264 G 0.22

0.80 0.9271 0.9277 0.9243 0.9270 0.9241 0.9261 G 0.17

0.75 0.9262 0.9299 0.9224 0.9250 0.9261 0.9259 G 0.27

0 0.8774 0.8849 0.8776 0.8791 0.8746 0.8787 G 0.38

Table 4. The AUC values of parameter b under each fold cross-validation (a = 0.85, t = 5)

Fold

b 0 1 2 3 4 Average

0.98 0.9274 0.9253 0.9208 0.9275 0.9222 0.9246 G 0.30

0.96 0.9249 0.9312 0.9252 0.9279 0.9222 0.9263 G 0.34

0.94 0.9256 0.9289 0.9232 0.9280 0.9266 0.9264 G 0.22

0.92 0.9249 0.9252 0.9221 0.9291 0.9243 0.9251 G 0.25

0.90 0.9234 0.9268 0.9238 0.9279 0.9224 0.9249 G 0.24
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attribute features of miRNAs and diseases (a = 0), only network structure features of miRNAs and diseases

(a = 1), and the fusion feature of attribute and structure information (a = 0.85). The detailed average pre-

diction results were shown in Table 6. Additionally, Figure 9 showed the ROC and PR curves of the compar-

ative experiment. The empirical results further proved the better performance of our feature fusion

strategy.

The impact of the classifier on prediction results

For a specific classification problem, it is crucial to choose a suitable classifier. In this part, we selected

four commonly used classifiers for comparison, including Naive Bayes (NB) (Rish, 2001), Adaptive Boost-

ing (AdaBoost) (Margineantu and Dietterich, 1997), K-Nearest Neighbors (KNN) (Denoeux, 2008), and

Random Forest (RF) (Liaw and Wiener, 2002), and then used the most suitable classification algorithm

to build the prediction model according to the final prediction effect. To make the comparison experi-

ment fair and easy to operate, we kept the experimental environment consistent and performed 5-fold

cross-validation for different classifiers with default parameters. Finally, the average results and standard

deviations of each classifier under 5-fold cross-validation were recorded in Table 7. Moreover, the ROC

and PR curves of the classifier comparison experiment are shown in Figure 10. All the experiments proved

that the Random Forest classifier achieved better prediction results and was more suitable for our training

model.

Comparison of previous related works

In the field of potential miRNA-disease association prediction, a lot of excellent computational methods

have been developed. To confirm the superiority of our model, we further compared the prediction per-

formance of DANE-MDA based on the HMDD v3.0 with five previous state-of-the-art computational

methods, including WBSMDA (Chen et al., 2016), PBMDA (You et al., 2017), HDMP (Xuan et al., 2013),

Table 5. The AUC values of parameter t under each fold cross-validation ()

Fold

t 0 1 2 3 4 Average

1 0.9247 0.9260 0.9210 0.9290 0.9193 0.9240 G 0.39

3 0.9255 0.9286 0.9236 0.9250 0.9249 0.9255 G 0.19

5 0.9256 0.9289 0.9232 0.9280 0.9266 0.9264 G 0.22

7 0.9234 0.9282 0.9213 0.9307 0.9223 0.9252 G 0.41

9 0.9264 0.9277 0.9202 0.9292 0.9234 0.9254 G 0.36

Figure 6. The line graph of average AUC results at different a values of DANE-MDA
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RLSMDA (Chen and Yan, 2014), and DBMDA (Zheng et al., 2020b). WBSMDA predicts the potential asso-

ciations between miRNAs and diseases by utilizing a model of within and between scores. PBMDA is a

path-based prediction method by incorporating multiple similarities of miRNAs and diseases. HDMP is

a weighted k-most similar neighbors-based miRNA-disease association prediction method, which is a

representative method in this field. RLSMDA is a global, semi-supervised, and regularized least

squares-based prediction method. DBMDA utilizes the chaos game representation method based on

miRNA sequences and infers global similarity from regional distances to predict miRNA-disease associ-

ations. All these methods utilized the known miRNA-disease associations in HMDD v3.0 as the dataset

and were verified with the 5-fold cross-validation experiment. Hence, we adopted the average AUC value

reported in their article as the evaluation index, as shown in Table 8. Moreover, we also compared the

prediction performance of DANE-MDA based on the HMDD v2.0 with the following latest four models,

which have been confirmed to achieve excellent prediction accuracy, including TLHNMDA (Chen et al.,

2018a), NCMCMDA (Chen et al., 2021), RFMDA (Chen et al., 2018b), and MDHGI (Chen et al., 2018c).

Here we also computed the average AUC under the 5-fold cross-validation as the evaluative criterion,

and greater AUC means the model shows more accurate prediction performance. Table 9 clearly shows

that DANE-MDA achieved better AUC performance under the 5-fold cross-validation based on the

HMDD v2.0 dataset. In short, we can clearly observe that DANE-MDA performs better than the current

model in potential miRNA and disease association predictions under the 5-fold cross-validation based

on both the HMDD v3.0 and v2.0 datasets.

Figure 7. The line graph of average AUC results at different b values of DANE-MDA

Figure 8. The line graph of average AUC results at different t values of DANE-MDA
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Case studies

In this part, to evaluate the capability of DANE-MDA for predicting potential miRNA-disease associations

in practical applications, case studies were conducted on breast neoplasms, colon neoplasms, and lung

neoplasms. First, all known and the same number of randomly constructed unknown miRNA-disease asso-

ciations were constituted as the training samples. Second, the test samples of miRNA-corresponding dis-

ease association pairs were, respectively, constituted. It should be noted that the association pairs that

already existed in the training samples have been deleted from the test samples. Finally, DANE-MDA

was trained based on the training dataset, and then the association probability of unknownmiRNA-disease

pairs in the test dataset was predicted. On this basis, we listed the top 50 association pairs according to the

prediction scores and confirmed them in two other authoritative databases, miR2Disease (Jiang et al.,

2008) and dbDEMC (Yang et al., 2010).

Colon neoplasms are the third leading cause of cancer-related deaths in the United States (Siegel et al.,

2016). It is a malignant tumor arising from the inner wall of the large intestine (colon) or rectum. The com-

mon risk factors for colon neoplasms include colon polyps, family history, age, African American race, and

long-standing ulcerative colitis. miRNAs play an essential part in the carcinogenesis and development of

colon neoplasms, and their biomarkers have great advantages in the recurrence prediction, diagnosis,

and treatment. In this article, DANE-MDA was used to predict the possible miRNAs related to colon neo-

plasms, and 47 of the top 50 miRNAs with the highest final prediction score were verified as shown in Table

10.

Breast neoplasms are the most common non-skin malignant tumor in women. In almost all cases it occurs

in women, but men can also get breast neoplasms (Bray et al., 2018; Kelsey and Horn-Ross, 1993; Tao

et al., 2015). It can begin in different parts of the breast and spread outside the breast through blood

and lymph vessels. In addition, more and more studies have shown that miRNAs are a new tool for the

prognosis and diagnosis of patients with breast neoplasms. Hence, the prediction of potential breast

neoplasms-related miRNAs may identify a novel candidate miRNA for early diagnosis and prevention

of breast cancer. In this article, DANE-MDA was used to predict possible miRNAs related to breast neo-

plasms, and 47 of the top 50 miRNAs with the highest final prediction score were verified as shown in Ta-

ble 11.

Lung neoplasms are the leading cause of cancer deaths in men and women. It is usually formed in air pas-

sage cells or lung tissue. Factors affecting lung neoplasms mainly include smoking, secondhand smoke,

family history of lung cancer, air pollution, HIV infection, etc., among which smoking is the most important

Table 6. The average results and standard deviations of DANE-MDA with different feature combinations under 5-fold cross-validation

Feature Acc.(%) AUC(%) Sen.(%) Prec.(%) Spec.(%) MCC(%)

Only attribute 81.01 G 0.28 87.87 G 0.38 81.86 G 0.91 80.49 G 0.37 80.15 G 0.63 62.03 G 0.58

Only structure 84.76 G 0.21 91.87 G 0.34 83.39 G 0.39 85.75 G 0.31 86.14 G 0.38 69.55 G 0.42

Fusion 85.59 G 0.37 92.64 G 0.22 84.23 G 0.77 86.60 G 0.34 86.96 G 0.41 71.22 G 0.72

Figure 9. The average ROC and PR curves of DANE-MDA with different feature combinations under 5-fold cross-

validation
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risk factor for lung neoplasms (Torre et al., 2016). miRNAs have been determined to play a key role in the

treatment and development of lung neoplasms. Compared with normal tissues, the expression level of

miRNA in lung cancer cells and the blood of patients with lung cancer are unregulated. Moreover, the

phenotype of lung cancer can be changed by regulating miRNA expression both in vivo and in vitro. In

this article, DANE-MDA was used to predict possible miRNAs related to lung neoplasms, and 46 of the

top 50 miRNAs with the highest final prediction score were verified as shown in Table 12.

DISCUSSION

Recently, an increasing number of researches have demonstrated that miRNAs could fulfill a variety of bio-

logical functions, and their abnormal expression or function may cause various human diseases. Thus, the

prediction of potential miRNA-disease associations will significantly contribute to the treatment and inves-

tigation of complex human diseases. Otherwise, traditional biological experiments are generally laborious

and expensive, which leads to a very limited number of experimentally verified miRNA-disease associa-

tions. In this study, we propose a computational machine learning-based method (DANE-MDA) that pre-

serves integrated structure and attribute features via deep attributed network embedding and the deep

stacked auto-encoder neural network to predict potential miRNA-disease associations. Specifically, the

DANE-MDA framework is composed of four steps. First, the network structure and attribute feature of dis-

eases andmiRNAs is respectively calculated. Second, the interactions between network structure and attri-

bute information of miRNAs and diseases from diverse degrees of proximity are captured by utilizing a

personalized random walk-based method. Third, we fuse the diverse degrees of proximity to build an

enhanced matrix representation to preserve both the attribute information and the local and global

network structure features and then utilized the deep stacked auto-encoder to learn the complex nonlinear

information of the enhanced matrix to represent miRNAs and diseases. Finally, the potential miRNA-dis-

ease association prediction approach is built based on the Random Forest classifier. The prediction results

under 5-fold cross-validation confirmed the excellent capability of DANE-MDA. Moreover, we also dis-

cussed the influence of parameters and classifiers on the final prediction results. Last, the case studies per-

formed on three complex human diseases once again demonstrated the good property of DANE-MDA in

practical applications.

Limitations of the study

There are still some limitations in the current method that should to be addressed. First, in terms of attri-

bute feature extraction, we hope to make full use of various information in the future, such as miRNA

Table 7. The average results and standard deviations of DANE-MDA with different classifiers under 5-fold cross-validation

Classifier ACC.(%) AUC(%) Sen.(%) Prec.(%) Spec.(%) MCC(%)

KNN 82.69 G 0.30 89.68 G 0.39 91.39 G 0.39 77.85 G 0.27 74.00 G 0.35 66.39 G 0.61

Naive Bayes 78.02 G 0.44 79.57 G 0.33 91.77 G 0.43 71.97 G 0.35 64.27 G 0.46 58.28 G 0.90

AdaBoost 83.56 G 0.58 91.47 G 0.22 85.41 G 0.75 82.36 G 0.68 81.70 G 0.83 67.16 G 1.16

RandomForest 85.59 G 0.37 92.64 G 0.22 84.23 G 0.77 86.60 G 0.34 86.96 G 0.41 71.22 G 0.72

Figure 10. The average ROC and PR curves of DANE-MDA with different classifiers under 5-fold cross-validation
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functional similarity and Gaussian interaction profile kernel similarity, rather than just the sequence and se-

mantic information of miRNAs and diseases. Second, in terms of advanced feature extraction and avoiding

the curse of dimensionality, we hope to compare deep stacked auto-encoder with other deep neural

network learning algorithms in the future to achieve better performance. Third, DANE-MDA is a computa-

tional machine learning-based prediction model. Hence, a suitable machine learning classifier is essential

for our predictive model. We hope to consider other new classifiers to improve prediction ability in the

future instead of using the old model such as random forest.

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Zhu-Hong You (zhuhongyou@ms.xjb.ac.cn).

Materials availability

In this study, the known miRNA-disease association dataset was first selected from the Human MicroRNA

Disease Database (HMDD) v3.0 (Huang et al., 2019), which is a public online database that contains 32,281

experimentally affirmed miRNA-disease associations from 17,412 papers, containing 850 diseases and

1,102 miRNAs. On this basis, we conducted data preprocessing to eliminate duplicate associations and

delete the associations related to certain miRNAs considered unreliable by the public database miRBase

(Griffiths-Jones et al., 2006). Finally, 16,427 miRNA-disease associations containing 850 diseases and 901

miRNAs were acquired as the positive samples. Additionally, the Human MicroRNA Disease Database

(HMDD) v2.0 dataset was downloaded from the http://www.cuilab.cn/static/hmdd3/data/hmdd2.zip,

including 5,430 experimentally verified human miRNA-diseases associations about 383 diseases and 495

miRNAs. For the negative samples, we adopted most previous methods that utilize random selection to

generate them with the same number as positive samples (Ben-Hur and Noble, 2005).

Data and code availability

The datasets generated and/or analyzed during this study are available under open licenses in the data re-

pository, https://github.com/jiboya123/DANE-MDA.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

Table 8. Comparison of the average AUC value of DANE-MDA and different models based on HMDD v3.0 dataset

Models Average AUC (%)

DBMDA 91.29

WBSMDA 81.85

PBMDA 91.72

HDMP 83.42

RLSMDA 85.69

SAE-MDA 92.64

Table 9. Comparison of the average AUC value of DANE-MDA and different models based on HMDD v2.0 dataset

Models Average AUC (%)

TLHNMDA 87.95

NCMCMDA 89.42

RFMDA 88.18

MDHGI 87.94

SAE-MDA 91.13

ll
OPEN ACCESS

iScience 24, 102455, June 25, 2021 11

iScience
Article

mailto:zhuhongyou@ms.xjb.ac.cn
http://www.cuilab.cn/static/hmdd3/data/hmdd2.zip
https://github.com/jiboya123/DANE-MDA


SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2021.102455.

ACKNOWLEDGMENTS

Z.-H.Y. was supported by the NSFC Excellent Young Scholars Program, under Grants 61722212 in part by

the National Science Foundation of China under Grants 61873212, 61861146002, and 61732012 and in part

by theWest Light Foundation of the Chinese Academy of Sciences, Grants 2017-XBZG-BR-001. The authors

would like to thank the editors and anonymous reviewers for their reviews.

AUTHOR CONTRIBUTION

B.-Y.J. and Z.-H.Y. designed and performed the experiment, Y.W., Z.-W.L., and W.L. prepared data and

wrote the article. All the authors contributed to the text of the manuscript.

DECLARATION OF INTERESTS

The authors declare that they have no competing interests.

Received: December 12, 2020

Revised: March 2, 2021

Accepted: April 19, 2021

Published: June 25, 2021

Table 10. The top 50 miRNA-colon neoplasm associations predicted by DANE-MDA

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-miR-29c-5p dbDemc 26 hsa-miR-199a-5p dbDemc

2 hsa-miR-99b-5p dbDemc 27 hsa-miR-19b-3p dbDemc

3 hsa-miR-144-5p dbDemc 28 hsa-miR-497-5p dbDemc

4 hsa-miR-182-5p dbDemc 29 hsa-miR-30e-5p dbDemc

5 hsa-miR-92a-2-5p dbDemce 30 hsa-miR-27b-5p dbDemc

6 hsa-miR-338-5p dbDemc 31 hsa-miR-206 dbDemc

7 hsa-miR-422a dbDemc; miR2Disease 32 hsa-miR-185-5p dbDemc

8 hsa-miR-199b-5p dbDemc 33 hsa-miR-425-5p dbDemc

9 hsa-miR-378a-5p dbDemc 34 hsa-miR-135a-5p dbDemc

10 hsa-miR-373-5p Unconfirmed 35 hsa-miR-491-5p dbDemc

11 hsa-miR-451a dbDemc 36 hsa-miR-340-5p dbDemc

12 hsa-miR-29b-2-5p dbDemc 37 hsa-miR-149-5p dbDemc

13 hsa-miR-214-5p dbDemc 38 hsa-miR-187-5p dbDemc

14 hsa-miR-503-5p dbDemc 39 hsa-miR-129-5p dbDemc

15 hsa-miR-28-5p dbDemc 40 hsa-miR-184 dbDemc

16 hsa-miR-146b-5p dbDemc 41 hsa-miR-95-5p Unconfirmed

17 hsa-miR-590-5p dbDemc 42 hsa-miR-7-2-3p

-7-2-3p

Unconfirmed

18 hsa-miR-342-5p dbDemc 43 hsa-miR-7-1-3p dbDemc

19 hsa-miR-193a-5p dbDemc 44 hsa-miR-582-5p dbDemc

20 hsa-miR-421 dbDemc 45 hsa-miR-16-5p dbDemc

21 hsa-miR-186-5p dbDemc 46 hsa-miR-10a-5p dbDemc

22 hsa-miR-26a-5p dbDemc 47 hsa-miR-181a-2-3p dbDemc

23 hsa-miR-26b-5p dbDemc 48 hsa-miR-423-5p dbDemc

24 hsa-miR-124-5p dbDemc 49 hsa-miR-181c-5p dbDemc

25 hsa-miR-122-5p dbDemc 50 hsa-miR-20b-5p dbDemc
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Table 12. The top 50 miRNA-lung neoplasm associations predicted by DANE-MDA

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-miR-15b-5p dbDemc 26 hsa-miR-16-2-3p dbDemc

2 hsa-miR-16-1-3p dbDemc 27 hsa-miR-425-5p dbDemc; miR2Disease

3 hsa-miR-518b dbDemc 28 hsa-miR-484 dbDemc

4 hsa-miR-642a-5p dbDemc 29 hsa-miR-575 dbDemc

5 hsa-miR-429 dbDemc; miR2Disease 30 hsa-miR-452-5p dbDemc

6 hsa-miR-106b-5p dbDemc 31 hsa-miR-590-5p dbDemc

7 hsa-miR-424-5p dbDemc 32 hsa-miR-625-5p dbDemc

8 hsa-miR-28-5p dbDemc 33 hsa-miR-193b-5p dbDemc

9 hsa-miR-382-5p dbDemc 34 hsa-miR-302c-5p Unconfirmed

10 hsa-miR-409-5p dbDemc 35 hsa-miR-505-5p dbDemc

11 hsa-miR-421 dbDemc 36 hsa-miR-181b-5p dbDemc

12 hsa-miR-532-5p dbDemc 37 hsa-miR-708-5p dbDemc

13 hsa-miR-483-5p dbDemc 38 hsa-miR-1246 dbDemc

14 hsa-miR-128-3p dbDemc 39 hsa-miR-151a-5p dbDemc

15 hsa-miR-491-5p dbDemc 40 hsa-miR-376c-5p dbDemc

16 hsa-miR-885-5p dbDemc 41 hsa-miR-370-5p dbDemc

17 hsa-miR-92b-5p Unconfirmed 42 hsa-miR-298 dbDemc

18 hsa-miR-509-5p dbDemc 43 hsa-miR-23b-5p dbDemc

19 hsa-miR-1307-5p dbDemc 44 hsa-miR-628-5p dbDemc

20 hsa-miR-455-5p dbDemc 45 hsa-miR-539-5p dbDemc

21 hsa-miR-489-5p Unconfirmed 46 hsa-miR-711 Unconfirmed

22 hsa-miR-422a dbDemc 47 hsa-miR-1179 dbDemc

23 hsa-miR-1271-5p dbDemc 48 hsa-miR-1244 dbDemc

24 hsa-miR-125b-2-3p dbDemc 49 hsa-miR-339-5p dbDemc

25 hsa-miR-181d-5p dbDemc 50 hsa-miR-3613-5p dbDemc
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Supplemental Figures 

 

Figure S1. The directed acyclic graph (DAG) of gastrointestinal neoplasms. Related to Figure 

1. 

 

Figure S2. The simplified schematic diagram of deep stacked auto-encoder neural network. 

Related to Figure 1. 



 

Figure S3. The architecture of our deep stacked auto-encoder neural network model. Related 

to Figure 1. 

 

Figure S4. The simplified flowchart of the Random Forest classifier. Related to Figure 1. 



 

Transparent Methods 

miRNA sequence similarity information 

In this study, the attribute feature of miRNAs was represented by the sequence 

similarity information. Generally, miRNA sequences are usually denoted by 

simplified letters of four nitrogenous bases: uracil (U), cytosine (C), guanine (G), and 

adenine (A). We downloaded the miRNA sequence information from the public 

miRBase database (Griffiths-Jones et al., 2006) and then utilized the 3-mer method to 

obtain the numerical statistical features of miRNA sequences. Specifically, we first set 

up a sliding window with a window size of 3 and a sliding distance of 1, to split the 

miRNA sequence into multiple 3-monomeric units (3-mers). Second, the occurrence 

number of each 3-mer is divided by the corresponding miRNA sequence length to 

obtain its occurrence frequency, and the occurrence frequency of non-occurring 

3-mers is set to 0. Finally, each miRNA sequence is converted into a 64-dimensional 

vector based on the 64 kinds of 3-mer combinations. On this basis, we continue to use 

the most common similarity measurement method Euclidean distance to calculate the 

miRNA sequence similarity (MSS), defined as follows: 

 Sim(M, M′) = √∑ (𝑀𝑖 − 𝑀′𝑖)2𝑛
𝑖=1  (1) 

 MSS(M) = (Sim(𝑀, 𝑀1
′ ), Sim(𝑀, 𝑀2

′ ), … , Sim(𝑀, 𝑀𝑚
′ )) (2) 

where M and 𝑀′ represent the numerical statistical feature vectors of two miRNA 

sequences, n represents the vector length, and m means the number of miRNAs. 

Disease semantic similarity 

In this study, the disease semantic similarity was used to represent the attribute feature 

of diseases. The Medical Subject Heading (MeSH) descriptors of diseases provide a 

strict disease classification system, which can be obtained from the U.S. National 

Library of Medicine (https://www.nlm.nih.gov/) (Lipscomb, 2000). MeSH descriptors 

https://www.nlm.nih.gov/


are divided into 16 categories: category A is anatomical terms, category B is 

organisms, category C used in this study is disease terms, and so on. On this basis, the 

relationship among various diseases can be represented as a directed acyclic graph 

(DAG), where the nodes represent the MeSH descriptors of the diseases, and the 

directed edges point from more general items (parent nodes) to more specific ones 

(child nodes). Besides, there are one or more tree numbers of each MeSH descriptor 

to indicate its position in the DAGs. The child node's tree number is its parent node's 

tree number appended by its information. Figure S1 shows an example of the DAG 

for gastrointestinal neoplasms. For instance, disease A can be defined as 

DAG(A) = (D(A), E(A)), in which D(A) is meant as A and its ancestor nodes, and E(A) 

is meant as all the direct edges. On this basis, the semantic contribution of disease 

term t in DAG(A) to disease A is defined as follows: 

 {
𝐷𝐴(𝑡) = 1                                                                            𝑖𝑓 𝑡 = 𝐴

𝐷𝐴(𝑡) = 𝑚𝑎𝑥{∆ ∗ 𝐷𝐴(𝑡′)|𝑡′  ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑡}          𝑖𝑓 𝑡 ≠ 𝐴
 (3) 

where ∆ is the semantic contribution attenuation factor, which means that its semantic 

contribution to disease A will decrease as the distance between item t and disease A 

increases. Disease A is at the bottom of the DAG, so we defined its contribution value 

as 1. According to the above formula, the contribution of items at different levels to 

the semantic value of disease A can be differentiated. Finally, the semantic value of 

disease A is achieved by summarizing all the contributions from itself and its ancestor 

diseases, as shown below: 

 DV(A) = ∑ 𝐷𝐴(𝑡)𝑡∈𝐷(𝐴)   (4) 

Hence, the disease semantic similarity (DSS) between diseases 𝑑𝑖 and 𝑑𝑗 is acquired 

based on the nodes shared by the two disease DAGs as follows: 

 DSS(di, dj) = 
∑ (𝐷𝑑𝑖

(𝑡)+𝐷𝑑𝑗
(𝑡))𝑡∈𝐷(𝑑𝑖)∩𝐷(𝑑𝑗)

𝐷𝑉(𝑑𝑖)+𝐷𝑉(𝑑𝑗)
 (5) 

Network structure feature of miRNAs and diseases 



In this study, the local network structure feature of miRNAs and diseases was 

represented by the probability of direct transitions between each miRNA-disease 

association pair. First, we generated an adjacency matrix R based on the constructed 

attributed miRNA-disease association network. The row and column number of R is 

901 and 850, representing the number of miRNAs and diseases. The element 𝑅𝑖𝑗 in 

the matrix represents the relationship between miRNA 𝑚𝑖 and disease 𝑑𝑗. If there is 

an association between 𝑚𝑖 and d𝑗 , the 𝑅𝑖𝑗 is equal to 1, otherwise, equal to 0. 

Second, we normalized the adjacency matrix R by row to generate the network 

structure feature matrix S, which shows the connection probability between miRNAs 

and diseases within one step, given by: 

 Sij = 
𝑅𝑖𝑗

∑ 𝑅𝑖𝑘𝑘∈𝑁
  (6) 

where N is the column number of matrix R, and S𝑖𝑗 is the associated probability of 

miRNA 𝑚𝑖 and disease 𝑑𝑗. Thus, the structural feature matrix S should satisfy the 

following constraints: 

 0≤ 𝑆𝑖𝑗 ≤1 (7) 

 ∀ i ∈[1,2,…,N], ∑ 𝑆𝑖𝑗
𝑁
𝑘=1  = 1  (8) 

Construct the attribute and structure matrix representation 

The attribute matrix representation A for the attributed network is formed by 

combining the miRNA sequence similarity matrix RM and disease semantic similarity 

matrix RD. Moreover, since there is no attribute relationship between miRNAs and 

diseases, we set this part as the 0 matrices. The final attribute matrix representation is 

defined as follows: 

 A = |
𝑅𝑀 0

0 𝑅𝐷
|  (9) 

The network structure matrix S is composed of the probability of direct transition 

between each miRNA-disease association pair. Similarly, since there is no structural 



relationship between miRNAs and diseases themselves, we also set this part as the 0 

matrices. The final structure matrix representation is defined as follows: 

 S = |
0 𝑆

𝑆𝑇 0
|  (10) 

where 𝑆𝑇 is represented the transposed matrix of network structure matrix S. The 

number of rows and columns of the network structure matrix are both the sum of the 

number of miRNAs and diseases. 

Step-based proximity calculation 

For the purpose of catching the interactions between the attribute and network 

structure feature from diverse degrees of proximity, the graph-based random walk 

idea was borrowed to construct a step-based proximity matrix 𝑃𝑡 at each step t. The 

first-degree proximity matrix 𝑃1 is meant as the linear combination of the attribute 

feature matrix A and the network structure feature matrix S, in which only the 

first-order proximity between miRNA 𝑚𝑖 and disease 𝑑𝑗 in the network structure is 

considered, given by: 

 𝑃(𝑖,𝑗)
1 =  αS(i, j)  +  (1 − α)A(i, j)   (11) 

where α ∈(0, 1) is the weight coefficient, which means the random walk preference 

ratio between attribute and structure feature matrix. 

Furthermore, in order to catch the higher-degree structure proximity, we defined the 

(t+1)-th step-based proximity 𝑃𝑡+1 as: 

 𝑃𝑡+1 =  𝛼𝑃𝑡S + (1 − 𝛼)𝐴  (12) 

Specifically, the (t+1)-th step structure proximity was obtained by multiplying the t-th 

step proximity matrix 𝑃𝑡 by the structure matrix S, and since the attribute features 

are static in network structure changes, the attribute proximity is always A. In this way, 

we obtained both the attribute features and the local and global structure features of 

the network from different degrees of proximity with the proximity matrix sequences: 

𝑃1, 𝑃2, … , 𝑃𝑡 . 



Diverse degrees of proximity fusion 

In this part, to preserve both the attribute features, as well as the local and global 

network structure feature of miRNAs and diseases, an enhanced matrix Q is 

constructed by fusing the diverse degrees of proximity: 𝑃1, 𝑃2, … , 𝑃𝑡. Generally, it is 

a common fusion strategy to average the sum of all matrices. But intuitively, the 

closer (the smaller the degree) the connections between miRNAs and diseases, the 

closer the relationship between them. In other words, the low-order proximity nodes 

have a greater influence than high-order proximity ones. Hence, a weight function that 

decreases monotonously with the increase of step t is defined as: 

 Q =  ∑ 𝑓(𝑡) ∗  𝑃𝑡𝑇
𝑡=1   (13) 

where f(t) represents a decreasing function, and in this study, an exponential function 

modified by the parameter β ϵ (0, 1) is used as the weighting strategy as shown 

below: 

 𝑓(𝑡) =  𝛽𝑡  (14) 

Deep stacked auto-encoder neural network  

In order to improve feature quality and reduce noise, we further learned the nonlinear 

and complex low-dimensional features in the fusion matrix Q. The deep stacked 

auto-encoder neural network (SAE) (Rumelhart et al., 1986) is utilized to obtain the 

embedding features of miRNAs and diseases. Specifically, SAE is a category of 

unsupervised learning for data compression, and the simplified SAE is a three-layer 

neural network model, including a data input layer, a hidden layer, and an output 

reconstruction layer. The encoding process is used to map the input data from the 

input layer to the hidden layer, and the decoding process is used to map the hidden 

data from the hidden layer to the output layer to reconstruct the input data. The 

schematic diagram of the simplified deep stacked auto-encoder is shown in Figure S2. 

Given the input data: 



  𝑥 =  [𝑥1, 𝑥2, … , 𝑥𝑑(𝑥)]𝑇 ∈ 𝑅𝑑(𝑥) (15) 

where d(x) means the dimension of the input data, and then the x is projected by the 

encoder from the input layer to the hidden layer data z with the mapping function f : 

 𝑧 =  [𝑧1, 𝑧2, … , 𝑧𝑑(𝑧)]𝑇 ∈ 𝑅𝑑(𝑧) (16) 

where d(z) means the dimension of the hidden layer data, and f(x) function is 

expressed as: 

 𝑧 = 𝑓(𝑥) =  𝑠𝑓(𝑊𝑥 + 𝑏) (17) 

where 𝑊 ∈ 𝑅𝑑(𝑥)∗𝑑(𝑧) is the weight matrix, 𝑏 ∈ 𝑅𝑑(𝑥)
 is the deviation vector. The 

activation function 𝑠𝑓 of the encoder can be a sigmoid function, a tanh function, or a 

rectified linear unit function (ReLu function).  

In the decoder, the hidden layer representation z is mapped to the output layer 

𝑥′ ∈  𝑅𝑑(𝑥′) through the mapping function 𝑓′, where the function is as follows: 

 𝑥′ = 𝑓′(𝑧) =  𝑠𝑓′(𝑊′𝑧 + 𝑏′) (18) 

where 𝑊′ ∈ 𝑅𝑑(𝑥′)∗𝑑(𝑧)  is the weight matrix, 𝑏′ ∈ 𝑅𝑑(𝑥′)  is the deviation vector. 

Similarly, the activation function 𝑠𝑓′ of the decoder can also be a sigmoid, tanh, or 

ReLu function. Thus, the parameter set of SAE is: 

 θ = {𝑊, 𝑊′, 𝑏, 𝑏′} (19) 

To obtain the optimal model parameters, the loss function is reconstructed by 

computing the mean square reconstruction error to minimize: 

 𝐽(𝑊, 𝑊′, 𝑏, 𝑏′) = 
∑ ‖𝑥𝑖

′−𝑥𝑖‖
2𝑁

𝑖=1

2N
 (20) 

where N is the total number of training samples. Figure S3 shows the architecture of 

our stacked auto-encoder model. Specifically, the input layer of the model is a 

concatenated vector of diseases and miRNAs. The encoder part contains a total of 3 



layers, each containing 1024, 512, and 300 neurons. The decoder part has the reverse 

architecture of the encoder, each containing 300, 512, and 1024 neurons. Moreover, 

we set nonlinear activation functions to ReLU, the loss function to the mean squared 

error (MSE), which is minimized using Adam, the epochs to 100, and the batch size to 

128. 

Random Forest classifier 

Generally, determining whether there is an association between miRNAs and diseases 

is regarded as a binary classification problem. In this study, the Random Forest (RF) 

classifier (Liaw and Wiener, 2002) is chosen for training the deep attributed network 

embedding features of miRNAs and diseases and predicting potential associations 

between them. In particular, Random Forest is a significant bagging-based ensemble 

learning method and has a lot of advantages, such as high accuracy rate, not easy to 

overfit, and good anti-noise ability, which could be utilized for regression, 

classification, and other problems. Its construction process is roughly as follows: (1) 

Generate N samples from the instance by utilizing the bootstrap sampling method. (2) 

Establish N decision tree models based on N training samples. For a single decision 

tree model, the best feature is used for each split according to the Gini 

index/information gain ratio/ information gain. (3) Use the majority voting 

mechanism to determine the final prediction result. Figure S4 shows the simplified 

flowchart of the Random Forest classifier.  
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