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Background: Pathologic myopia (PM) associated with myopic maculopathy (MM) and
“Plus” lesions is a major cause of irreversible visual impairment worldwide. Therefore,
we aimed to develop a series of deep learning algorithms and artificial intelligence (AI)–
models for automatic PM identification, MM classification, and “Plus” lesion detection
based on retinal fundus images.

Materials and Methods: Consecutive 37,659 retinal fundus images from 32,419
patients were collected. After excluding 5,649 ungradable images, a total dataset of
32,010 color retinal fundus images was manually graded for training and cross-validation
according to the META-PM classification. We also retrospectively recruited 1,000
images from 732 patients from the three other hospitals in Zhejiang Province, serving
as the external validation dataset. The area under the receiver operating characteristic
curve (AUC), sensitivity, specificity, accuracy, and quadratic-weighted kappa score were
calculated to evaluate the classification algorithms. The precision, recall, and F1-score
were calculated to evaluate the object detection algorithms. The performance of all the
algorithms was compared with the experts’ performance. To better understand the
algorithms and clarify the direction of optimization, misclassification and visualization
heatmap analyses were performed.

Results: In five-fold cross-validation, algorithm I achieved robust performance, with
accuracy = 97.36% (95% CI: 0.9697, 0.9775), AUC = 0.995 (95% CI: 0.9933, 0.9967),
sensitivity = 93.92% (95% CI: 0.9333, 0.9451), and specificity = 98.19% (95% CI:
0.9787, 0.9852). The macro-AUC, accuracy, and quadratic-weighted kappa were
0.979, 96.74% (95% CI: 0.963, 0.9718), and 0.988 (95% CI: 0.986, 0.990) for algorithm
II. Algorithm III achieved an accuracy of 0.9703 to 0.9941 for classifying the “Plus”
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lesions and an F1-score of 0.6855 to 0.8890 for detecting and localizing lesions. The
performance metrics in external validation dataset were comparable to those of the
experts and were slightly inferior to those of cross-validation.

Conclusion: Our algorithms and AI-models were confirmed to achieve robust
performance in real-world conditions. The application of our algorithms and AI-
models has promise for facilitating clinical diagnosis and healthcare screening for PM
on a large scale.

Keywords: artificial intelligence, deep learning, pathologic myopia, myopic maculopathy, “Plus” lesion, fundus
image

INTRODUCTION

It is now widely believed that myopia is epidemic across the
world, especially in developed countries of East and Southeast
Asia (Dolgin, 2015). Myopia also has a significant impact on
public health and socioeconomic wellbeing (Smith, 2009; Zheng
et al., 2013; Holden et al., 2016). Pathologic myopia (PM), a
severe form of myopia defined as high myopia combined with
a series of characteristic maculopathy lesions, involves a greater
risk of adverse ocular tissue changes leading to associated sight-
threatening complications (Wong et al., 2014; Cho et al., 2016).
For this reason, PM is a major cause of severe irreversible vision
loss and blindness in East Asian countries (Morgan et al., 2017;
Ohno-Matsui et al., 2019).

Due to the irreversible pathologic alterations in the shape
and structure of the myopic globe, effective therapies for PM
are still lacking, and the prognosis of PM complications is
often poor. Moreover, as the disease process progresses slowly
(Hayashi et al., 2010), PM patients often ignore their ocular
symptoms and attribute these changes to their unsuitable glasses.
Therefore, a better strategy for PM may be regular screening
in myopic populations to identify and stop the aggravation of
PM at an early stage. The precise diagnosis and evaluation
of PM requires ophthalmic work-up and is aided by a series
of imaging examinations, including fundus imaging, optical
coherence tomography (OCT), and three-dimensional magnetic
resonance imaging (3D-MRI) (Faghihi et al., 2010; Moriyama
et al., 2011) which can hardly be included in screening programs.
A recent meta-analysis of a pathologic myopia system (META-
PM) provided a new simplified systematic classification for
myopic maculopathy (MM) and defined PM based on fundus
photography, which offers us a practical screening criterion
(Ohno-Matsui et al., 2015). According to this classification
standard, eyes with MM, which is equal to or more serious than
diffuse choroidal atrophy, or with at least one “Plus” lesion, can be
defined as having PM (Ohno-Matsui, 2017). However, even with
this criterion, PM screening still depends on careful examination
of the whole retina by retinal specialists through a magnified
slit lamp noncontact lens or fundus images (Baird et al., 2020),
challenging the ophthalmic medical resources in terms of clinical
data analysis, especially retinal fundus image reading. It is difficult
to imagine that such a large-scale screening task could be carried
out by humans alone.

Fortunately, with the rapid development of artificial
intelligence (AI) technologies, a sophisticated subclass of
machine learning known as deep learning plays important
roles in automated clinical data processing and hence makes
labor-intensive work feasible (Hamet and Tremblay, 2017). The
AI-model, with a deep artificial neural network as its core, has
shown great efficiency and excellent performance comparable
to those of board-certified specialists with respect to massive
medical analysis (Esteva et al., 2017; Zhao et al., 2018; Liao et al.,
2020). AI-model related diagnosis software has been successfully
applied to screening tasks of diabetic retinopathy and glaucoma
(Bhaskaranand et al., 2019; Li et al., 2020).

This study aimed to design and train a series of deep learning
algorithms and AI-models based on the META-PM classification
system using a large dataset of color retinal fundus images
obtained from the ophthalmic clinics of hospitals and annotated
by expert teams. We hope our models could (1) identify PM,
(2) classify the category of MM, and (3) detect and localize the
“Plus” lesions automatically. These works would facilitate the
PM identification for either clinical management in hospital or
healthcare service in community.

MATERIALS AND METHODS

Data Collection
In this study, the use of images was approved by the Ethics
Committee of First Affiliated Hospital, School of Medicine,
Zhejiang University. As the study was a retrospective review and
analysis of fully anonymized retinal fundus images, the medical
ethics committee declared it exempt from informed consent.

Altogether, 37,659 original color retinal fundus images of
32,419 myopia patients were obtained from the eye centers of
the First Affiliated Hospital of School of Medicine, Zhejiang
University; the First Affiliated Hospital of University of Science
and Technology of China; and the First Affiliated Hospital
of Soochow University between July 2016 and January 2020,
and analysis began February 2020. Three different desktop
nonmydriatic retinal cameras (Canon, NIDEK, and Topcon)
were used. Similar imaging protocols were applied for all three
systems. All retinal fundus images were maculalutea-centered
45◦ color fundus photographs. Pupil dilation was decided by
the examiners depending on the patient’s ocular condition. All
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patient data displayed with the images were pseudonymized
before study inclusion.

Subsequently, the ungradable images were excluded. The
criteria applied to determine a gradable image are listed as
follows:

(a) Image field definition: primary field must include the entire
optic nerve head and macula.

(b) Images should have perfect exposure because dark and
washed-out areas interfere with detailed grading.

(c) The focus should be good for grading of small
retinal lesions.

(d) Fewer artifacts: Avoid dust spots, arc defects,
and eyelash images.

(e) There should be no other errors in the fundus photograph,
such as the absence of objects in the picture.

According to this criteria, 5,649 ungradable images were
excluded. A total dataset of 32,010 color retinal fundus images
was established and further annotated by ophthalmologists.

Definitions, Annotation, and the
Reference Standard
According to the META-PM study classification, MM was
classified into five categories: no myopic retinal degenerative
lesion (Category 0), tessellated fundus (Category 1), diffuse
chorioretinal atrophy (Category 2), patchy chorioretinal atrophy
(Category 3), and macular atrophy (Category 4). Additionally,
lacquer cracks (LCs), myopic choroidal neovascularization
(CNV), and Fuchs’ spot were defined as “Plus” lesions (Ohno-
Matsui et al., 2015). Thus, in the present study, fundus image
with MM ≥ Category 2 or with at least one of the “Plus” lesions
were considered as a PM image, while the remaining images were
defined as non-PM images including the MM of Category 0 or
Category 1 without “Plus” lesions. All the images of PM or C1-C4
MM were from high myopia patients whose spherical equivalence
is worse than−6.0 D. The relevant demographic data were shown
in Table 1. It is worth mentioning that Category 0 in this study
included normal fundus and other fundus diseases.

After learning the definition and testing the intra- and
inter-rater reliability, a total of 20 ophthalmologists from three
ophthalmic centers, who achieved a kappa value ≥0.81 (almost
perfect), participated in manual grading and annotation and
served as graders (Landis and Koch, 1977). Fifteen of them
were general ophthalmologists with more than 5 years of
experience, and five of them were senior retinal specialists
with over 10 years of experience. They were randomly grouped
into five teams, with each team having one senior specialist.
The reference standard was determined based on the following
protocol. Graders on the same team evaluated the same set of
images. Each grader was blinded to the grades given by the
others, and they made independent decisions on the fundus
images. The results recognized unanimously by the three graders
of the same team were taken as the reference standard. The
results that differed among the general ophthalmologists in
the same team were arbitrated by the retinal specialist for the
final annotation decision. For the detailed workflow of data

processing, all available fundus images were involved (n = 37,659)
at the beginning stage, and the ungradable images were then
identified and excluded by the grader teams. Next, in the gradable
images group (n = 32,010), image-level binary classification label
was given by grader teams to describe whether the eye had PM,
which was used to develop algorithm I. Simultaneously, all the
gradable images would obtain a category label according to its
MM category, which was used to develop algorithm II. These
two kinds of labels were based on the criteria of META-PM
classification, with PM or C1–C4 MM images confirmed by the
refractive error data (spherical equivalence worse than −6.0 D).
Lastly, in the PM image group, graders localized the “Plus” lesions
within the image if they existed by drawing rectangular bounding
boxes, which was used to develop algorithm III. Meanwhile, the
image was labeled as having the corresponding “Plus” lesions.

Image Preprocessing and Augmentation
All the raw fundus images were preprocessed by cropping
and resizing to a resolution of 512 × 512 pixels to meet
the requirement of the input image format. Grayscale
transformations, geometric variation, and image enhancement
were applied to eliminate irrelevant information and recover
useful or true information in the images.

Development of the Deep Learning
Algorithms and AI-Models
Our training platform was implemented with the PyTorch
framework, and all of the deep learning algorithms were trained
in parallel on four NVIDIA 2080 Ti graphics processing units
(Paszke et al., 2019). In this study, three deep learning algorithms
were trained after annotation: (I) for the binary classification of
non-pathologic myopia/pathologic myopia (NPM/PM), (II) for
the five-class classification of MM categories, and (III) for “Plus”
lesion detection and localization.

Based on the three algorithms, two AI-models, namely Model
I and II, were developed. Model-1 was a one-step model, only
containing algorithm I, to directly identify the NPM and PM.
Model-2 was a two-step model, consisting of algorithm II,
algorithm III, and a logical analysis module. The core of the
logical analysis module was the META-PM classification. Step
1 was to obtain the output of the image by algorithm II and
algorithm III, while step 2 was to use the logical analysis module
to analyze the result of step 1 and then determine whether
the image was of PM. The performance of two models was
then compared in order to obtain the optimized model for PM
identification. The detailed workflow is shown in Figure 1.

A five-fold cross-validation approach was employed to train
and test the algorithms (Yang et al., 2019). The total dataset was
randomly subgrouped into five equally sized folds at the image
level, and each image was only allowed to exist in one-fold.
Effort was made to ensure that the rate of classification outcome
was basically consistent from fold to fold (Herzig et al., 2020).
The development process included two steps: first, we randomly
selected four-folds for algorithm training and hyperparameter
optimization and the remaining fold for testing. Then, this
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TABLE 1 | Summary of the total dataset and external validation dataset.

Number of images Number of Number of Mean age Sex Spherical Equivalent

with labels participants ROI with labels (years) (% female) (diopters)

Total dataset

None PM 26,131 24,708 NA 50.39 ± 14.27(24 to 81) 56.3 −2.07 ± 3.79(−13 to −0.5)

Pathologic myopia 5,879 4,205 NA 52.39 ± 15.15(23 to 82) 66.0 −13.72 ± 4.54(−23.0 to −6)

Category 0 20,919 20,884 NA 50.52 ± 14.47(26 to 75) 54.5 −0.53 ± 0.33(−6.5 to −0.5)

Category 1 5,345 3,902 NA 49.59 ± 12.99(24 to 81) 65.8 −10.52 ± 2.98(−17.5 to −6)

Category 2 4,044 2,943 NA 50.10 ± 14.90(23 to 75) 64.5 −12.88 ± 4.02(−19.25 to −7.25)

Category 3 1,154 871 NA 56.90 ± 14.63(29 to 80) 71.1 −15.77 ± 4.89(−22.5 to −7.75)

Category 4 548 313 NA 63.22 ± 12.49(33 to 82) 68.7 −16.21 ± 5.38(−23.0 to −8.25)

CNV 734 442 857 55.28 ± 15.42(26 to 82) 60.6 −15.02 ± 3.98(−22 to -7)

Fuchs 746 411 3,020 58.24 ± 13.40(24 to 80) 58.2 −16.21 ± 4.23(−23 to −7.75)

LC 99 79 207 43.11 ± 12.76(25 to 73) 56.3 −15.47 ± 3.09(−21.75 to −6.75)

External validation dataset

None PM 434 381 NA 51.28 ± 9.61(16 to 69) 55.1 −4.92 ± 5.16(−16 to −0.5)

Pathologic myopia 566 351 NA 54.71 ± 13.60(17 to 83) 61.3 −15.41 ± 6.05(−23.5 to −6)

Category 0 229 217 NA 50.85 ± 10.82(16 to 69) 49.3 −0.67 ± 0.72(−6.75 to −0.5)

Category 1 222 178 NA 50.21 ± 9.41(18 to 67) 59.6 −10.81 ± 2.68(−17.75 to −6)

Category 2 220 149 NA 51.60 ± 10.48(17 to 75) 61.7 −14.02 ± 5.54(−21 to −7.25)

Category 3 196 115 NA 55.93 ± 13.06(26 to 80) 66.1 −16.35 ± 6.14(−23.5 to −6.75)

Category 4 133 73 NA 63.71 ± 13.59(35 to 83) 60.3 −17.04 ± 6.58(−23.5 to −6.5)

CNV 67 41 97 51.27 ± 13.88(27 to 80) 54.5 −16.15 ± 5.57(−23 to −6.5)

Fuchs 205 130 878 59.24 ± 13.42(27 to 81) 58.6 −16.89 ± 5.81(−23.25 to −7)

LC 9 6 24 39.50 ± 11.26(26 to 53) 50.0 −15.96 ± 3.78(−22.25 to −7.5)

FIGURE 1 | The diagram showing the detailed developing and working flow of our algorithms and artificial intelligence (AI)–models.

process was repeated five times to confirm that each fold was set
as the testing set (Keenan et al., 2019).

Architecture of Deep Learning
Algorithms
Algorithm I and algorithm II in this study were based
on a state-of-the-art convolutional neural network (CNN)
architecture, namely, ResNet18, while algorithm III for “Plus”
lesion localization was constructed using a feature pyramid

network (FPN)–based faster region-based convolutional neural
network (Faster R-CNN). These architectures were all pretrained
on the ImageNet dataset. The details of the relevant CNN
architectures are shown in Supplementary Figure 1.

Retrospective External Validation and
Expert-Machine Comparison
To further evaluate our algorithms, we also retrospectively
recruited 1,000 images from 732 patients from the three other
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hospitals in Zhejiang Province, serving as the external validation
dataset (Table 1). Two different types of desktop nonmydriatic
retinal cameras (Canon and ZEISS) were used to capture fundus
images, and these were different from the cameras used to
acquire training data. The annotation protocol for this dataset
was the same as that for the total dataset. The images in the
external validation dataset were simultaneously evaluated by
the algorithms and two experts (one general ophthalmologist
and one retinal specialist) who were not the participants in the
aforementioned grading teams. The comparison results between
the algorithms and experts were used to further quantify the
performance of the algorithms.

Misclassification and Visualization
Heatmap Analysis of Classification
Algorithms
In the external validation dataset, the images misclassified by
algorithms I and II were further analyzed by a senior retinal
specialist. To provide detailed guidance for clinical analysis, a
convolutional visualization layer was implanted at the end of
algorithm II. Then, this layer generated a visualization heatmap
highlighting the strongly predictive regions on retinal fundus
images (Gargeya and Leng, 2017). The consistency analysis
between the hot regions and the actual lesions was evaluated by a
senior retinal specialist.

Statistics
According to the reference standard, all five-fold cross-validation
results of the algorithms were recorded, and the average metrics
were calculated. The performance of algorithm I was evaluated
using the indices of sensitivity, specificity, accuracy, and area
under the receiver operating characteristic curve (AUC). For
the five-class classification of MM categories, the area under
the macroaverage of ROC curve (macro-AUC) for each class
in a one-vs.-all manner, the kappa score and the accuracy were
calculated to evaluate algorithm II. Algorithm III was evaluated
in two dimensions: (1) image classification and (2) region of
interest (ROI) detection and lesion localization. Two groups of
performance metrics were calculated. The former consisted of
the accuracy, sensitivity, and specificity of binary classifications of
the image with “Plus” lesions, while the latter included precision,
recall, and F1-score. Model-1 and model-2 were compared with
respect to the indices of sensitivity, specificity, precision, and
accuracy. In the external validation dataset, the same indices
were also calculated and compared with the experts of different
expertise levels. All of the statistical tests in our study were two-
sided, and a P-value less than 0.05 was considered significant.
Additionally, the Clopper–Pearson method was used to calculate
the 95% CIs. Statistical data analysis was implemented using IBM
SPSS statistics for Windows version 26.0 (SPSS Inc., Chicago, IL,
United States) and Python 3.7.3.

RESULTS

A total dataset of 32,010 color retinal fundus images from 28,913
patients was built and used for algorithm training and validation.
Among the total dataset, approximately 13% of the graded images

with inconsistent diagnoses were submitted to retinal specialists
for final grading. The characteristics of the total dataset are
summarized in Table 1.

Performance of the Five-Fold
Cross-Validation
The five-fold cross-validation was used to evaluate the three
algorithms. Specifically, algorithm I achieved an AUC of 0.995
(95% CI: 0.993–0.996), accuracy of 0.973 (95% CI: 0.969–
0.977), specificity of 0.981 (95% CI: 0.978–0.985) and sensitivity
of 0.939 (95% CI: 0.933–0.945) (Table 2 and Figure 2A).
Algorithm II achieved a macro-AUC value of 0.979 (95%
CI: 0.972–0.985), accuracy of 0.967 (95% CI: 0.963–0.971),
and quadratic-weighted kappa of 0.988 (95% CI: 0.986–0.990)
for differentiating the five MM categories (Table 2 and
Figure 2B). From C0 to C4 MM, the specific accuracy of
algorithm II is 97.7, 97.8, 91.3, 96.1, and 90.0% respectively.
The confusion matrices of algorithm I and algorithm II are
shown in Supplementary Figures 2A,B. Algorithm III achieved
an accuracy of 0.970 to 0.994 for identifying the “Plus” lesions
and an F1-score of 0.685 to 0.889 for detecting and localizing
lesions. The typical output images of algorithm III are shown
in Supplementary Figure 3. The more detailed results are
listed in Table 2. The accuracy of model-1 and model-2 was
0.973 (95% CI: 0.969–0.977) and 0.984 (95% CI: 0.981–0.987),
respectively. The two-step model-2 showed better performance
in identifying PM.

External Validation and Expert-Machine
Comparison
Based on the results of better performance in identifying PM,
model-2 and algorithms were further evaluated in the external
validation dataset (Supplementary Table 1 and Supplementary
Figures 2C,D). The performance of model-2 and the three
algorithms in the external validation dataset was slightly worse
than that in the total dataset. Although there was significant
difference in accuracy between the AI-models/deep learning
algorithms and experts in terms of identifying PM (P = 0.013),
distinguishing different MM lesions (P < 0.001), and detecting
CNV (P < 0.001) and Fuchs’ spot (P < 0.001), the AI-
models/deep learning algorithms achieved an overall comparable
performance to that of the experts (Figure 3). For PM identifying,
model-2 exhibited even higher accuracy than the general
ophthalmologist (96.9 vs. 96.1%). In each task of algorithm II and
algorithm III, the difference in accuracy compared to the general
ophthalmologist was within 3%. The detailed outcomes of the
external validation are shown in Supplementary Table 1.

Misclassified Image Analysis in the
External Validation Dataset
There were 49 images misclassified by algorithm I, including 21
false negatives and 28 false positives. All false negatives were
produced in eyes with the other PM complications, such as retinal
detachment and retinal vein obstruction. The false positives
included 24 tessellated fundus images, 3 proliferative retinopathy
images, and 1 exudative retinopathy image. The major error of
algorithm II was that 38 Category 0 images were erroneously
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TABLE 2 | Five-fold cross-validation of the performance of the algorithms in the total dataset.

AUC
(95% CI)

Accuracy
(95% CI)

Specificity
(95% CI)

Sensitivity
(95% CI)

Algorithm I 0.995
(0.993, 0.996)

0.973
(0.969, 0.977)

0.981
(0.978, 0.985)

0.939
(0.933, 0.945)

Macro-AUC Accuracy
(95% CI)

Quadratic-weighted
kappa (95% CI)

Algorithm II 0.979
(0.972, 0.985)

0.967
(0.963, 0.971)

0.988
(0.986, 0.990)

Image classification ROI detection and lesion localization

Classification Accuracy
(95% CI)

Specificity
(95% CI)

Sensitivity
(95% CI)

Recall Precision F1-score

Algorithm III CNV 0.970
(0.966, 0.974)

0.970
(0.966, 0.974)

0.973
(0.969, 0.977)

0.916 0.789 0.848

Fuchs 0.971
(0.967, 0.975)

0.971
(0.967, 0.975)

0.978
(0.975, 0.982)

0.915 0.864 0.889

LC 0.994
(0.992, 0.995)

0.995
(0.993, 0.996)

0.684
(0.672, 0.695)

0.724 0.656 0.688

Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Precision
(95% CI)

Model-1 0.973
(0.969, 0.977)

0.939
(0.933, 0.945)

0.981
(0.978, 0.985)

0.926
(0.920, 0.933)

Model-2 0.984
(0.981, 0.987)

0.946
(0.941, 0.952)

0.992
(0.990, 0.995)

0.967
(0.963, 0.972)

classified as Category 1 images. Additionally, 23 Category 3
images were identified as Category 4 images. Typical misclassified
images are shown in Supplementary Figures 4A–E, and the
confusion matrices are given in Supplementary Figures 2C,D.

Visualization Heatmap Analysis
The original images of different MM categories were input into
algorithm II as exampled in Figure 4A. After generating a
fundus heatmap by the visualization layer, the regions where the
algorithm thought most critical for its choice were highlighted
in a color scale as shown in Figure 4B. Subsequently, the
senior retinal specialist checked the consistency of hot regions
highlighted by the algorithm and actual typical MM lesions,
including tessellated fundus, diffuse chorioretinal atrophy, patchy
chorioretinal atrophy, and macular atrophy. The results by
algorithm showed good alignment with the diagnosis by the
specialists. Of note, in ophthalmic practice, these lesions are
used to diagnose PM.

DISCUSSION

Based on retinal fundus images, the present work developed a
series of deep learning algorithms implementing three tasks: (1)
identify PM, (2) classify the category of MM, and (3) localize
the “Plus” lesions. After comparing two AI-models comprising
the three algorithms, we confirmed that the two-step AI-model
(model-2) showed better performance. Although there were

still gaps between the AI-models/algorithms and the retinal
specialists, metrics of our AI-models/algorithms at this stage
were comparable to the general ophthalmologists. Our work
was an exploratory and innovative effort to apply deep learning
technologies to the diagnosis and management of PM.

Recently, several automatic detection systems for PM have
been reported. Tan et al. (2009) introduced the PAMELA system,
which could automatically identify PM based on the peripapillary
atrophy features. Freire et al. (2020) reported their work of PM
diagnosis and detection of retinal structures and some lesions
which achieved satisfactory performance both in classification
and segmentation tasks. Devda and Eswari (2019) developed
a deep learning method with CNN for tasks of Pathologic
Myopia Challenge (PALM) based on the dataset provided by
International Symposium on Biomedical Imaging (ISBI). Their
works showed a better performance when compared to the
PAMELA system. However, both of these systems were developed
from public databases, such as the Singapore Cohort Study of the
Risk factors for Myopia and ISBI. The volumes of the training and
test datasets involved in the development process of these systems
have been relatively small. Moreover, authoritative criteria for
identifying PM were lacking in these studies.

In this work, a large dataset of 37,659 retinal fundus images
was used to develop the algorithms. The dataset from real
world was able to provide more original disease information
and data complexity than public databases. Nevertheless, one
major challenge for algorithms is the general applicability
to the data and hardware settings outside the development
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FIGURE 2 | Receiver operating characteristic (ROC) curves of Algorithm I and Algorithm II in five-fold cross-validation and external validation. (A) The ROC curve of
the algorithm I for identifying pathologic myopia in five-fold cross-validation. (B) The ROC curve of the algorithm II for classifying the category of MM in five-fold
cross-validation. (C) The ROC curve of the algorithm I for identifying pathologic myopia in external validation. (D) The ROC curve of the algorithm II for classifying the
category of MM in external validation. NPM: non-pathologic myopia. PM: pathologic myopia. area: area under the receiver operating characteristic curve. C:
Category.

site (Liu et al., 2019). One resolution is to maximize the
diversity of data sources so as to prevent parameter overfitting
and improve generalizability. For the present work, all the
training images were obtained from three hospitals in three
different provinces and captured by cameras from three different
manufacturers, respectively. Meanwhile, we also constructed
an external validation dataset including 1,000 fundus images
from the other three additional hospitals to further test our
algorithms and AI-models. As expected, the high diversity of
the data source lowered the performance of our algorithms
somewhat, but the results were still acceptable, with the accuracy
of 96.9%, sensitivity of 98.8%, and specificity of 94.6% for model-
2 especially, justifying the validity of our algorithms.

This study applied a systemic classification standard of META-
PM, which was widely applied in clinical trials and epidemiologic

studies. Unlike the criteria used in other studies, META-PM
classification is not only simpler but also has more clinical
implications. The category of MM can reflect the severity of
PM to a large extent, as the morphological and functional
characteristics of highly myopic eyes were found to be positively
correlated with MM category (from Category 0 to 3) (Zhao
et al., 2020). The “Plus” lesions can be concurrent with any MM
category and have a significant impact on vision (Wong et al.,
2015). Therefore, our algorithms and AI-models can assist the
clinicians with valuable and practical fundus information of PM.

There was a similar study that applied the META-PM
classification. Du et al. (2021) reported a META-PM categorizing
system (META-PM CS) integrating four DL algorithms and a
special processing layer. This system could recognize the fundus
images of Category 2 to 4 MM and CNV and detect PM
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FIGURE 3 | The comparison between deep learning algorithms/AI-models and experts on accuracy in external validation.

FIGURE 4 | Visualization of algorithm II for classifying the category of myopic maculopathy (MM). (A) The original images of different MM (Category 1–Category 4).
(B) Heatmap generated from deep features overlaid on the original images. The typical MM lesions were observed in the hot regions.

defined as having MM equal to or more serious than diffuse
atrophy (category 2). Compared with their system, our deep
learning algorithms are more powerful and can automatically
classify the category of MM and localize the “Plus” lesions
based on retinal fundus images. Our AI-model could obtain
the output of the algorithms mentioned above and use the
logical analysis module to analyze the results of algorithms
to determine whether the image was of PM. The core of the
logical analysis module was the more precise PM definition
(equal to or more serious than diffuse atrophy (category 2) or
with at least one of the “plus” lesions) based on the META-
PM classification.

In addition to the large training dataset and systemic META-
PM standard, the other advantage of our work is the CNN
architecture selected for development of algorithms and AI-
models. The ResNet18 was used as the basic architecture for all
the classification algorithms, and the Faster R-CNN+FPN was

used for the localization algorithm in our work. ResNet was
proposed in 2015 after three classical CNN networks, namely,
AlexNet, GoogLeNet, and VGG were established and had won the
top prize in the ImageNet competition classification task. ResNet
is arguably the most pioneering work in computer vision and
deep learning in the past few years, as it can effectively solve the
problem of accuracy saturation and decline while the network
depth increases by introducing a shortcut mechanism (He et al.,
2016; Zhu et al., 2019). Faster R-CNN is one of the most advanced
object detection networks, which can integrate the feature and
proposal extractions as well as the classification and bounding
box regression (Ren et al., 2017; Ding et al., 2020). FPN, a
densely connected feature pyramid network, can build high-level
semantic feature maps at all scales for object detection (Tayara
and Chong, 2018; Pan et al., 2019). With the same backbone
network, the FPN-based Faster R-CNN system is thought to be
superior to all existing single-model entries (Pan et al., 2019).
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Therefore, our algorithms and AI-models were based on the
advanced architectures and should be precise and efficient for
the PM detection.

The distribution of misclassifications by our algorithms was
also analyzed in the external validation dataset. The misclassified
images generated by algorithm I were mainly due to the
misjudgment of certain diseases that appeared less frequently
in training. Meanwhile, algorithm II made some errors in
distinguishing Category 3 and Category 4 MM. To minimize
the errors, increasing the images of specific diseases into the
training dataset and applying visual attention mechanisms to the
CNN architecture will always be an effective approach (Pesce
et al., 2019). Moreover, the visualization results demonstrated
that the typical MM lesions of each category appeared in the
regions where the algorithm made a positive contribution to
the classification results, so that our algorithm is justified to be
convincing from the clinical point of view. These results also
indicated the directions of optimization and updating for the
algorithms in our future’s work.

This study still has limitations. First, our algorithm had
the ability to automatically detect and localize “Plus” lesions,
but the performance metrics were slightly lower if compared
with that in the mission of MM classification, especially for
the LC detection. LCs vary greatly in shape, size, color, and
location. Combining with infrared reflectance or indocyanine
green angiography image is certainly the more effective method
to detect LCs than using the fundus images alone. However, the
fundus images are relatively easy and economical for clinical
practice in most medical institutes. At this stage, the “plus”
lesions appeared in less than 15% of images containing MM of all
severity in the total dataset. With the continuously accumulated
data by our work, the performance of the algorithm will be
further improved. Second, the presence of posterior staphyloma
is also defined as PM according to the META-PM classification
(Ohno-Matsui et al., 2016), but it is difficult to diagnose posterior
staphyloma accurately from fundus images; MRI or OCT images
are needed. Our algorithm does not yet have the capability
to detect or localize posterior staphyloma. A multimodal
imaging AI diagnostic platform involving fundus images, OCT,
optical coherence tomography angiography (OCTA), fluorescein
angiography, and MRI data is our ongoing effort to establish
a more powerful automatic system to identify PM lesions
(Ruiz-Medrano et al., 2019).

In conclusion, this study developed a series of deep learning
algorithms and AI-models that have the ability to automatically
identify PM, classify the category of MM, and localize the
“Plus” lesions based on retinal fundus images. They have

achieved performance comparable to that of experts. Due to such
promising performance at this stage, we initiated the task of
engineering relevant algorithms and hope that our research can
make more contributions to clinical and healthcare screening
work for myopia patients.
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