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Konstantinos Zeakis,2 Eirini Pantiora,3 Antonis Vezakis,3 George K. Matsopoulos,2 Georgios Fragulidis,3

and Leonidas G. Alexopoulos1,4,5,*

SUMMARY

Non-alcoholic fatty liver disease (NAFLD) is among themost common liver pathol-
ogies, however, none approved condition-specific therapy yet exists. The present
study introduces a drug repositioning (DR) approach that combines in vitro stea-
tosis models with a network-based computational platform, constructed upon
genomic data from diseased liver biopsies and compound-treated cell lines, to
propose effectively repositioned therapeutic compounds. The introduced in silico
approach screened 200000 compounds, while complementary in vitro and prote-
omic assays were developed to test the efficacy of the 46 in silico predictions.
This approach successfully identified six compounds, including the known anti-
steatogenic drugs resveratrol and sirolimus. In short, gallamine triethiotide,
diflorasone, fenoterol, and pralidoxime ameliorate steatosis similarly to resvera-
trol/sirolimus. The implementation holds great potential in reducing screening
time in the early drug discovery stages and in delivering promising compounds
for in vivo testing.

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is becoming one of the most common liver diseases in the world,

reaching a global occurrence of almost 25% (Younossi, 2019). NAFLD’|’s pathogenesis is considered

involving concurrent genetic, geographic, environmental, and clinical factors that manifest into a spectrum

of conditions, ranging from simple steatosis (lipid accumulation in the liver parenchyma) to non-alcoholic

steatohepatitis (NASH), fibrosis, and end-stage liver disease. This multi-factorial foundation is associated

with several metabolic disorders, including diabetes type-2 and the metabolic syndrome. NAFLD is also an

independent factor for cardiovascular disease (CVD) (Rinella et al., 2019).

Current treatment strategies are still limited to provisional changes in diet and lifestyle ("EASL–EASD–

EASO Clinical Practice, 2016), while the diagnosis and long-term therapy of chronic patients impose an

enormous economic burden (Younossi et al., 2018). Nevertheless, drug discovery is stepping up, with

several compounds now reaching clinical trials II and III (i.e. Obeticholic acid, resmetirom). However,

none has been yet approved by the European Medicines Agency (EMA) or the US Food Drug Administra-

tion (FDA) (Rau and Geier, 2021).

Recent experimental and computational approaches have paved the way to successful drug repositioning

(DR) and in turn, to minimize the cost, time, and risk of de novo drug discovery. For this purpose, DR iden-

tifies and assigns new medical roles to already approved drugs and compounds. Traditionally, experi-

mental DR (eDR) depends on blind experimental screening and inadvertent drug targets (Pushpakom

et al., 2019). However, the immense volume of publicly available experimental data has contributed to

computational DR (cDR) with an abundance of in silico methods. These methods offer a holistic approach

by utilizing large-scale drug or disease data to identify and compare either drugs’ mode of action, diseases’

pathways and networks, or both (Fotis et al., 2018; Jarada et al., 2020; Somolinos et al., 2021). The strategy

of comparing pathways and networks that present a hallmark for the disease of interest to those affected by

a compound has been successfully used for metabolic disorders (Fotis et al., 2018; Pushpakom et al., 2019)
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Thus far, in silico and in vitro approaches to DR for NAFLD and NASH are promising (Kashyap et al., 2019). On

the eDR front, Luo et al. (2018) utilized in vitromodels and a lengthy high-content screening pipeline to screen

the compound library LOPAC1280 (The Library of Pharmacologically Active Compounds, MilliporeSigma, MA,

USA), out of which only five were found to demonstrate some repositioning potential (Luo et al., 2018). Alter-

natively, Sookoian et al. (2019) employed a purely cDR strategy. The authors used publicly available tools and

data tomapNAFLD and chemical interaction networks, and proposed 149 target genes and compounds inter-

acting with these genes (Sookoian and Pirola, 2019). The lack of an eDR phase imposes the need for additional

trials to assess the anti-steatogenic effect, before concluding on the actual repositioning potential. To this end,

what remains ambiguous is how effectively cDR canbe combinedwith eDR, leading to repurposed compounds

that can be effectively translated into therapeutic interventions. To the best of our knowledge, no robust frame-

work combining cDR and eDR, paired with efficacy testing, for NAFL/NASH exists so far.

This paper introduces an integrated eDR and cDR framework aiming to identify compounds that interfere

with mechanisms of liver steatosis toward the amelioration of NAFL. The implemented approach was

based on the null hypothesis that if a compound can reverse a pathway that is significantly altered by a dis-

ease, it can also reverse the disease phenotype, hence the clinical outcome (Signature Reversion Principle)

(Iorio et al., 2015). The first part of the platform consists of the in silico selection of repurposing candidates

(cDR) based both on gene expression data from clinical human samples and cell-based in vitro data. The

selected compounds were subsequently validated with in vitro assays (eDR), minimizing the overall

screening time and increasing hit rate, while broadening the pool of compounds. In detail, gene expression

data from patients with NAFL/NASH were obtained from GEO (NCBI) (Edgar et al., 2002) and drug repos-

itories. Second, by combining signature matching and pathway mapping, networks significantly deregu-

lated in NAFL/NASH were identified. These were then compared to networks of approved drugs and

investigational compounds, and of compounds used on designed in vitro steatosis models, to reveal com-

pounds that could interfere with NAFLD’s pathogenesis. Finally, the discovered compounds’ efficacy was

validated in vitro via high-content phenotype screening and proteomic assays.

Out of approximately 200000 approved and investigational compounds included in the cMap database,

cDR screening pinpointed 46 candidates and 21 were moved onto the in vitro testing. Out of these, six

were found to significantly improve the steatotic phenotype included resveratrol (already been in clinical

trials for NAFLD) (Berman et al., 2017; Tejada et al., 2021) and sirolimus (already proven effective in vitro

and in vivo) (Li et al., 2014; Wang, 2010). In addition, proteomic experiments revealed similarities in the

compounds’ mode of action, thus introducing the possibility for novel therapeutic interventions.

RESULTS

Known steatogens induce steatosis in vitro

Four hepatic cell lines (HepG2, HuH7, Hep3B, and FOCUS) were treated with a mixture of free fatty acids

(FFAs; oleic acid:palmitic acid) and the known steatogenic compounds: valproic acid sodium salt (VPA)

(Rodrigues, 2016; Szalowska, 2014; Verrotti, 2009), amiodarone hydrochloride (AMI) (Antherieu, 2011; Sza-

lowska, 2014), tamoxifen citrate (TMX) (Cole, 2010; Yang, 2016; Zhao, 2014), and tetracycline hydrochlo-

ride (TET) (Choi, 2015; Szalowska, 2014). Concentrations lower than IC10 were used, so to avoid cytotoxic

effects, the IC10 concentrations were extrapolated from cell-line- and compound-specific dose-viability

curves (Figure S1). Intracellular lipid loading was quantified as the intensity of lipid droplets per cell (in-

tensity of nucleus), after Nile Red and Hoechst33342 staining, via MATLAB-based image analysis. Reactive

oxygen species (ROS) production was expressed in relative fluorescent units (RFU) per ug of protein. In

both, the fold-change (FC) of treated-over-control samples was calculated where the compound’s diluent

was used as control. The results for the HepG2 cells are shown in Figure 1 for the HuH7, Hep3B, and

FOCUS cells in Figures S2, S3, and S4, respectively. Briefly, all treatments led to a significant increase

in both intracellular lipid droplet formation and ROS production across all the cell lines, except for

TMX on HuH7 cells, thus recapitulating the steatotic phenotype. The steatogens’ targets and pathways

affected were identified through DrugBank and MSigDB databases forming the ‘‘steatogenic com-

pounds’ pathways’’.

Significantly deregulated pathways in NAFL and NASH via GLS and GSA analysis on clinical

data

For each dataset selected (Table 1), gene-level statistics (GLS) via the limma package (Ritchie et al., 2015)

revealed the statistically significant differentially expressed genes (DE-Gs) in the ‘‘NAFL’’ and ‘‘NASH’’
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states against the ‘‘Healthy’’ control state. The results were input for the gene set analysis PIANO package

(Väremo et al., 2013). The analysis produced significantly affected pathways in ‘‘NAFL’’ and ‘‘NASH’’ and

divided them into five classes, according to their expression trend (Figure 2). The significantly affected

pathways formed the group of ‘‘clinical data pathways’’.

Identification of pathways affected by known steatogenic compounds

The known steatogens, used in vitro, were integrated into the platform in a two-step manner. Firstly, they

were input to the DrugBank (Wishart et al., 2006) and the GSEA-MSigDB (Liberzon et al., 2015) databases to

A

B C

Figure 1. Formation of intracellular lipid droplets and increase of ROS production in HepG2 cells, after treatment with FFA, VPA, AMI, TMX, and

TET

(A) Intracellular lipid accumulation observed via HCS-based fluorescent microscopy with Nile Red staining. Hoechst33342 was used for staining the nuclei.

Images were acquired under 203 optical magnification.

(B) Quantification of lipid accumulation via MATLAB-based image analysis. Bars represent the FC of lipid droplet intensity per cell in treated cells over

respective controls. (C) FC of intracellular ROS production compared to controls. H2O2 was used as a positive control. (B, C) Data expressed as meanGSEM

of n=3 independent experiments, and the p value is denoted by brackets.
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identify their targets and the pathways affected, forming the ‘‘steatogenic compounds’’ pathways group.

The intersection between this group and that of the ‘‘clinical data pathways’’ is shown in Table S1. The

known steatogens were introduced to the Connectivity Map (cMap) (Broad Institute) (Lamb, 2006; Subra-

manian et al., 2017) to identify FDA-approved compounds with similar or opposite gene signature (reposi-

tioned compounds). The DrugBank and MSigDB databases were again used to identify the pathways that

these repositioned compounds affect, to form a group of ‘‘DR compounds’ pathways’’ (Tables S2–S10).

Eleven (11) pathways-to-target and 46 compounds were identified based on network

similarity between the clinical and in vitro data

The comparison between the ‘‘clinical data pathways’’ and the pathways targeted by the steatogenic com-

pounds used in vitro, or the ‘‘steatogenic compounds’ pathways’’, revealed 11 significant deregulated

pathways in NAFL/NASH, hence the pathways-to-target (Figure 3). Namely, these pathways were the

nuclear receptors pathway (BIOCARTA, M16393), the endocytosis pathway (KEGG, ko04144), the PPAR-

signaling pathway (KEGG, HSA-03320), the fatty acid metabolism pathway (KEGG, map01212), the acti-

vator protein-1 pathway (PID, M167), the activating transcription factor 2 pathway (PID, M166), the NFAT

transcription factor pathway (PID, M60), the fatty acid triacylglycerol and ketone body metabolism pathway

(REACTOME, R-HSA-188467), the metabolism of amino acids and derivatives pathway (REACTOME, R-

HSA-71291), and the metabolism of lipids and lipoproteins pathway (REACTOME, R-HSA-556833) (Fabre-

gat et al., 2018; Jassal et al., 2020; Kanehisa and Goto, 2000; Mootha et al., 2003; Nishimura, 2004; Schaefer

et al., 2009). For both datasets, volcano plots, provided in Figure S5, depict the DE-Gs in the identified

pathways-to-target.

Approximately 200000 approved and experimental compounds were screened in silico for their ability to

affect the aforementioned pathways. Forty-six (46) compounds were found to interfere with both the

‘‘DR compounds’ pathways’’ and the identified pathways-to-target and were therefore proposed as prom-

ising for the treatment of hepatic steatosis. Figure 3B illustrates the repositioned compounds, as well as the

genes and pathways affected by these compounds.

Experimental validation of candidate compounds resulting from in silico selection revealed

six with anti-steatotic effect

The 46 candidate compounds were reviewed on the ToxDB and the LiverTox databases. Twenty-five (25)

were documented to be hepatotoxic or to induce steatosis in vitro or in vivo and were, thus, eliminated.

The remaining 21 moved onto screening to investigate their capacity to reduce steatosis and oxidative

stress in vitro. Those were acepromazine, cefmetazole, clomifene, diflorasone, estradiol, estrone sulfate,

fenoterol, fusidic acid, gallamine triethiotide, ivermectin, mefloquine, naftifine, pimozide, pralidoxime,

quinacrine, raloxifene, resveratrol, rimexolone, sirolimus (or Rapamycin), and timolol.

High-content screening of the 21 compounds was performed on HepG2 cells. Verified compounds would

demonstrate the capacity to reduce intracellular lipid accumulation and ROS production in steatotic cell

cultures. Pimozide (PIM), clomifene (CLO), andmefloquine (MEF) led to a significant increase (p value<0.05)

in the cells’ intracellular lipid loading and ROS production (Figure S6). Conversely, HepG2 cells, co-treated

with FFAs 200uM and either sirolimus (SIR), resveratrol (RES), diflorasone (DIF), fenoterol (FEN), pralidoxime

(PRA), or gallamine triethiotide (GAL) were found to effectively ameliorate the steatotic phenotype at

10uM, while none reduced cell viability below 80%. In detail, all six co-treatments led to a significant (p

value<0.05) reduction in lipid loading and oxidative stress, when compared to the FFA-treated control

Table 1. Datasets of microarray gene expression profiling from patients with biopsy-proven NAFLD/NASH and

healthy individuals obtained from GEO (NCBI)

GEO series

accession Contributors

Number of

control samples

Number of

diseased samples

Pathological

phenotype of NAFL

GSE63067 Frades I et al.

(Frades et al., 2015)

7 11 NASH, Steatosis

GSE89632 Arendt et al.

(Arendt et al., 2015)

24 39 NASH, Steatosis
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Figure 2. Gene levels statistics (GLS) and gene set analysis (GSA) from microarray gene expression datasets denoting the 15 most statistically

significant differentially expressed genes and the differentially altered pathways

The degree of differential gene expression was calculated for each sample as the logarithm of the fold-change (FC) of expression values in the diseased

stages (test) over the healthy state (control). A student’s t-test was used for statistical evaluation. For graphically representing these data, log2 FC and p value

for each gene was plotted in volcano plots. Each point on the plot corresponds to a gene, while the y axis represents the negative decimal log of p� value

and the x axis represents log2 FC. The greater the difference of the gene on the vertical axis compared to the control group, the more statistically significant

the differential expression, and the farther from zero on the horizontal axis, the greater the intensity. jlog 2 FCj>1 and p-value% 0.05 are used as the limits for

the differential expression of a gene. Results of GLS are presented in heatmaps. Nine different statistical methods were utilized to identify the prevalent

expression trend within a pathway. Based on their prevalent trend and p value, pathways were classified and ranked into five groups, namely ‘‘distinct up’’,

‘‘mixed up’’, ‘‘non-directional’’, ‘‘mixed down’’, and ‘‘distinct down’’ according to their given ‘‘-value’’ Each column represents one of the clusters. Each row

corresponds to a pathway. Color scale denotes statistical significance (-log10(p-value)).
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(Figure 4). Equally important, lipid loading and oxidative stress were not significantly increased in cells

treated solely with the six DR compounds (Figure S7).

Signaling-based clustering reveals the anti-steatotic efficacy of repositioned compounds

The measurements on the phospho-protein and cytokine-release levels are summarized in Figures 5A and

S9–S20. All compounds were investigated for their shared motifs at the protein signaling level. Principal

A

B

Figure 3. Network representation of the identification process and resulting repurposed compounds, as

proposed by the DR platform

(A) Schematic representation of the repurposed compounds identification process.

(B) The target pathways depicted in blue in the center of the graph belong at the intersection of the ‘‘Clinical Data

Pathway Group’’ and ‘‘Steatogenic Compounds Pathway Group’’. The differentially expressed genes (DE-Gs) and the

pathways affected by each compound are illustrated in gray circles. Each steatosis-inducing compound was used as a

‘‘signature question’’ to cMap. The cMap tool compares two-sample distributions using the Kolmogorov-Smirnov (K-S)

statistical test and calculates an Enrichment Score that takes values in the interval [-1,1]. ES > 0 signifies that two drugs

present similar gene signature, while ES < 0 means that two drugs have reverse gene signatures. The steatosis-inducing

compounds are depicted in rectangles of different colors. Every steatosis-inducing compound drugs with ES > 0 or ES <

0 is illustrated with rectangles of the same color scale. Lines connect each compound and drug with their target genes and

the pathways they affect.
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component analysis (PCA) on the whole of the experimental data, followed by k-means clustering

(Figure 5B), revealed 4 clusters distinguished by their anti-steatogenic mode of action. All of the negative

controls (DMEM, ETOH 1%, ETOH 1%, and DMSO 0.1%) were appropriately clustered together (‘‘negative

control’’ cluster). All FFA-treated samples (FFA 200uM, FFA 200uM, and DMSO 0.1%) were grouped into a

second, ‘‘steatosis’’ cluster. Sole administration of DIF, GAL, PRA, and FEN fell into a third distinct cluster.

Importantly, all the rest of the DR co-treatments, except for DIF, were grouped with SIR + FFAs, as well as

A B

C

Figure 4. Reduction of intracellular lipid accumulation and ROS production in HepG2 cells, after treatment with the repositioned compounds

(A) Intracellular lipid accumulation observed via HCS-based fluorescent microscopy with Nile Red staining. Hoechst33342 was used for staining the nuclei.

Images were acquired under 203 optical magnification.

(B) Quantification of lipid accumulation via MATLAB-based image analysis. Bars represent the FC of lipid droplet intensity per cell in treated cells over

respective controls.

(C) FC of intracellular ROS production compared to controls. H2O2 was used as a positive control. (B, C) Data expressed as meanGSEM of n=3 independent

experiments, and the p value is denoted by brackets.
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RSV + FFAs; the DR compounds that have been already proven effective in vitro or in vivo for the treatment

of NAFL. The DIF + FFAs co-treatment failed to cluster with the DR candidates and was clustered into the

steatosis cluster.

DISCUSSION

In this work, a compound-selection framework for NAFL/NASH has been developed to capitalize on the

effective combination of in silico speed and in vitro efficacy validation. Applied to the set of 200000 com-

pounds comprising the cMap database, this approach successfully selected two compounds with docu-

mented efficacy and revealed 19 new and two known compounds with anti-steatogenic potential. Several

of the novel predictions were experimentally confirmed using high-throughput bioassays and in vitro stea-

tosis models, and demonstrated the framework’s efficiency in discovering anti-steatogenic compounds for

the amelioration of NAFL.

In contrast to other cDR methods, the proposed in silico selection of compounds was integrated with ex-

isting in vitro models, hence directed toward compounds that could be validated in vitro. For that, the

A B

Figure 5. Proteomic profiling of the effect of the compounds

(A) Heatmap of the normalized fold change of phosphorylated proteins and secreted cytokines compared to controls. Each column corresponds to a protein

and each row to a cell treatment. Data in each column were fraction-normalized to [0–1] scale for better representation. The color scale represents the value

of normalized fold change compared to the control. See also Figures S9–S20.

(B) PCA and k-means clustering was performed on proteomic, lipid accumulation, and intracellular ROS production data. The axes denote the first two

principal components and the percentage of variability they contribute. k-means was used to deduce the clusters of the resulting profile of the compound

treatment. The four different clusters formed are denoted with different colors and were named after the majority of treatments included. The solid arrow

represents the transition from control to steatosis state, whereas the dashed arrow represents the transition from steatosis to an amelioration of steatosis

state.

ll
OPEN ACCESS

8 iScience 25, 103890, March 18, 2022

iScience
Article



differential gene expression between healthy andNAFL/NASH samples was compared to the gene expres-

sion profile of compounds used for in vitro steatosis models. Just as important, on the eDR front, the devel-

opment of in vitromodels and their incorporation in the in silico analysis allowed for the development of a

high-throughput drug-screening setup for the validation and efficacy testing of the computational predic-

tions, reaching a very high in vitro screening hit rate of 28.5% (out of the 21 screened compounds, six

showed positive anti-steatotic results).

For the experimental drug-screening pipeline, four hepatic cell lines were treated with known in vitro and

in vivo steatogens to create in vitro steatosis models and successfully recapitulated the steatotic pheno-

type. Consistent with previous in vitro studies (15–23), all the compounds were found to increase intracel-

lular lipid accumulation and oxidative stress across all cell lines except HuH7.

Pathways affected by 200000 FDA-approved and investigational compounds, included in the cMap database,

were then compared to the pathways identified in silico from clinical and in vitro data. Therefore, the cDR plat-

form identified pathways significantly affected both in patients withNAFL/NASHand in the in vitromodels and

suggested 46 compounds as capable of interfering with the disease’s pathways. Out of these, 25 were elimi-

nated from further analysis as known hepatotoxic, while the remaining were examined for their capacity in

reducing the intracellular lipid accumulation and oxidative stress with a high-content screening setup.

Six (6) compounds (sirolimus, resveratrol, gallamine triethiotide, fenoterol, pralidoxime, and diflorasone)

out of the 21 screened in vitro succeeded in effectively ameliorating the steatotic phenotype in vitro (Fig-

ure S8). In all co-treatments with FFAs and the identified compounds, cells showed reduced oxidative stress

and lipid loading, not at the expense of cell viability. Specifically, on sirolimus and resveratrol, the platform

succeeded in confirming the documented in vitro and in vivo anti-steatogenic effects (Ali et al., 2015; Ber-

man et al., 2017; Bujanda et al., 2008; Charytoniuk et al., 2017; Wang et al., 2014; Wang, 2010). As the in

silico analysis was non-directional, it also identified compounds that induce or deteriorate steatosis

in vitro. In detail, pimozide, clomifene, and mefloquine underwent a verification process but were found

to aggravate steatosis in vitro. Nonetheless, as all tests were performed at a compound concentration

of 10uM; further investigation is required toward an optimal, compound-specific concentration.

Proteomic profiling with a diverse panel of phosphorylated proteins and secreted cytokines was performed

to deduce the compounds’ signaling motifs. PCA and k-means clustering led to the formation of four clus-

ters, named ‘‘Negative control’’, ‘‘FFA induction’’, ‘‘Steatosis reduction’’, and ‘‘Repositioned compounds’’

after the majority of treatments that comprised each of them. Firstly, this clustering revealed a distinct dif-

ference between all of the negative control samples (DMEM, etOH 1%, etOH 1%, & DMSO 0.1%) and the

FFA-treated samples, underlining that the variables of the analysis were able to distinguish between the

healthy and the steatotic phenotype, based on their respective signalingmode of action. Most importantly,

all co-treatments with the repositioned compounds, except for DIF, were found in the same cluster with the

SIR + FFAs and RSV + FFAs, thus highlighting GAL’s, FEN’s, and PRA’s potential in ameliorating in vitro

steatosis at the pathway level. Regarding DIF, when used in co-treatment with FFAs, it is clustered together

with the FFA-treated controls, a finding that comes into conflict with DIF’s observed capacity to lower lipid

loading and oxidative stress. DIF’s variability in the proteomic measurements is the primary reason for the

misclassification, suggesting either a different mode of action than the one captured with the used prote-

omic panel, or a dose that was insufficient to reverse steatosis at the pathway level. The fourth cluster con-

sisted of samples treated with the repositioned compounds alone, except for RSV and SIR that cluster with

the anti-steatosis group, suggesting a high impact of RSV’s and SIR’s mode of action on this cluster. This

impact can be attributed to the effect of these drugs on the proteins selected in the multiplex panel.

Besides its limitations, this paper is contributing to the integration of an in silico and an in vitro screening

pipeline for DR and acknowledges that additional experiments are needed to decipher the compounds’

mode of action and anti-steatogenic effect.

In conclusion, this framework allows for the evaluation of a great number of compounds, at the early stages

of drug discovery, by combining the large compound-examination capacity, offered by the in silicomodels,

with the rigor of the in vitro validation. The attempted implementation actively saves up screening time, as

several candidates were eliminated in silico, long before their verification in vitro. Albeit the gap between

in vitro validation and clinical efficacy, the proposed framework enables the exploration of the large
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chemical space and delivers promising compounds for subsequent in vivo efficacy studies. This strategy

provides a basis for evaluating the repositioning potential of widely used drugs, even beyond NAFL, and,

as such, the illustrated framework holds significant potential in assisting the treatment of several diseases.

Limitations of the study

The present study comes with certain limitations. The use of 2D in vitro models, although sufficient for

screening, cannot recapitulate the complexity of human NAFLD pathophysiology (Müller and Sturla,

2019). Limitations imposed by the simplified 2-dimensional steatosis models can be surpassed with addi-

tional in vivo and in vitro studies in relevant 3D liver models or other animal NAFLD models.
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Cytokines bead mix Proatonce Ltd. PR-CU060-BM-20

Cytokines Detection mix Proatonce Ltd. PR-CU060-DM-20

Phosphorylated proteins Coupled bead mix Proatonce Ltd. PR-CU060-BM-17

Phosphorylated proteins Detection mix Proatonce Ltd. PR-CU060-DM-17

SAPE Proatonce Ltd. PR-SAPE

Chemicals, peptides, and recombinant proteins

Oleic acid Cayman Chemical 90260

Palmitic acid Cayman Chemical 10006627

Valproic acid sodium salt Cayman Chemical 13033

Tetracycline hydrochloride Cayman Chemical 14328

Amiodarine hydrochloride Cayman Chemical 15213

Tamoxifen citrate Cayman Chemical 11629

Timolol maleate Cayman Chemical 13974

Fenoterol hydrochloride Cayman Chemical 21293

Naftifine hydrochloride Cayman Chemical 19234

Pimozide Cayman Chemical 16222

Acepromazine maleate MilliporeSigma LOPAC�1280, LO4200-1EA

Cefmetazole sodium salt MilliporeSigma LOPAC�1280, LO4200-1EA

Clomiphene citrate TargetMol T1193

Diflorasone diacetate Cayman Chemical 23808

Estradiol MilliporeSigma LOPAC�1280, LO4200-1EA

Estrone sulfate MilliporeSigma LOPAC�1280, LO4200-1EA

Fusidic acid sodium salt MilliporeSigma LOPAC�1280, LO4200-1EA

Gallamine triethiotide MP Biomedicals 0521278880

Ivermectin MilliporeSigma LOPAC�1280, LO4200-1EA

Mefloquine hydrochloride Cayman Chemical 23665

Pralidoxime chloride TargetMol T1111

Quinacrine dihydrochloride MilliporeSigma LOPAC�1280, LO4200-1EA

Raloxifene hydrochloride MilliporeSigma LOPAC�1280, LO4200-1EA

Resveratrol TargetMol T1558

Sirolimus (rapamycin) MilliporeSigma 37095

Bovine Serum Albumin MilliporeSigma A7638

Dulbecco0s Modified Eagle0s Medium (DMEM) Biosera LM-D1113

Fetal Bovine Serum (FBS) Biosera FB-1001

Penicilin-Streptomycin solution Biosera XC-A4122

Ethanol MilliporeSigma 1009835000

DMSO MP Biomedicals 11DMSO0001

Hoechst 33342 Thermo Fisher Scientific H3570

Nile Red Thermo Fisher Scientific N1142
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

CM-H2DCFDA Thermo Fisher Scientific C6827

Resazurin sodium salt MilliporeSigma R7017

PMSF (Phenylmethylsulfonyl fluoride) MilliporeSigma P7626

Protease Inhibitors Proatonce Ltd. PR-PI

Lysis Buffer Proatonce Ltd. PR-LYSB

Critical commercial assays

Pierce� BCA Protein Assay Kit Thermo Fisher Scientific 23227

Deposited data

Expression data from human

non-alcoholic fatty liver disease stages

https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi

GSE63067

Genome-wide analysis of hepatic

gene expression in patients with

non-alcoholic fatty liver disease and

in healthy donors in relation to

hepatic fatty acid composition

and other nutritional factors

https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi

GSE89632

L1000 Connectivity Map perturbational

profiles from Broad Institute LINCS Center

for Transcriptomics LINCS Pilot PHASE I

https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE92742

GSE92742

Molecular Signatures Database http://www.gsea-msigdb.org/

gsea/msigdb/index.jsp

MSigDB

Toxicogenomics Database http://toxdb.molgen.mpg.de/ ToxDB

LiverTox https://www.ncbi.nlm.nih.gov/

books/NBK547852/

LiverTox

Experimental models: cell lines

HepG2 ATCC� HB-8065

HuH7 A kind gift from J. Wands

(Brown University)

Hep3B ATCC� HB-8064

FOCUS A kind gift from J. Wands

(Brown University)

Software and algorithms

R Programming language v3.4 Bell Laboratories https://www.r-project.org/

MATLAB R2017A Mathworks https://www.mathworks.com/products/matlab.html

ConnectivityMap Broad Institute L1000 (https://clue.io/cmap#access)

Image analysis code https://github.com/BioSysLab/

NAFLD_computational_analysis

� https://github.com/BioSysLab/NAFLD_computational_
analysis/blob/main/final_program_
counting_cores_and_lipids.m

� https://github.com/BioSysLab/NAFLD_computational_
analysis/blob/main/pre_process1.m

� https://github.com/BioSysLab/NAFLD_computational_
analysis/blob/main/createCirclesMask.m

Computational drug repositioning code https://github.com/BioSysLab/

NAFLD_computational_analysis

� https://github.com/BioSysLab/NAFLD_computational_
analysis/blob/main/gsea_path_analysis_pipeline.R

�https://github.com/BioSysLab/NAFLD_computational_
analysis/blob/main/gene_expression_fig2.R
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Leonidas G. Alexopoulos (leo@mail.ntua.gr).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d The original image analysis code generated during this study are available at:

https://github.com/BioSysLab/NAFLD_computational_analysis/blob/main/final_program_counting_cores_

and_lipids.m

https://github.com/BioSysLab/NAFLD_computational_analysis/blob/main/pre_process1.m

https://github.com/BioSysLab/NAFLD_computational_analysis/blob/main/createCirclesMask.m

d The code generated for the computational drug repositioning is available at:

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Statistical analysis code https://github.com/BioSysLab/

NAFLD_computational_analysis

� https://github.com/BioSysLab/NAFLD_computational_
analysis/blob/main/tukey_final_imaging.R

� https://github.com/BioSysLab/NAFLD_computational_
analysis/blob/main/tukey_final_ROS_DRsteat.R

� https://github.com/BioSysLab/NAFLD_computational_
analysis/blob/main/proteomics.R

� https://github.com/BioSysLab/NAFLD_computational_
analysis/blob/main/PCA.R

Other

Human liver biopsy of different

phases from control to NASH

https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE48452

GSE48452

Expression data from human

non-alcoholic fatty liver disease stages

https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi

GSE63067

Genome-wide analysis of long noncoding

RNA expression profile in non-alcoholic

fatty liver disease

https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi

GSE72756

Genome-wide analysis of hepatic gene

expression in patients with non-alcoholic

fatty liver disease and in healthy donors in

relation to hepatic fatty acid composition

and other nutritional factors

https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi

GSE89632

L1000 Connectivity Map perturbational

profiles from Broad Institute LINCS

Center for Transcriptomics LINCS

Pilot PHASE I

https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE92742

GSE92742

Molecular Signatures Database http://www.gsea-msigdb.org/

gsea/msigdb/index.jsp

MSigDB

Toxicogenomics Database http://toxdb.molgen.mpg.de/ ToxDB

LiverTox https://www.ncbi.nlm.nih.gov/

books/NBK547852/

LiverTox
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https://github.com/BioSysLab/NAFLD_computational_analysis/blob/main/gsea_path_analysis_pipeline.R

https://github.com/BioSysLab/NAFLD_computational_analysis/blob/main/gene_expression_fig2.R

d The code generated for the statistical analysis of the experimental results is available at:

https://github.com/BioSysLab/NAFLD_computational_analysis/blob/main/tukey_final_imaging.R

https://github.com/BioSysLab/NAFLD_computational_analysis/blob/main/tukey_final_ROS_DRsteat.R

https://github.com/BioSysLab/NAFLD_computational_analysis/blob/main/proteomics.R

https://github.com/BioSysLab/NAFLD_computational_analysis/blob/main/PCA.R

EXPERIMENTAL MODELS DETAILS

Four hepatic cell lines, HUH7, HepG2, Hep3B and FOCUS, were cultured in Dulbecco0s Modified Eagle0s
High Glucose Medium (DMEM) (Biosera, Nuaille, France) supplemented with 10% v/v Fetal Bovine Serum

(FBS) (Biosera, Nuaille, France) and 1% v/v Penicillin-Streptomycin solution (Penicillin: 10’000 units/mL;

Streptomycin: 10’000 ug/mL) (Biosera, Nuaille, France), at a 37�C, 5% CO2 humidified incubator. For

drug treatment, compounds were diluted in serum-free medium without phenol red (Thermo Fisher Scien-

tific, MA, USA) at either 0.1%v.v DMSO or 1% v/v etOH.

METHODS DETAILS

In vitro steatosis induction

Before treatment, the cells were seeded onto black flat-bottomed 96-well plates for 24 h at the correspond-

ing densities: HUH7: 15’000 cells/well, HepG2: 20’000 cells/well, Hep3B: 15’000 cells/well, FOCUS: 10’000

cells/well in serum-free medium.

Cells were treated for 24h in serum-free medium with known steatogenic compounds. Namely, free fatty

acids (FFAs; oleic acid:palmitic acid) (Cayman Chemical, MI, USA), Valproic acid sodium salt (VPA) (Cayman

Chemical, MI, USA), Amiodarone hydrochloride (AMI) (Cayman Chemical, MI, USA), Tamoxifen citrate

(TMX) (Cayman Chemical, MI, USA) and Tetracycline hydrochloride (TET) (Cayman Chemical, MI, USA)

were evaluated as known steatogens. Oleic acid (OA), palmitic acid (PA), and VPA were diluted in 100%

ethanol (etOH) at 1% v/v final (% in cell culture medium) concentration. TMX, AMI and TET were diluted

in DMSO at 0.1% v/v final concentration. Exogenous FFAs (molar ratio OA:PA = 2:1) were conjugated

with Bovine Serum Albumin (BSA) (MilliporeSigma, MA, USA) at a molar ratio of FFAs:BSA = 4:1.

Verification of lipid droplet accumulation via high-content screening (HCS)

Lipid droplets were fluorescently stained with Nile Red (Thermo Fisher Scientific, MA, USA) and cell nuclei

were counterstained with Hoechst 33342 (Thermo Fisher Scientific, MA, USA). The culture medium was first

aspirated and the cells were rinsed three times with Phosphate-buffered Saline (PBS) buffer (Biosera,

Nuaille, France). Nile Red and Hoechst 33342 were diluted in Phenol-Red-free culture medium at 4ug/

mL and 5ug/mL final concentrations respectively. Thirty (30) uL of the imaging medium were added into

each well and plates were then incubated for 45min at 37�C. Images were acquired automatically using

JuLI� Stage Real-Time CHR (NanoEnek, Seoul, Korea) with a 20x objective lens of a high-sensitivity mono-

chrome CCD camera (Sony sensor 2/3") at room temperature.

Image analysis

Lipid accumulation was computationally quantified with image analysis, given the images obtained with

HCS. Five images were acquired per well and all experiments were performed in technical and experi-

mental replicates, hence a minimum of 50 images were analysed per treatment. An image analysis pipeline

was created in MATLAB (v.2018a, Mathworks, USA). In short, multi-channel images were divided into the

corresponding channels and converted into a binary format through a number of filters. Object sharpening

and background elimination led to the identification and labelling of cell boundaries, nuclei and lipid drop-

lets (Methods S1). For the output, the number of nuclei and the number of lipid droplets and droplet area

were extracted.
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Quantification of oxidative stress

Reactive oxygen species (ROS) were quantified with the CM-H2DCFDA fluorescent substrate (Thermo

Fisher Scientific, MA, USA). Cells, treated with 100uM of H2O2 for 30 min, were used as a positive control.

CM-H2DCFDA was diluted in Phenol-Red-free and sodium-pyruvate-free culture medium at 10uM final

concentration (Thermo Fisher Scientific, MA, USA). Thirty (30) uL of the staining solution were added per

well. The plates were then incubated for 45 min at 37�C. After incubation, fluorescence was measured at

Ex495 nm/Em520 nm and normalized per ug of protein. The total protein concentration was deduced using

BCATM assay (Thermo Fisher Scientific, MA, USA) for each sample. CM-H2DCFDA fluorescence and BCA

absorbance were quantified with the VarioskanTM LUX multi-mode microplate reader (Thermo Fisher Sci-

entific, MA, USA).

Resazurin reduction cell viability assay

Cell viability was quantified with Resazurin (MilliporeSigma, MA, USA). The Resazurin solution was added to

the cell culture medium at a final concentration of 10ug/mL. The plates were then incubated for 2 hours at

37�C. Fluorescence wasmeasured at Ex560 nm/Em590 nm, in Relative Fluorescent Units (RFU), with the Var-

ioskanTM LUXmulti-modemicroplate reader (Thermo Fisher Scientific, MA, USA). The sample’s viability was

approximated as a percentage of treated over untreated cells. The experimental data were then fitted onto

a 4-parameter logistic regression model in GraphPad Prism 9.0. IC10 values were extrapolated.

Identification of ‘‘clinical data pathways’’

Datasets of microarray gene expression profiling, derived from biopsied NAFLD/NASH patients and

healthy individuals, were obtained from the GEO (NCBI) database (Edgar et al., 2002). To assure robust-

ness, only datasets with a sufficient number of samples and differentially expressed genes (DEGs) were

selected, based on their degree of differential expression. The degree of differential expression was calcu-

lated for each sample as the logarithm of the fold-change (FC) of expression values in the diseased condi-

tion (test) over the healthy condition (control). A student’s t-test was used for statistical evaluation. Next,

each of the selected datasets was subjected to gene-level statistics (GLS), followed by pathway analysis

(Gene Set Analysis; GSA). For the pathway analysis of clinical and compounds’ data BIOCARTA (Nishimura,

2004), Protein Interaction Database (PID) (Schaefer et al., 2009), KEGG (Kanehisa and Goto, 2000; Mootha

et al., 2003) and REACTOME (Fabregat et al., 2018; Jassal et al., 2020) databases were used as a

knowledgebase.

GLS calculated the degree of differential expression for each gene via R Bioconductor’s LIMMA (Linear

Models for Micro-array and RNA-seq Data) package (Ritchie et al., 2015). For each dataset, samples

were divided into three clusters according to their health status (Healthy, NAFL or NASH). For every

gene in a dataset, a linear model was generated in order to quantify the degree of differential expression.

To eliminate false positives, hierarchical models were used to describe the coefficients of variation and to

express variation as a function of the genes. The "Healthy" cluster was compared to both "NAFL" and

"NASH". Finally, through the empirical Bayes methods, the B-value hyperparameter and a moderated t-

statistic were calculated.

GSA (or pathway analysis) identifies significantly affected pathways. The analysis was performed with R Bio-

conductor’s PIANO (Platform for Integrative Analysis of Omics Data) package under a functional class-

scoring method (FCS) (Mathur et al., 2018; Väremo et al., 2013). Genesets, provided by MSigDB, and

GLS output underwent pathway analysis. For that, nine different statistical methods were utilized to identify

the prevalent expression trend within a pathway (Methods S2). Pathways were classified and ranked into

five groups based on the gene expression trend and p-value within a pathway, namely "distinct up",

"mixed up", "non-directional", "mixed down" and "distinct down" according to their given p-value

(Methods S3). Those with low p-values were considered to be the most significant in terms of differential

expression. Taken together, they formed a group of "clinical data pathways". Notably, both NAFLD and

NASH states were evaluated to establish the pathways involved in the critical progression from simple stea-

tosis to steatohepatitis.

Identification of "steatogenic compounds’ pathways"

The compounds’ used to induce steatosis in vitro were interrogated against the DrugBank (Wishart et al.,

2006) and MSigDB (Liberzon et al., 2015) databases. The compounds were used as input to DrugBank, from
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which, target genes and genes of relative enzymes, transporter, and carrier proteins were pooled. This set

of genes was then fed to MSigDB to retrieve the pathways they belong to. The output forms the "steato-

genic compounds’ pathways" group.

Identification of "DR compounds’ pathways"

The known steatogens were input to the Connectivity Map (cMap) database (Broad Institute) (Lamb, 2006;

Subramanian et al., 2017). cMap compares differences in gene expression levels, termed "signatures", be-

tween a disease, genetic perturbation or treatment with a small molecule ("signature questions"), to all

perturbational signatures available. The similarity comparisons are evaluated through the Kolmogorov-

Smirnov (K-S) test (Kim and Volsky, 2005), where an Enrichment Score (ES) is calculated within the [-1,1] in-

terval. Positive values of the ES correspond to similar signatures, while negative correspond to opposite

signatures.

For each of the known steatogens, posed as the input "signature question", cMap returned a table of

bioactive compounds was produced along with their ES scores. Only compounds with significantly (p-

value<0.05) similar (ES>0) or opposite (ES<0) mode of action were selected. Out of those, known hepato-

toxic and steatogenic compounds were reviewed on the ToxDB (Hardt et al., 2016) and LiverTox (Hoofnagle

et al., 2013) databases to be excluded from further analysis. Each of the selected compounds was then

introduced to DrugBank to identify relative target genes that were then input toMSigDB. MSigDB returned

those pathways containing the target genes each compound affects. Those pathways, taken together,

formed a group of "DR compounds’ pathways".

Comparison among pathway groups for identification of pathways-to-target

The analysis so far contributed 3 groups of pathways: the ‘‘clinical data pathways’’, the "steatogenic com-

pounds’ pathways", and the "DR compounds’ pathways". The overlap between the ‘‘clinical data path-

ways’’ and the "steatogenic compounds’ pathways" consists of pathways involved in the induction of stea-

tosis that can be recapitulated in vitro. This set of overlapping pathways also coincides with a portion of the

"DR compounds’ pathways", extracted from cMap. It was hypothesized that the pathways-to-target

belong to the intersection of those groups of pathways, as, on one hand, interfere with in vitro steatosis,

and on the other hand, demonstrate similar or opposite modes of action to the known in vitro steatogens.

The compounds to be tested were traced back to these pathways-to-target in the backward fashion, based

on the pathway-target identification approaches described in traditional network-based frameworks (Fotis

et al., 2018).

Validation of the in silico predictions with High-Content Screening (HCS)

AnHCS pipeline was devised to verify the in vitro effects of the proposed DR compounds. HepG2 cells were

seeded in black, flat-bottomed, 384-well plates at 5’000/well density and treated with FFAs at 200uM. Con-

trol samples were treated only with the candidate DR compounds at 10uM, while the rest were treated with

a co-treatment of FFAs and DR compounds to evaluate the anti-steatogenic potential. All treatments were

applied for 24h before HCS. Intracellular lipid content and ROS production were quantified according to

the assays described in x2.1.2, x2.1.3 and x2.1.4.

Protein isolation

Total protein isolation protocols were followed for phospho-proteomic measurements. The cells were

seeded on flat-bottomed, 96-well plates at their aforementioned densities. After 24h, they were co-treated

with FFAs at 200uM and the DR compounds at 10uM for another 24h before lysis. The lysis buffer (ProtA-

tOnce Ltd, Athens, Greece) was supplemented with a protease/phosphatase inhibitor mix (ProtAtOnce

Ltd, Athens, Greece) at 100x v/v and with Phenylmethanesulfonyl fluoride (PMSF) (MilliporeSigma, MA,

USA) at 50x v/v. The samples were maintained at -80oC. Before collection, thawed samples were first son-

icated and then centrifuged at 2400 rpm for 30 min.

Multiplex ELISA – xMAP assays

All lysates were adjusted to a total protein concentration of 250ug/mL. xMap assays were performed on a

Luminex FlexMAP 3D platform (Luminex, Austin TX, USA). The customized 17-plex phosphoprotein panel

(ProtAtOnce Ltd, Athens, Greece) included: mothers against decapentaplegic homolog-3 (SMAD3), tran-

scription factor AP-1 (JUN), insulin receptor substrate-1 (IRS1), tyrosine-protein phosphatase non-receptor
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type-11 (PTN11 or SHP2), proline-rich AKT1 substrate-1 (AKTS1), mitogen-activated protein kinase-3 (ERK1

or MK03), RAC-alpha serine/threonine-protein kinase (AKT1), glycogen synthase kinase-3 alpha (GSK3A),

heat shock protein beta-1 (HSP27 or HSPb1), signal transducer and activator of transcription-3 (STAT3),

mitogen-activated protein kinase (p38 or MAPK), transcription factor p65 (NFKb), dual specificity

mitogen-activated protein kinase kinase-1 (MEK1 or MP2K1), focal adhesion kinase-1(FAK1), cyclic AMP-

responsive element-binding protein-1 (CREB1), nuclear factor erythroid 2-related factor-2 (NRF2 or

NF2L2), and 40S ribosomal protein S6 (RS6). For cytokine release measurements a 20-plex antibody assay

was developed (ProtAtOnce Ltd, Athens Greece): interleukin 13 (IL13), growth-regulated alpha protein

(GROA), interleukin 1a (IL1a), interleukin 8 (IL8), interleukin 12 (IL12), interleukin 6 (IL6), C-C motif chemo-

kine 3 (CCL3), C-X-C motif chemokine 10 (CXCL10), tumour necrosis factor (TNFA), resistin (RETN), ciliary

neurotrophic factor (CNTF), C-X-C motif chemokine 11 (CXCL11), transcriptional regulator NRG1 (NRG1),

fibroblast growth factor (FGF), metalloproteinase inhibitor 1 (TIMP1), transforming growth factor beta-1

proprotein (TGFB1), C-C motif chemokine 5 (CCL5), C-C motif chemokine 2 (CCL2), matrix metalloprotei-

nase-9 (MMP9) and interleukin 1b (IL1b).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis of the intracellular lipid accumulation, ROS production and viability assessment was per-

formed using R-programming language. Ordinary one-way ANOVA test with Tukey’s multiple comparisons

was performed to compare cell treatments to the respective controls. Biologically relevant comparisons

were made between all samples and either the compounds’ diluent (in vitro steatosis models, novel stea-

togenic compounds) or FFAs 200uM + DMSO 0.1% (novel anti-steatogenic compounds). Data are pre-

sented as mean G SEM of at least three independent experiments. Comparisons with a p-value % 0.05

were considered statistically significant. Calculation of IC10 values of the steatogenic compounds was

made via 4-parameters logistic regression fitting of the percentage of viability. Heatmaps and volcano

plots were created using the R-programming language. Principal component analysis and k-means clus-

tering were also performed using the R-programming language.
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