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Abstract

Megachile rotundata exhibits a facultative prepupal diapause but the cues regulating dia-

pause initiation are not well understood. Possible cues include daylength and temperature.

Megachile rotundata females experience changing daylengths over the nesting season that

may influence diapause incidence in their offspring through a maternal effect. Juvenile M.

rotundata spend their developmental period confined in a nesting cavity, potentially sub-

jected to stressful temperatures that may affect diapause incidence and survival. To esti-

mate the impact of daylength and nest cavity temperature on offspring diapause, we

designed a 3D printed box with iButtons that measured nest cavity temperature. We

observed nest building throughout the season, monitored nest cavity temperature, and fol-

lowed offspring through development to measure diapause incidence and mortality. We

found that daylength was a cue for diapause, and nest cavity temperature did not influence

diapause incidence. Eggs laid during long days had a lower probability of diapause. Siblings

tended to have the same diapause status, explaining a lot of the remaining variance in dia-

pause incidence. Some females established nests that contained both diapausing and non-

diapausing individuals, which were distributed throughout the nest. Nest cavities reached

stressful temperatures, which decreased survival. Mortality was significantly higher in non-

diapausing bees and the individuals that were laid first in the nest. In conclusion, we demon-

strate a maternal effect for diapause that is mediated by daylength and is independent of

nest box temperature.

1. Introduction

Diapause allows insects to avoid seasonally reoccurring stressors such as those associated with

temperate winters and allows for synchronization of life histories with optimal resources such

as flower bloom [1]. Diapause may be either obligate or facultative, with the cues triggering

facultative diapause varying across species [2]. Many insects with facultative diapause have a
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critical daylength that programs diapause [2] and diapause initiation can also be influenced by

temperature [3–5]. The Mediterranean tiger moth Cymbalophora pudica relies on daylength as

a cue for diapause length, with long daylengths shortening diapause and short daylengths

lengthening diapause [6]. The blow fly Calliphora vicina produces fewer diapausing offspring

at 20˚C than at 15˚C [3]. How these cues affect diapause can be complex. For pollinating

insects, understanding the underlying mechanisms of diapause initiation is critical to manage-

ment of agricultural bee populations because rising global temperatures have the potential to

increase the proportion of nondiapausing bees [5]. Nondiapausing bees lowers yield of off-

spring because the alfalfa season is not long enough to accommodate the full second genera-

tion [5] and nondiapausing bees have the potential to kill nest mates when they emerge [7].

Megachile rotundata, the alfalfa leafcutting bee, is a solitary bee used extensively in the pro-

duction of alfalfa seed [8]. Megachile rotundata adults emerge in the summer, mate, and

females build linear nests made of individual cells of leaves and provision them with pollen

and nectar [8]. Once a brood cell is complete, the female will lay an egg on top of the provision,

seal the cell with additional leaf pieces, and then begin the next cell. Once the nest is complete

the female will seal off the nest with a cap. Eggs will complete embryogenesis in approximately

2–3 days and continue to develop through five instars [9]. Megachile rotundata has a faculta-

tive diapause with individuals either entering diapause in the pre-pupa stage or skipping dia-

pause to emerge in the same summer as the parent generation, with the following generation

then entering diapause [10].

In M. rotundata, the leading hypothesis is that diapause is under maternal control [10],

although the exact mechanism causing nondiapausing individuals remains unclear. Several

studies have noted environmental factors that may influence M. rotundata diapause incidence

including length of the day [11], warm temperatures [4, 5, 10], and the amount of food provi-

sion [12]. Several field studies have provided evidence that daylength is important to diapause

determination in M. rotundata. Nondiapausing individuals are often offspring from the first

nests completed during the summer when daylengths are long. In the United States, nondia-

pausing individuals may comprise 34–54% of the brood cells in early July, but fall to percent-

ages in the single digits by the end of July or early August when daylength decreases [4, 5, 13].

However, Canadian populations only reach up to 5% of nondiapausing individuals [14]. These

consistent differences in diapause incidence across latitude suggest that mothers respond to

increasing daylength by laying nondiapausing eggs. However, mothers experimentally exposed

to longer days did not necessarily have higher rates of nondiapausing offspring [11] indicating

daylength may not be the sole cue for diapause incidence.

While many studies have noted the importance of daylength, temperature may also impact

diapause initiation. Megachile rotundata are likely to be impacted by heat stress in the nesting

box with temperatures reaching above 40˚C [15]. Heat stress has been shown to decrease

development time and lead to higher rates of nondiapausing individuals [4, 5, 16]. Further-

more, several studies have noted that temperature stress may also cause bees that have already

initiated diapause to avert to a nondiapausing state and emerge in the same year [4, 5]. There-

fore, heat stress could increase the frequency of nondiapausing individuals by both lowering

rates of diapause incidence and by reversing diapause in bees that have already initiated dia-

pause. Temperature could also influence diapause through a growing degree day model in

which increased degree days reduces diapause incidence.

Our understanding of diapause determination in M. rotundata is further complicated by

the possibility of diapausing and nondiapausing individuals within the same nest. The per-

ceived general rule is that M. rotundata nests contain only diapausing or nondiapausing prog-

eny [13], but there are reports of mixed nests which contain both diapausing and

nondiapausing individuals [7, 14]. Tepedino and Frohlich [7] observed that in mixed nests the
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nondiapausing bees were female biased and frequently found behind their diapausing siblings.

Within mixed nests the nondiapausing progeny were normally grouped in consecutive

cocoons [14]. Mothers build brood cells sequentially at the rate of approximately one brood

cells per day [17, 18] starting at the back of the nest. Nests containing both diapausing and

nondiapausing progeny creates the potential for fratricide when a nondiapausing individual

must chew through its diapausing siblings to emerge [7]. The existence of mixed nests suggest

that diapause incidence might be influenced by environmental factors that are beyond mater-

nal control.

Our goal was to test the relative contributions of daylength, nest cavity temperature, and

position within the nest to diapause status in M. rotundata. We hypothesized that the day-

length the mother experienced while laying an egg would influence diapause initiation in the

offspring. We also hypothesized nest cavity temperature during larval development would

influence diapause initiation. We measured the effect of temperature on diapause incidence by

monitoring cavity temperature in the field. The date a nest was completed was used to calculate

the daylength on the day each egg was laid, and nests were x-rayed to determine diapause sta-

tus and brood cell position. We also investigated whether high nest temperatures increased

mortality. Our results indicate that daylength, not temperature, influences diapause incidence

in M. rotundata under our field conditions.

2. Methods

This is a continuation of a previously published study that investigated the effects of tempera-

ture on maternal nesting choice using the same nesting boxes and field set up [15]. Additional

details are provided in that publication.

2.1 Description of field site and nest boxes

Three nest boxes were placed 200 m apart between the edge of an alfalfa field and a drainage

ditch containing multiple forbs in Fargo, North Dakota, USA (46˚55’15” N, 96˚51’17” W).

Each nest box consisted of 36 3D printed blocks (measuring 60mm x 60mm x 82mm), each of

which contained four equally spaced nesting cavities (lined with a paper straw for easy nest

removal) on the front and a single cavity to accommodate an iButton temperature datalogger

on the back that recorded temperature every 15 minutes (Fig 1). Each of the four sides of the

nesting box were constructed by stacking nine blocks in a three by three pattern, resulting in

36 nesting cavities per side, and 144 cavities per nest box. Each nest box was oriented in the

field using a compass so that the sides faced Northwest (NW), Northeast (NE), Southwest

(SW), and Southeast (SE). Temperatures were recorded from each block from June 21st, 2018

through September 22, 2018. Megachile rotundata (JVM Leafcutters, Nampa, Idaho) were

released at each nest box on June 20th and June 26th to ensure a large population of nesting

females.

2.2 Monitoring nesting behavior and nest size

The nesting period extended from June 26th to August 2nd 2018 and boxes were checked daily

for completed nests, indicated by the presence of a leaf cap. Completed nests were x-rayed

(Faxitron Bioptics LLC, Tucson, AZ) twice weekly from July 6th to August 2nd. After the nest-

ing period ended, nests were x-rayed August 15th, September 3rd, and September 22nd. Nest

parameters measured by x-ray included the number of brood cells, brood cell position, dia-

pause state, and evidence of parasitism. Brood cell position was numbered starting from the

first brood cell built by the mother to the final brood cell. The first brood cell was in the back

of the cavity and the final brood cell positioned by the nest entrance. Nests contained up to
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nine brood cells, with the average being seven. Offspring that were identified as nondiapausing

were dissected from the nest upon reaching the pupal stage and their position and date were

recorded (Fig 1), after which they were placed in 24-well plates with lids in a 29˚C incubator in

darkness and 75% humidity and allowed to continue to develop, with emergence date, and sex

recorded. In mixed nests, diapausing offspring were discarded because the nest was destroyed

when the nondiapausers were removed. Nests with only diapausing offspring remained in the

field until Sept 22nd, after which they were also dissected from the nest and placed in 24-well

plates with lids in a 6˚C incubator in darkness and 40% humidity for the remainder of the dia-

pause period. Once the bees transitioned to post-diapause quiescence [19], the plates were

placed in 29˚C on Dec. 11th to initiate pupal development and adult emergence. Bees were

considered emerged as adults when they had completely exited the brood cell. Emergence date

and sex were recorded.

2.3 Data processing

iButtons were downloaded individually then combined and processed using R ([20], version

3.5.2) and RStudio ([21], version 1.1.419) with packages lubridate ([22], version 1.7.9.2), tidyr
([23], version 1.1.2), stringr ([24], version 1.4.0), and dplyr ([25], version 1.0.2).

The dates of the developmental period was estimated for each individual. The developmen-

tal period was defined as the number of days from egg laying to the point at which bees

pupated, and was estimated from the data. The date the nest was completed, as determined by

the presence of a leaf cap, was used to estimate the date each egg was laid by assuming the

female built the nest at the rate of one brood cell per day [17, 18]. We then calculated the

Fig 1. Experimental design. A nest box was constructed of 3D printed plastic blocks, each with four cavities. (1) The temperature of each block was

recorded throughout the season using iButtons. (2) Nests were checked daily for completion. (3) Nests were X-rayed to determine diapause status,

and (4) nondiapausing individuals were removed from the field and allowed to emerge in the lab. (5) Diapausing individuals were returned to the

nest box and experienced field temperatures until September 22nd (photo credit: Manitoba Department of Agriculture).

https://doi.org/10.1371/journal.pone.0254651.g001
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median number of days from the day the egg was laid to the day pupation was observed via X-

ray for nondiapausing individuals. This median developmental period was 22 days. We used a

22-day interval to calculate temperature variables for each individual in the dataset. For exam-

ple, the average temperature during the developmental period for each bee was calculated by

averaging the iButton temperatures from the estimated date the egg was laid to 22 days later.

We calculated the degree days over the same period using the gdd function in the pollen pack-

age ([26], version 0.72.0). The minimum temperature for development was set at 18˚C [27]

and the upper limit at 35˚C [28]. We calculated time spent above 35˚C and 40˚C for each bee.

These temperatures were chosen as biologically critical thresholds because at 35˚C M. rotun-
data start to produce HSP70 proteins, an indicator of thermal stress, and HSP70 proteins peak

at 42˚C [28]. For the survival analysis, we calculated the time spent above 35˚C and 40˚C for

each bee from the time the egg was laid to the date the nests were brought in from the field

(Sept 22nd).

The daylength when each brood cell was built was calculated using the geosphere package

([29], version 1.5–10). The date each brood cell was built was estimated as described above.

The daylength in hours was calculated for each day based on the latitude (46.909˚N) of the

field site. We calculated the change in daylength for each day by subtracting daylength from

that of the previous day.

We observed females in the field tearing out existing nests to make their own. To eliminate

those nests from the dataset, we counted the number of brood cells in the initial X-ray of each

nest and compared that to the final X-ray taken at the end of the season. Nests that had a differ-

ent number of brood cells from the beginning of the season to the end were removed from the

dataset.

2.4 Diapause analysis

In order to test the relative influence of nest temperature and daylength on diapause incidence,

we used generalized linear mixed effects models using the lme4 package ([30], version 1.1–26)

with p-values calculated using lmerTest ([31], version 3.1–3). The response variable for our

model was diapause (1) or non-diapause (0) for each individual. The covariates were average

temperature during the developmental period, degree days during the developmental period,

daylength for the day the egg was laid, change in daylength between the day the egg was laid

and the day before, and position of the brood cell in the nest with one designating the first

brood cell built in the straw. All covariates were centered and scaled. Because the temperature

variables were highly correlated, models were built that only included one of each of those var-

iables, then compared for model fit using the package MuMIn ([32], version 1.43.17). The ran-

dom effects were nest box replicate and maternal ID number. Maternal ID was included as a

random effect to account for the fact that every individual within a nest shared the same nest

environment, spent juvenile development during the same period of the season, and had the

same mother. We tested a separate model that was the same in all respects except that change

in daylength was substituted for daylength. The best model was determined using Akaike

Information Criteria and model comparisons were preformed using ANOVA in the package

MuMIn ([32], version 1.43.17). Residual diagnostics were preformed using DHARMa ([33],

version 0.3.3.0). Data was graphed using ggplot2 ([34], version 3.3.3).

2.5 Survival analysis

To understand what factors influenced survival, we used general linear mixed models using

the same packages described above. Our response variable was emerged adults (1) and those

that did not emerge (0). Covariates included whether the bees initiated diapause (1) or not (0),
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the position of the brood cell in the nest, and the daylength when the egg was laid. The temper-

ature variables were calculated in the same way as the diapause analysis and included average

temperature, the number of hours above 35˚C and the number of hours above 40˚C from the

day the egg was laid until 22 days later. Temperature variables were tested by substituting

them into the model because they were highly correlated. Covariates were centered and scaled.

Random effects include replicate and maternal ID. Results were visualized with ggplot2 ([34],

version 3.3.3) and model predictions were graphed using ggeffects ([35], version 1.0.1)

3. Results

3.1 Nesting box temperatures and microclimates

Offspring were exposed to a highly variable range of temperatures in the nesting

box throughout the season (Fig 2). The nesting boxes reached a minimum temperature of

4.5˚C and a maximum temperature of 48.5˚C. The NE reached a maximum temperature of

42˚C on June 28th, 2018. The NW reached a maximum temperature of 45.5˚C on Sept. 10th,

2018. The SE reached a maximum temperature of 44˚C on Aug. 16th and the SW reached a

maximum temperature of 48.5˚C on August 16th, and Sept. 10th, 2018.

Average cavity temperatures over the season were significantly impacted by direction the

cavity faced and by the block location in the nest box (Fig 2A and 2D; Block: F(8, 143) = 357.49,

Fig 2. Nest cavity temperatures by the direction the nest cavity was facing. (A) Average temperature, (B) amount of

time spent above 35˚C during the filed season, (C) amount of time spent above 40˚C during the field season. (D-F)

Heat maps correspond to each direction the nest cavities were facing and each side divided into nine regions that

correspond to the iButtons. (D) Average temperature, (E) amount of time spent above 35˚C during the filed season,

and (F) amount of time spent above 40˚C during the field season.

https://doi.org/10.1371/journal.pone.0254651.g002
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p<0.0001, Direction: F(3,143) = 1074.49, p<0.0001, Fig 2A and 2D). The interaction between

block and direction was also significant (F(24, 143) = 119.54, p<0.0001). The model explained

72.75% of the variance in average cavity temperature when all variables were included. Time

spent above 40˚C during the field season was also significantly impacted by block (Fig 2C,

F(8,143) = 396.16, p<0.0001), direction (Fig 2F, F(3,143) = 2548.99, p<0.0001), and their interac-

tion (F(24,143) = 326.15, p<0.0001). Nest cavities that faced south spent the most time above

40˚C. The full model explained 84.78% of the variance in time spent above 40˚C. Like the

other variables, time spent above 35˚C over the season was significantly impacted by both

block (Fig 2B, F(8,143) = 32.801, p =<0.0001), direction (Fig 2E, F(3,143) = 2462.13, p<0.0001),

and their interaction (F(24,143) = 249.78, p<0.0001). The full model explained 81.08% of the

variance in time spent above 35˚C.

3.2 Diapause initiation models

The diapause analysis included 1,594 individuals from 245 nests. The first nest was completed

on June 23rd and the last nest on August 15th. Most of the individuals initiated diapause

(86.4%). The daylength during the nesting period ranged from 15.88 hours to 14.34 hours,

average nest temperature ranged from 20.2˚C to 26.3˚C, and degree days ranged from 128.5 to

202.5. The sex ratio was female-biased for nondiapausing individuals (69.5%) and was signifi-

cantly different from the sex ratio of diapausing individuals (39.23% female: χ2 = 47.753,

df = 1, p<0.0001).

Daylength and not temperature influenced diapause initiation. The best fit model included

daylength (Fig 3A; Z(1, 1594) = -4.140, p<0.0001) as a covariate and maternal ID as a random

effect (variance = 24.68±4.968). Longer daylengths had a significantly lower probability of dia-

pause (Fig 3A and 3D). The accumulated degree days over the developmental period did not

significantly influence diapause incidence (Fig 3B; Z(1, 1594) = 0.934, p = 0.35). The position of

the brood cell in the nest was also not significant (Fig 3C; Z(1, 1594) = -0.645, p = 0.52). We

tested for multicollinearity between daylength, degree days and position of the brood cell to

determine if these variables were influenced by each other. All variance inflation factors were

below 2, indicating that the variables did not co-vary. The covariates explained 44.2% of the

Fig 3. Diapause incidence. Daylength significantly influenced the rate of diapause (A). Neither degree days (B) nor brood cell position (C) influenced diapause

incidence. In (C), position one is the first brood cell built in the nest. Whiskers denote the standard error of the mean.

https://doi.org/10.1371/journal.pone.0254651.g003

PLOS ONE Diapause and survival of Megachile rotundata

PLOS ONE | https://doi.org/10.1371/journal.pone.0254651 August 3, 2021 7 / 16

https://doi.org/10.1371/journal.pone.0254651.g003
https://doi.org/10.1371/journal.pone.0254651


variation in diapause incidence. The random effect of maternal ID increased the R2 to 0.93.

The model that included daylength was not significantly different from a model that included

change in daylength (delta AIC = 4.2, χ2 = 0, df = 0, p = 1). We also tested additional tempera-

ture variables to determine if different aspects of temperature exposure besides degree days

would influence diapause incidence. Because the temperature variables were highly correlated

with each other, they were tested for significance by substituting into the model. We tested

average temperature during the developmental period, which was the date the brood cell was

laid until 22 days later (Z(1, 1549) = 0.532, p = 0.60). We tested the number of hours spent above

33˚C (Z(1, 549) = 1.356, p = 0.18), above 35˚C (Z(1, 1594) = 0.634, p = 0.53), and above 40˚C (Z(1,

1,549) = 0.1080, p = 0.28) during the developmental period. Like degree days, none of the other

temperature variables were significantly influenced diapause incidence.

3.3 Nests with both diapausing and nondiapausing offspring

Some females built nests that were mixed, containing both diapausing and nondiapausing

offspring. Out of 302 nests, 241 nests contained only diapausing offspring, five nests con-

tained only nondiapausing offspring, and 56 nests were mixed with diapausing and non-

diapausing offspring. Mean nest size was not significantly different between the three types

of nests (ANOVA, F(2, 299) = 1.126, p = 0.33). For mixed nests, the position of the brood

cell in the nests significantly influenced diapause status (ANOVA; F(8,368) = 3.2993,

p = 0.0012), with the fourth brood cell being the most likely to contain a nondiapausing

bee (Fig 4A), with nests averaging 6.8 brood cells. Diapausing offspring that are laid after

nondiapausing offspring in the nest will possibly be killed by the nondiapausing offspring

when they emerge. Our results suggest that nondiapausing offspring are frequently laid

behind diapausing offspring (Fig 4A). We calculated the probability that a nondiapausing

bee was laid behind a diapausing bee for each brood cell position (Fig 4B). That arrange-

ment occurred for 15.8% of the brood cells across all mixed nests. The probability of a non-

diapauser positioned behind a diapauser did not vary significantly by brood cell position

(F(7,313) = 0.8197, p = 0.57).

3.4 Impacts of temperature and diapause status on survival

We determined which factors influence adult emergence, as a measure of survival to adult-

hood. The survival analysis included 1,428 bees from 247 nests. Most bees survived with an

adult emergence rate of 78.3%. Temperatures were calculated from the date the egg was laid

until 22 days later. Hours spent above 40˚C significantly impacted survival (Z(1, 1428) = -2.842,

p = 0.0045). Diapause status (Z(1, 1428) = 3.998, p<0.0001) and position of brood cell in the nest

(Z(1, 1428) = 3.544, p = 0.0004) also significantly impacted survival, as did their interaction (Z(1,

1428) = -2.687, p = 0.0072). Daylength was not significant (Z(1, 1428) = -0.719, p = 0.47). The

covariates explained 5% of the variation in survival. The random effect of maternal ID

increased the R2 to 0.29. The model that included hours above 40˚C was significantly better

than a model that included average temperature (delta AIC = 1, χ2 = 1.648, df = 0, p<0.0001).

Survival decreased with an increase in the hours spent above 40˚C (Fig 5A and 5D) with some

bees spending over 40 hours above 40˚C. Brood cells that were laid in the first and eighth posi-

tion had higher mortality (Fig 5B and 5F). Nondiapausing individuals had a significantly

higher mortality than diapausing individuals (Fig 5C and 5E), and this was particularly the

case for nondiapausers in the first few nest positions (Fig 5F). In addition to the hours spent

above 40˚C, we also tested hours above 35˚C (Z(1, 1428) = -1.422, p = 0.16) which did not signif-

icantly impact survival.
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Fig 4. Mixed nests contained both diapausing and nondiapausing bees. (A) The probability of diapausing was

significantly different by position of the brood cell in the mixed nests. Letters denote significant comparison by Tukey’s

HSD. (B) The probability that a nondiapausing bee was laid behind a diapausing sibling was independent of brood cell

position. Position one indicates the first brood cell built in the nest. Whiskers denote the standard error of the mean.

https://doi.org/10.1371/journal.pone.0254651.g004
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Fig 5. Survival to adulthood. (A) The number of hours spent above 40˚C significantly influenced survival. (B) The

position of the brood cell in the nest, with 1 being the first brood cell built, significantly influenced survival. (C)

Whether an individual chose to diapause or not diapause was significant. The predicted probabilities from the general

linear mixed model for diapause incidence (D) and brood cell position (E) reinforce these patterns and show a

significant interaction between the variables (F). Whiskers on A-C denote the standard error of the mean. Grey region

in D-F denotes the 95% confidence interval around the model estimates.

https://doi.org/10.1371/journal.pone.0254651.g005
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4. Discussion

Even though some studies have found that both daylength and temperature can influence dia-

pause incidence in M. rotundata [5, 10, 11], our study suggests that daylength may have a

strong effect on the behavior of this bee species. We tested the relative contribution of day-

length and temperature to diapause incidence under field conditions in Fargo, ND, USA. We

found that daylength influenced diapause, but that nest cavity temperature did not have an

effect on diapause incidence.

4.1 Diapause incidence

We predicted that warmer temperatures would cause higher rates of nondiapausing bees. In

this study, all cavities reached 35˚C during the developmental period and many cavities spent

20 hours or more over 40˚C. The warmest cavities in our study were the southwest and south-

east facing cavities which spent the most time above 35˚C and 40˚C. Despite high field tempera-

tures, there was no effect of these temperatures on diapause incidence. Neither time spent over

35˚C, nor 40˚C influenced diapause rates. We also tested a degree day model that uses a lower

developmental threshold of 18˚C and an upper threshold of 35˚C, but this variable was also not

significant. Constant temperatures between 29˚C and 32˚C have been reported to increase the

frequency of nondiapausing M. rotundata prepupae under lab conditions, but average tempera-

tures of 22˚C and 26˚C did not have an effect [5]. Our average nest cavity temperatures during

the developmental period ranged from 20.2–26.3˚C with a mean of 24.0˚C. These field tempera-

tures are within the range that would not affect diapause incidence based on these previous lab

studies [5, 10]. Kemp and Bosch [5] found that fluctuating temperatures had diapause rates sim-

ilar to the mean of the fluctuation, not the peak temperature. Although our peak temperatures

were consistently over 35˚C and often exceeded 40˚C, nighttime lows kept the average tempera-

tures below the range warm enough to influence diapause initiation. Based on our measurement

of field nest box temperatures, nest cavities would need to have mid-day peak temperatures well

above 40˚C to produce average cavity temperature above 29˚C. Our measurement of field tem-

peratures suggest that it is unlikely that nest temperature would ever be high enough to influ-

ence diapause initiation while also allowing for survival to the adult stage.

Daylength had a significant influence on diapause initiation, with eggs laid during longer

days associated with higher rates of nondiapausers. Daylength decreased during the duration

of the study, with the first nest capped on June 23rd. Daylength explained 42.8% of the varia-

tion in diapause incidence. Tepedino and Parker [36] found the majority of nondiapausing

individuals are laid by July 22nd and argued that daylength is a trigger for diapause initiation.

All of the nondiapausing individuals in our study were laid by July 23rd, which follows the pat-

tern seen in several other studies across various latitudinal rages [4, 10, 14, 36]. Exposing

females to very long days can decrease diapause initiation in offspring [11]. The longest day-

lengths in this study correspond to the “long day” treatment in Pitts-Singer [11], but the dia-

pause rate in this study was lower. Once we accounted for daylength, most of the remaining

variation in diapause initiation was explained by the ID of the mother. The mother ID encom-

passed many possible sources of variation. Some of this variation may be caused by environ-

mental cues the mother senses that were not monitored as part of this study, standing genetic

variation for diapause incidence [37], and maternal epigenetic effects [38]. Mothers may medi-

ate these cues through the amount of provision, which is larger in diapause-destined offspring

[12]. In addition, the mother ID random effect includes variance caused by environmental

conditions in the cavity shared by each of the brood cells in that nest, and environment condi-

tions in the field during the point in the season when the nest was built. A future direction of

this work is to test these potential sources of variation in a controlled experiment.
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Some nests contained both diapausing and nondiapausing offspring. These mixed nests

accounted for 18.5% of all nests, and the majority of the nondiapausing individuals were laid

in mixed nests. Megachile rotundata females lay eggs in a linear nest with emergence patterns

in the reverse order from the order the eggs are laid [4, 39, 40]. Mixed nests have the potential

to increase mortality if diapausing bees have nondiapausers laid behind them. When the non-

diapausing bees emerge, they have the potential to kill the diapausing bees as they chew their

way to the entrance. This unfavorable arrangement occurred in 15.8% of the brood cells in

mixed nests.

The cause of mixed nests remains unknown, but could be related to differences in diapause

rates between males and females. We observed that nondiapausing bees are predominately

female, and diapausing bees are predominately male, a pattern seen in another study [36]. The

sexes are mixed within nests with some studies finding females laid toward the back [39–41].

The interaction of sex, diapause, and cell position could account for deleterious ordering of

nondiapausers in mixed nest [7]. We could not directly test this hypothesis because we do not

have sex information for diapausing individuals from mixed nests. We can conclude that

mixed nests were common in our study and represent a potential source of mortality for dia-

pausing bees.

4.2 Survival

Nest boxes can reach temperatures that can cause high mortality [15, 42, 43]. Females may

avoid nesting in warmer cavities to protect offspring [15]. Temperatures exceeding 35˚C

induce the production of HSP70 proteins, which is an indicator of stress [28]. Mortality is high

at a constant exposure to 44˚C [44]. In this study, nest cavities frequently exceeded 40˚C, and

the number of hours spent over 40˚C significantly decreased survival. All the cavities spent

some time over 35˚C but that temperature threshold was not enough to cause mortality. Expo-

sure to lower temperatures in between time spent above 35˚C may have protected bees from

heat stress due to either physiological preparation for stressful exposure [45] or by allowing

time to repair damage [46]. Previous research from this same field season found that females

prefer to nest in cavities with cooler temperatures [15]. Females nesting later in the season

were forced to choose warmer cavities because fewer cavities remained open. Wilson et al. [15]

found females did not prefer south-facing cavities. The analysis conducted here determined

that south-facing cavities spent the highest number of hours over 40˚C. Females choosing cavi-

ties based on cooler temperatures may protect offspring from heat stress. However, the statisti-

cal model only explained 29% of the variance in survival. Our results indicate that

temperatures in nest cavities can reach lethally-high levels.

Diapause status and position of the brood cell in the nest both significantly affected survival.

Nondiapausing bees had a significantly lower survival (67.7%) than diapausing (80.3%). Dia-

pause status had a significant interaction with brood cell position such that nondiapausers

positioned in the first brood cells had the lowest survival. The significance of position may be

influenced by a female-biased sex ratio for nondiapausers and females frequently being laid in

the beginning of each nest. Kemp and Bosch [5] reported higher mortality in diapausing bees

compared to nondiapausers, which is the opposite pattern we observed. Overall, adult emer-

gence was 78.3%, which is higher than the 40–60% mortality observed in natural populations

[8, 42].

4.3 Limitations of the study

We observed nest supersedure, when a female destroys the brood cells of another to build her

own. Supersedure was easily identifiable with either a larva sitting on the base of the board
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completely exposed to the elements, or female bees were observed actively removing leaf pieces

from pre-existing cavities. Any nest that changed in size from the initial to the final x-ray was

removed from analysis. This decreased our sample size and may have reduced statistical power

in the analysis of diapause because the majority of superseded nests were in built under long

daylengths and likely contained a higher proportion of nondiapausers. If more nondiapausers

had been present in the dataset, that may have increased the statistical power to detect the

effects of other factors such as temperature.

Another limitation of our study comes from the mixed nests that contained diapause and

non-diapause bees. Individuals from mixed nests that were diapausing were sacrificed from

the straws in order to follow the nondiapause individuals. Thus, we do not know the sex of

these sacrificed bees. From the sex of the remaining bees and from previous studies, diapausing

and nondiapausing bees have different sex-ratios with diapausing bees being male-biased [36].

However, we could not incorporate sex into our statistical models for diapause incidence

because diapausing bees in mixed nest had unknown sex and those individuals were biased to

be in the front of the nest. This suggests that many of the sacrificed bees would have been prob-

ably male [40].

4.4 Conclusions

We established that daylength had a strong influence on the diapause status of M. rotundata.

Nest cavity temperature did not influence diapause over the ranges measured in this field

study, and average nest temperatures during development remained lower than the tempera-

tures known to influence diapause from lab-based studies. Maternal factors influence diapause,

as established by daylength explaining a lot of the variation in diapause incidence. Mixed nests

containing both diapausing and nondiapausing individuals were common. Under agricultural

management, mixed nest represent a potential loss to the yield of diapausing bees. Nest cavity

temperatures were high enough to increase mortality but not influence diapause incidence,

suggesting that the main threat to agricultural populations under climate change may be a loss

of field yield due to heat-stress, not a decrease in rates of diapause.
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