
 

  

 

 

 

 

 

 

 
Introduction 
 

Over the past decade it has been increasingly recognized that 
many pharmaceutically relevant compounds are promiscuous in nature 

[ -3] and that many drugs elicit their therapeutic effects -and 

undesired side effects- through polypharmacology [4,5]. For a number 
of drugs that were originally considered to be target-selective or -
specific, high degrees of promiscuity and ensuing polypharmacology 
have been shown to be responsible for their efficacy, with protein 
kinase inhibitors applied in oncology being a prime example [6]. In 
addition, polypharmacology also provides the basis for drug 
repurposing [7-9], another current topic of high interest in 
pharmaceutical research.  

Given that compound promiscuity represents the molecular basis 
of polypharmacological effects, a detailed assessment of the degree of 
promiscuity among compounds at different stages of the drug 
development pathway is of considerable interest. The unprecedented 
recent growth of compound activity data in the public domain has 
made it possible to approach this question through data mining. This 

is illustrated in Figure , which shows a drug-target network 

generated on the basis of known target annotations of approved 
drugs, reflecting a generally high degree of drug promiscuity. In 
promiscuity analysis, most efforts have thus far concentrated on 
elucidating the promiscuous nature of drugs, often by database 
analyses combined with computational predictions. Recent estimates 
have been that a drug might on average interact with ~3-6 targets and 
that 50% of all drugs might exhibit activity against more than five 

targets [5, 0]. 

Results of data mining efforts are generally affected by data 

incompleteness [ 0], i.e., not all compounds have been tested against 

all targets (and probably will never be). However, given increasingly 
large amounts of compound activity data that become available at 
present (much more than one could have imagined  just  a  few  years  
 

 
 
 
 
 

 
 

 
 

ago), reliable trends can already be detected and some meaningful 

conclusions drawn from them [ ].      

Herein, we review recent insights into promiscuity of screening 
hits, bioactive compounds, and drugs obtained through systematic 
mining of compound activity data. All currently investigated aspects 
of promiscuity are discussed. In addition, we introduce a 
computational and graphical framework for the analysis of multi-
target activity spaces and compound promiscuity patterns.** The 
interested reader is also referred to other recent reviews of compound 

promiscuity [ , 2].  

 
 
 
 
 
  
 

 
Activity data of compounds from different sources 

 
In order to comprehensively assess compound promiscuity, 

various types of compounds at different pharmaceutical development 
stages should be considered. A large number of relevant compounds 
and associated activity data can currently be collected from several 
public repositories.  
 

The PubChem BioAssay database [ 3] contains bioactivity 

information from confirmatory high-throughput screens including 
confirmed active and inactive compounds. To ensure high data 

confidence, a pre-requisite for meaningful data mining efforts [ ], a 

total of 085 confirmatory assays with reported activity against a 

single protein target and dose-response data were extracted from 

PubChem in January 20 3 [ 4]. These assays involved 437,288 

compounds and 439 targets.  

A subset of 40, 2 compounds was confirmed to be active in 

one or more assays, representing screening hits at the early stages of 
drug discovery. More than 77% of these hits were tested in more than 
50 assays, hence providing a sound basis for promiscuity analysis 

[ 4], as discussed below. 
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Abstract: Compound promiscuity is rationalized as the specific interaction of a small molecule with multiple biological targets (as 
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designed to navigate multi-target activity spaces populated with various compounds.      

 

Exploring Compound Promiscuity Patterns and Multi-Target Activity 

Spaces 

Ye Hu a,†, Disha Gupta-Ostermann a,†, Jürgen Bajorath a,* 

Volume No: 9, Issue: 13, e201401003, http://dx.doi.org/10.5936/csbj.201401003 
 

 

aDepartment of Life Science Informatics, B-IT, LIMES Program Unit 

Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-

Universität, Dahlmannstr. 2, D-53113 Bonn, Germany 
 

†
These authors contributed equally to this work 

 
* Corresponding author. Tel.: +49 2282699306; Fax: +49 2282699341 

E-mail address: bajorath@bit.uni-bonn.de (Jürgen Bajorath) 

1 

 

**This review is based upon the presentation ‘Compound Data Mining in 
Systems Chemical Biology: Exploring Multi-target Activity Spaces and 
Compound Promiscuity Patterns’ given by one of us (J.B.) at the 2013 
Meeting of the International Chemical Biology Society (ICBS2013). The 
program of ICBS2013 can be viewed via the following URL: 
http://www.chemical-biology.org/?page=ICBS2013Schedule). 
 

http://www.chemical-biology.org/?page=ICBS2013Schedule


 
 
 
 
 
 

 

The rapidly growing ChEMBL database [ 5] has become a major 

public repository of compound activity data obtained from medicinal 

chemistry sources. Currently, ChEMBL release 7 contains ,324,94  

distinct compounds with 2,077,49  activity annotations. It should 

be noted that the original investigations reviewed herein were carried 
out over time on different versions of ChEMBL (the versions were 
specified in each case).  

To obtain high-confidence activity data from ChEMBL, only 
compounds with direct interaction against human targets at highest 
confidence level were extracted. Two types of potency measurements 
were separately considered, equilibrium constants (Ki) and assay-
dependent IC50 values. Compounds with approximate potency 
annotations (i.e., “>”, “<”, “~”) were excluded. From ChEMBL 

release 4, 36,542 compounds active against 579 targets were 

collected that yielded 62,9 3 explicit Ki values, comprising the Ki 

subset. In the IC50 subset, there were 80,522 compounds active 

against 29 targets with 4,092 IC50 measurements [ 6]. These 

bioactive molecules, especially those from the Ki subset, were 
predominantly taken from medicinal chemistry literature and patent 
sources and hence mostly represented compounds at the hit-to-lead 
and lead optimization stages.  

 

The DrugBank database [ 7] is a public resource that contains 

drug entries, including approved small molecule drugs, approved 
biologicals, nutraceuticals, and experimental drugs (including 
compounds in clinical trials), with associated drug target information. 

For promiscuity analysis, 274 approved small molecule drugs and 

493  experimental drugs with available structures were assembled 

from DrugBank 3.0. These approved drugs and drug candidates 
represented compounds at the late drug development stages.  

 
Compound promiscuity rates 

 
From these different data repositories, promiscuous compounds 

were extracted and promiscuity rates calculated as the average number 
of targets compounds were active against. In all cases reported herein, 
promiscuity rates were determined for compounds active against 
multiple targets, i.e., excluding compounds with reported single-target 
activity. Taking compounds with single-target activity into account 
would have reduced average promiscuity rates. 

From 40, 2 PubChem screening hits, 7 ,303 compounds 

(~50.9%) were identified to be active against two or more targets 

[ 4]. In addition, for the Ki and IC50 subsets of ChEMBL version 4, 

3,842 (~37.9%) and 9,898 compounds (~24.7%) were identified 

to be promiscuous, respectively [ 6]. These compounds were active 

against a total of 459 and 867 human targets in the Ki and IC50 
subsets, respectively. Furthermore, compound overlap between these 
two subsets was established on the basis of database IDs. There were 

025 promiscuous compounds conserved in both subsets. The 

remaining 2,8 7 and 8,873 promiscuous compounds were 

exclusively found in the Ki and IC50 subsets, respectively. In general, 
the IC50 subset contained > 6000 more promiscuous compounds than 

the Ki subset. Furthermore, 072 approved (~84. %) and 3 

experimental (~23.6%) drugs from DrugBank had multiple target 
annotations. For compounds from different sources, promiscuity rates 
are reported in Figure 2a. On average, promiscuous compounds from 
PubChem confirmatory assays were active against 3.7 targets. 
Bioactive compounds from the Ki and IC50 subsets of ChEMBL 

Figure 1. Drug-target interactions. Shown is an approved drug-target bipartite network. Red nodes represent approved drugs from DrugBank 3.0 and blue 
nodes drug targets. Edges between red and blue nodes indicate known drug-target interactions. In total, there are 3776 drug-target interactions between 1226 
approved drugs and 881 targets. Similar yet distinct drug-based target networks have earlier been introduced by Yildirim et al. [29].  The insert reports the 
distribution of the degree of approved drug nodes, indicating the number of targets they were active against. 
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interacted with 2.9 and 2.7 targets, respectively. Approved and 
experimental drugs displayed the highest degree of promiscuity, i.e., 

they had 6.9 and 4.7 targets, respectively [ 2].  

 

 

 

 

 

 
 
 
 
 
 
 

 
Furthermore, from the distribution of promiscuity rates, the 

probability of compounds to be active against at least two or more 

than five targets was calculated [ 2]. The results are reported in 

Figure 2b. For screening hits, the probability to act against two or 
more targets was ~50%. However, the probability of activity against 
more than five targets was reduced to 7.6%. For compounds from Ki 

and IC50 subsets of ChEMBL 4, the probability to interact with two 

or more targets was ~38% and ~25%, respectively. However, the 
probability of activity against more than five targets was reduced to 

only ~ % for both subsets. For approved and experimental drugs, the 

probability of activity against two or more targets was ~84% and 
~24% and the corresponding probability of activity against more 

than five targets ~37% and ~3%, respectively [ 2].  

Taken together, the results indicated that the degree of 
promiscuity of bioactive compounds from screening or medicinal 
chemistry sources was considerably lower than for drugs. Thus, along 
the drug development pathway, a notable increase in promiscuity was 
observed from screening hits and optimized compounds over drug 
candidates to approved drugs, as illustrated in Figure 2c. These 
findings raise questions for further analysis. For example, do these 
observed differences mean that promiscuous drug candidates are 
preferentially selected during clinical trials? Or are target activities of 
drugs or drug candidates much more thoroughly assessed than those 
of other bioactive compounds? These alternative possibilities cannot 
be distinguished at present. It is evident, however, that bioactive 
compounds from various sources including high-throughput screens 
have a much lower degree of promiscuity than drugs on the basis of 
currently available data.    

 

 
 

 

 
 
 
 
 
 

 
Promiscuity across different target families 

 
Compounds active against prominent therapeutic target families 

such as G-protein coupled receptors (GPCRs) or protein kinases have 

Figure 2. Compound promiscuity rates. (a) Reported is the average 
number of targets for promiscuous compounds from different sources. (b) 
Probability of compounds to be active against at least two (light blue) or 
more than five (dark blue) targets. (c) Relative promiscuity rates of 
compounds along the drug development pathway.   
 

Figure 3. Promiscuity across target families. In (a) and (b), average 
promiscuity rates are reported for all compounds active against multiple 
targets within a given family for the Ki and IC50 subsets from ChEMBL 14, 
respectively. Dashed lines indicate global promiscuity rates determined 
for the Ki (i.e., on average 2.9 targets per compound) or IC50 subset (i.e., 
2.7). For each target family, the number of targets and available active 
compounds is reported. 
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previously been reported to frequently exhibit high levels of 

promiscuity [ , 8]. Recently, compounds active against targets 

belonging to five different families were assembled from ChEMBL 4 

including ligands of class A GPCRs, protein kinases, ion channels, 

proteases, and nuclear hormone receptors [ 2]. Compounds active 

against individual target families were further separated into Ki and 
IC50 value-based subsets. Average promiscuity rates of compounds 
active against multiple targets within a family were determined, as 
reported in Figure 3. For the Ki-based subset, only compounds active 
against multiple ion channels displayed above-average promiscuity, 
with activity against 3.9 different channels (Figure 3a). By contrast, 
degrees of promiscuity for compounds active against the other four 
families were comparable to the global promiscuity rate determined 

for the entire Ki subset of ChEMBL 4, as discussed above. For the 

IC50-based subset, a different distribution of promiscuity rates was 
observed across these five target families. Compounds active against 
GPCR class A family and proteases showed a slightly higher than 
average degree of promiscuity (Figure 3b). However, the promiscuity 
rate of ion channel ligands was in this case lower than the global rate. 
Taken together, the results revealed no significant and consistent 
increase in promiscuity for compounds active against prominent target 
families relative to average promiscuity rates for bioactive compounds 

[ 2]. 

 

 

 

 

 
 
 
 
 

Promiscuity vs. molecular weight 
 
Molecular complexity and size have frequently been implicated in 

promiscuity [ 9,20]. Small compounds were found to display a 

general tendency to be more promiscuous than larger, chemically more 
complex molecules. A possible explanation for these findings is that 
small compounds and molecular fragments are easier to accommodate 
in differently shaped binding sites than larger ones. The relationship 
between compound promiscuity and molecular weight (MW) has also 

been systematically investigated through data mining [ 2]. Seven 

subsets of bioactive compounds with increasing (MW) were collected 

from ChEMBL 4. These compound subsets were also separated into 

Ki and IC50 value-based subsets. Figure 4 reports the compound 
composition of each MW range-based subset and the average 
promiscuity rates. For compounds with Ki values (Figure 4a), the 
subset of smallest compounds with MW of at most 200 Da displayed 

the highest degree of promiscuity with on average 4.  targets per 

compound. Compounds with MW in the range of 200 to 300 Da 
had only slightly above-average promiscuity. For compounds with 
MW of more than 300, the degree of promiscuity was comparable to 
the global promiscuity rate for bioactive compounds. For compounds 
from the IC50 subset, there was even less variation over different MW 
ranges and all rates were close to the average promiscuity for IC50 data 
(Figure 4b). Therefore, with the exception of the smallest compounds 
with available Ki data, the degree of promiscuity did not notably 

depend on molecular size [ 2].  

 
Activity measurement dependence 

 
On the basis of global promiscuity rates determined for 

compounds from the Ki and IC50 subsets of ChEMBL, there was no 
significant difference between the degrees of promiscuity when these 
two different types of activity measurements were considered. The 
promiscuity rate was only slightly higher for compounds in the Ki 
than the IC50 subset (Figure 2a). However, when the original release 
of the ChEMBL database was compared with subsequent releases of 

ChEMBL up to version 3, it was also observed that the number of 

promiscuous compounds significantly increased over time. This 
increase was largely due to compounds with assay-dependent IC50 

measurements, rather than equilibrium constants (Ki) [2 ]. To further 

analyze this relative increase, compound-based target relationships 
were determined and visualized in network representations for two 

subsets of promiscuous compounds with available Ki ( 3,842 

compounds) or IC50 measurements ( 9,898). The networks are 

shown in Figure 5. In each network, nodes represent targets that are 
connected by an edge if two targets share at least five compounds. In 

the Ki subset, a total of 254 target pairs were formed that involved 

287 targets. 789 pairs (~63%) were formed by targets from the same 
family (intra-family pairs) and 465 pairs by targets from different 
families (inter-family pairs). The majority of the inter-family pairs 
formed a central network component (Figure 5a). The target network 
of the IC50 subset was clearly dominated by a single large component 
involving targets from many different families (Figure 5b). In this 

case, 24  target pairs were formed involving 559 targets and ~46% 

of the pairs were intra-family pairs. However, more than half of the 
pairs (~54%) were formed across different target families. Thus, IC50 
data yielded a significant increase in compound promiscuity across 
different target families.  

 

Figure 4. Promiscuity vs. molecular weight. In (a) and (b), promiscuity 
rates are reported for compounds classified by increasing molecular 
weight (MW) from the Ki and IC50 subsets of ChEMBL 14, respectively. 
Dashed lines indicate global promiscuity rates according to Figure 3. 
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Figure 5. Promiscuity-based target networks. In (a) and (b), target networks are shown that are based on promiscuous compounds from the Ki and IC50 subsets 
of ChEMBL 14, respectively. Nodes represent targets (colored by target family) that are connected by an edge if they share at least five compounds. For each 
network, the number of nodes and edges are reported as well as the number of pairs formed by targets within the same family (intra-family pairs) or across 
different families (inter-family pairs). The layout of the target network reflects the connectivity or relationships between targets on the basis of at least five 
shared compounds. The length of the edges does not indicate the distance or the degree of relatedness between targets.  
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(a) 

 
 
 
 

(b) 
 

          
 
 
 
 
 
 
 
 
 

Figure 6. Promiscuity cliffs. (a) Distribution of target activities for compounds in a small molecule microarray data set. Compounds active against more than 10 
targets are highlighted using a red box (236 compounds; ~1.5% of the data set). (b) 126 promiscuity cliffs are organized in a network representation (left). 
Nodes represent compounds and edges indicate promiscuity cliffs. Nodes are colored according to the number of target activities using a continuous color 
spectrum from black (i.e., 0; inactive compounds) to white (i.e., 97; highest degree of promiscuity in the data set). Two representative promiscuity cliffs 
involving four compounds are shown (right). Structural differences are highlighted in red. For each compound, the number of targets is reported it was active 
against under microarray conditions.  
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Structure-promiscuity relationships 

 
Compound profiling data sets are obtained by screening 

compound libraries against arrays of targets. Currently, there are only 
few profiling data sets available in the public domain (most profiling 
data are produced in the pharmaceutical industry and kept 
proprietary). For example, Clemons and colleagues generated a small 

molecule microarray data set [22] using a total of 5,252 compounds 

assembled from diverse chemical sources including compounds from 
medicinal chemistry vendors, natural products, and compounds from 
diversity-oriented synthesis. These compounds were systematically 

screened against 00 sequence-unrelated proteins, i.e., a diverse 

spectrum of targets [22]. The experimentally determined activity data 
were then reported as a complete binary (active/inactive) matrix. Such 
data sets provide an opportunity to systematically explore structure-
promiscuity relationships and structural determinants of promiscuity.  

For compounds comprising the microarray data set, the 
distribution of target annotations is reported in Figure 6a. The 

majority of compounds (i.e., ,8 9; ~77.5%) were inactive. The 

remaining compounds were active against -97 targets. However, only 

236 compounds (~ .5%) had activity against more than 0 targets. 

Therefore, highly promiscuous compounds were also rarely observed 
in the microarray experiment. 

For analyzing structure-promiscuity relationships, the matched 
molecular pair (MMP) formalism was applied [23]. An MMP 
represents a pair of compounds that only differ at a single site by the 
exchange of two substructures, i.e., a chemical transformation. The 
application of transformation size restrictions typically limits 
substructure exchanges to chemically meaningful replacements [24]. 
From the entire microarray set, a total of 30,954 transformation size-
restricted MMPs (i.e., ~0.03% of all possible compound pairs) were 

obtained. Only a small subset of 26 MMPs was formed by 

compounds with large differences in the number of target annotations 
(50 or more targets) [25]. These MMPs represented small structural 
modifications leading to large-magnitude changes in promiscuity 
under the experimental conditions of the microarray experiment. The 
compound pairs were thus termed “promiscuity cliffs” [25] and are 
organized in a network representation in Figure 6b. In the network, 
nodes represent compounds and edges indicate the formation of 
promiscuity cliffs. The topology of the network reveals a number of 
“promiscuity hubs”, i.e., compounds involved in multiple promiscuity 
cliffs. Two representative promiscuity cliffs are also shown in Figure 

Figure 7. Compound series matrix. Three compound series (A, B and C) with related core structures resulting from MMP calculations are shown at the top. 
Each series contains three compounds that share a core structure (bottom left) and differ by small substituents. Structural differences between core structures 
are highlighted in red. The compound series matrix (CSM) is generated by combining structurally analogous series. Rows represent series and columns 
substituents. Each combination of a given core and substituent defines a real (filled cell) or virtual (empty cell) compound. Cells are colored according to the 
number of targets compounds are active against, hence reflecting the degree of compound promiscuity. 
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6b. However, no chemical transformations or individual structural 
fragments were identified in the microarray data set that consistently 
introduced promiscuity cliffs or were exclusively present in highly 
promiscuous compounds. Large-magnitude changes in promiscuity 
might at least in part be triggered by experimental conditions of the 
microarray analysis. Nevertheless, the identified promiscuity cliffs 
provide interesting opportunities for follow-up investigations to 
explore potential structural determinants of compound promiscuity. 

 
Graphical mining of multi-target activity spaces 

 
The analysis of multi-target spaces is a complex task but of high 

interest for compound design and development. For example, one 
would like to rationalize promiscuity patterns in compounds sets, 
explore structure-promiscuity relationships, and identify key 
compounds for further chemical exploration. Deconvoluting multi-
target activity spaces also helps to investigate relationships between 
selective and promiscuous compounds. In the following, we introduce 
a computational methodology designed for mining multi-target 
activity spaces and visualizing promiscuity patterns, with a special 
focus on closely related compound series (currently, there are no other 
comparable approaches available).  
 

A data structure termed Compound Series Matrix (CSM) [26] 
was designed on the basis of the MMP formalism [23] to organize 
compound series with closely related core structures in multi-target 
space and elucidate promiscuity patterns. The CSM represents a 
methodological extension of the SAR matrix data structure previously 
introduced by us to monitor potency distributions of analogs active 
against a single target [27]. An analog series consists of a set of 
compounds that share the same core structure and differ by defined 
chemical substitutions (R-groups). CSMs utilize the same structural 
organization scheme as SAR matrices but take multi-target activities 
into account. Figure 7 illustrates the generation of a CSM. At the top, 
three analog series A, B, and C are shown that result from the 
application of a two-step MMP generation procedure following the 
fragmentation and indexing method of Hussain and Rea [23]. In the 
first step, MMPs are generated from original compounds. In the 
second step, MMPs are computed from the core fragments obtained 
in the first step. Thus, the second step produces MMPs with core 
structures that are only distinguished by a structural change at a single 
site. Therefore, the resulting analog series A, B, and C have 
structurally related cores and overlapping sets of substituents. The 
two-step fragmentation and MMP generation scheme is an essential 
feature of the methodology (further fragmentation steps cannot be 
applied to capture close and chemically meaningful structural 
relationships). The matrix is then filled with the core and substituent 
combinations, as illustrated at the bottom of Figure 7. Each related 
core structure represents a row and each substituent a column. Thus, 
compounds in a column share the same substituent and compounds in 
a row the same core structure. Each cell in the CSM represents a 
unique compound. Combinations of core structures and R-groups 
that are not present in the compound data set yield virtual matrix 
compounds from which candidates for synthesis can be selected. A 
color code is introduced to account for multi-target activities. If a 
compound is present in the data set it is colored using a spectrum 
from light blue to dark blue depending on the number of targets the 
compound is active against. Thus, CSMs establish structural 
relationships between compounds in multi-target activity space, 
capture promiscuity patterns in structurally related series, and provide 
hypotheses for compound design. 

To evaluate the CSM methodology, compounds with reported Ki 

values of at least 0 μM (≤ 0 µM) for human targets were assembled 

from ChEMBL version 5. A total of 37,850 compounds were 

obtained that were active against 342 targets. The number of target 

annotations per compound ranged from  to 35. This pool of 

compounds was subjected to two-step MMP and CSM generation, 

yielding 2,337 different CSMs, 665 of which contained 

promiscuous compounds. 064 of these multi-target CSMs 

exclusively covered compounds active against targets from the same 

family, whereas the remaining 59  matrices contained compounds 

with activity against targets from 2 to  different families [26].   

 

In Figure 8, two exemplary multi-target CSMs are shown that 
reveal compound promiscuity patterns. In Figure 8a, 29 compounds 
are represented by six related core structures and seven substituents. 
These compounds were active against six targets belonging to three 
different families. The number of targets per compound ranged from 
two to five.  In the CSM, compounds sharing the same cores (rows) 
or substitutions (columns) displayed different degrees of promiscuity. 
Additionally, compounds with related cores and corresponding 
substitutions also displayed varying promiscuity. In Figure 8b, the 
most promiscuous matrix subset of a large and sparsely populated 

CSM comprising 23 compounds (top) is shown in detail (bottom). 

This subset contains  compounds represented by five related core 

structures and six substituents. The cores differ by aromatic ring 
substitutions highlighted in red. These compounds were active against 

a total of 9 different targets belonging to three different families. 

The compound in the top right cell was active against 2 targets of 

the monoamine GPCR family. As a compound design hypothesis, 
virtual compounds in this column provide suggestions for other 
compounds that might have a similar promiscuity profile. Hence, 
CSMs monitor promiscuity profiles of structurally related compound 
series at high resolution and contain many virtual entities that can be 
considered as candidates for the design of compounds with desired 
target profiles.   

 
Conclusion  

 
Herein we have reviewed currently available insights into 

compound promiscuity obtained by systematic mining of activity 
data. In general, bioactive compounds from different sources 
including high-throughput screening and medicinal chemistry have a 
lower degree of promiscuity than indicated for drugs. In addition, 
there is relatively little variation of compound promiscuity for 
prominent drug target families when high-confidence activity 
measurements are considered. However, the degree of compound 
promiscuity across different target families is dependent on the types 
of activity measurements that are considered. This might result from 
more frequent determination of IC50 values of active compounds and 
diverse targets than equilibrium constants, which require larger 
experimental efforts. At the same time, it can also not be ruled out 
that assay promiscuity (rather than “true” target promiscuity) is at 
least partly responsible for rapidly increasing levels of cross-family 
promiscuity on the basis of IC50 data. Regardless, we emphasize that 
bioactive compounds display lower degrees of promiscuity on the 
basis of currently available data than often thought. 
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Figure 8. Multi-target compound series matrices. (a) Shown is a multi-target CSM containing 29 compounds active against six targets from three families. 
Structural differences between cores are highlighted in red. (b) A large CSM is shown that consists of 123 compounds active against 20 targets from four 
families. A region enriched by highly promiscuous compounds is highlighted and enlarged. Core structures and substituents are displayed. Taken together, the 
11 compounds in this region are active against 19 targets from three families.  
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The degree of promiscuity of drugs is generally higher than 
promiscuity among screening hits and bioactive compounds, 
consistent with the emerging theme of drug polypharmacology. 
However, despite the increasing notion of polypharmacological drug 
actions, drug development in certain therapeutic areas will continue to 
focus on target-specific compounds [28]. Hence, reaching a balance 
between compound promiscuity and target specificity will likely be an 
important task for future drug discovery efforts [28].    

As a computational and graphical framework to structurally 
organize compound data sets, navigate multi-target activity spaces, 
and visualize promiscuity patterns, the CSM approach has been 
discussed. CSMs not only enable the systematic study of compound 
promiscuity patterns but also support the exploration of novel 
compounds with desired target profiles, thereby integrating data 
mining and compound design.    
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